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Measurement and 
expectation values 
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Schrödinger's Equation
Time-independent S.E.:

!𝐻ψ! = 𝐸! ψ!
As seen for the | ⟩𝜒! eigenvectors
ψ" must be orthonormal:

(in 1D)

If we have discrete energy values, we can express a general w.f. as a linear 
combination of eigenstates:

! ψ!∗
#

$#
 ψ% dx = δ!% 

Ψ(#, %) = ()!
!

 ψ!(#) e"i %! &/ℏ 
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3
Wavefunction expansion

Ψ 𝑥, 𝑡 =&
!

𝑐! ψ! 𝑥 e"i#! $/ℏ

with:

c' = *
"(

(
ψ'∗ x ψ x, 0 dx

The normalization integral requires:

%
#$

$
Ψ 𝑥, 𝑡 % 𝑑𝑥 = %

#$

$
,
"

𝑐"∗ ψ"∗ ei'! (/ℏ • ,
+

𝑐+ ψ+e#i'" (/ℏ 𝑑𝑥 = 1
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4
Wavefunction expansion

The normalization integral requires:

%
#$

$
Ψ 𝑥, 𝑡 % 𝑑𝑥 = %

#$

$
,
"

𝑐"∗ ψ"∗ ei'! (/ℏ • ,
+

𝑐+ ψ+e−i'" (/ℏ 𝑑𝑥 = 1

The only terms that can survive are for i=j and the result for 
the integration will be 𝑐" %

Thus, we will have:

,
"

𝑐" % = 1

And this sum must be linked to a probability!
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Probability

ψ 𝑥, 𝑡 =&
!

𝑐! ψ! 𝑥 e"i#! $/ℏ

with:

c' = *
"(

(
ψ'∗ x ψ x, 0 dx

𝑐! * is the probability that a measurement of the energy will 
yield the eigenvalue  𝐸𝑖
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6
Measurement

In quantum mechanics, when we make a measurement
of some quantity such as energy, the system collapses into an 
eigenstate of the energy, with probability:

𝑃! = 𝑐! *

Then the system will stay in the corresponding energy eigenstate 
(being a stationary state).
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Expectation value

Suppose we measure the energy of our system in such an 
experiment, but we repeat the experiment many times, and get a 
statistical distribution of the results.

Considering the probabilities Pi the average value of energy E 
that we would measure would be:

𝐸 =,
"

𝐸"𝑃" =,
"

𝐸" 𝑐" %

This quantity is called
“Expectation value” of the energy.
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Expectation value harmonic oscillator
Let’s check the expectation value of the energy for the coherent 
state.
The general formula can be adapted

𝐸 =,
"

𝐸"𝑃" =,
"

𝐸" 𝑐" %

Considering the expansion coefficients in the case of coherent 
state:

𝐶,! =
𝑁!𝑒#,

𝑛!
Thus:

𝐸 =,
!

𝐸! 𝑐,! % =,
!

𝑛 +
1
2
ℏ𝜔 𝑐,! % =,

!

nℏ𝜔 𝑐,! % +
1
2
ℏ𝜔 𝑐,! %
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9
Expectation value harmonic oscillator
Considering the expansion coefficients in the case of coherent 
state:

𝐶,! =
𝑁!𝑒#,

𝑛!
Thus:

𝐸 =,
!

𝐸! 𝑐,! % =,
!

𝑛 +
1
2
ℏ𝜔 𝑐,! % =,

!

nℏ𝜔 𝑐,! % +
1
2
ℏ𝜔 𝑐,! %

= ℏ𝜔 ,
!

n 𝑐,! % +
1
2
ℏ𝜔 = ℏ𝜔 ,

!

n
𝑁!𝑒#,

𝑛!
+
1
2
ℏ𝜔 = 𝑁 +

1
2
ℏ𝜔

In square brackets we have the probability of getting n times its 
probability, the summation will then give the average N (which is 
not necessarily an integer value)
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The modulus squared of the expansion coefficietnts

𝐶,! % =
𝑁! 𝑒#,

𝑛!
Is the Poisson distribution with mean value N 
and standard
deviation 𝑁

10
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Statistical interpretation

? Prob. P
1

Prob. P
2

𝝍𝟏

𝝍𝟐

A measurement of the energy (or any other observable) can 
only yield a value from the set of the eigenvalues of the 
energy (or corresponding operator) representing the measured 
observable. 

Prob. P
n

𝝍𝒏

𝚿

𝚿 𝒙, 𝒕 = 𝑪𝟏𝝍𝟏 + 𝑪𝟐𝝍𝟐 + 𝑪𝟑𝝍𝟑

𝑬𝒏

𝑬𝟏, 𝑬𝟐, 𝑬𝒏 Eigenvalues
𝝍𝟏, 𝝍𝟐, 𝝍𝒏 Eigenvectors
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12
Statistical interpretation

? Prob. P
1

Prob. P
2

𝝍𝟏

𝝍𝟐

A measurement of the energy (or any other observable) can 
only yield a value from the set of the eigenvalues of the 
energy (or corresponding operator) representing the measured 
observable. 

Prob. P
n

𝝍𝒏

𝚿

𝚿 𝒙, 𝒕 = 𝑪𝟏𝝍𝟏 + 𝑪𝟐𝝍𝟐 + 𝑪𝟑𝝍𝟑

𝑬𝒏

OBSERVABLE: any quantity whose 
numerical value can be experimentally 
measured. 
Actually, the list of Observables for a quantum 
system is not very different than that 
characterizing classical mechanics: 
coordinates, momentums, energies, angular 
momentums, etc
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Statistical interpretation

If a system before the measurement is not in a state described by 
one of the eigenvectors, but it is in a superposition of states, the 
result of the measurement cannot be predicted a priori. 

Only a probability Pn of a particular outcome can be known

𝑃! = 𝑐! "

𝚿 Is the state of the system 
before the mesurement

? Prob. P
1

Prob. P
2

𝝍𝟏

𝝍𝟐

Prob. P
n

𝝍𝒏

𝚿

𝚿 𝒙, 𝒕 = 𝑪𝟏𝝍𝟏 + 𝑪𝟐𝝍𝟐 + 𝑪𝟑𝝍𝟑

𝑬𝒏

c0 = %
#$

$
𝜓0∗ x Ψ x, t0 dx
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The Stern Gerlach experiment
14

Note: Inhomogeneous magnetic 
field

We will get a net force along z

When we make a measurement, we 
collapse the state of the system

𝛹 𝑥, 𝑡 = 𝐶!𝜓!/# + 𝐶#𝜓$!/#

into one of the eigen states:
𝜓!/# or 𝜓$!/#

For 
Spin up (ms=1/2)
Spin Down (ms= =1/2)

N

S
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Operators

Ψ 𝑟, 𝑡 = ψ! 𝑟 e"i#! $/ℏ

ψ# satisfies the time-independent S.E.:

− ℏ"

*.
∇* + 𝑉 r ψ! 𝑟 = 𝐸! ψ! 𝑟

which can be also written as:

!𝐻ψ! = 𝐸! ψ!
With:
:𝐻 = − ℏ"

*.
∇* + 𝑉 r, 𝑡
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Operators and expectation values
t.i.S.E.:

!𝐻𝜓 𝑟 = 𝐸 𝜓 𝑟
With: :𝐻 = − ℏ"

*.
∇* + 𝑉 r, 𝑡

But we wrote the t.d.S.E. as :

𝑖ℏ
𝛿𝛹 r, 𝑡
𝑑𝑡 = −

ℏ*

2𝑚∇* + 𝑉 r, 𝑡 𝛹 r, 𝑡

Thus, we can rewrite it: 
:𝐻 𝛹 r, 𝑡 = 𝑖ħ

𝑑 𝛹 r, 𝑡
𝑑𝑡
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Operators

!𝐻𝜓 𝑟 = 𝐸 𝜓 𝑟

:𝐻 is nor a number or a function, but it is an operator.

It is an entity that when applied to a function, transforms that 
function into another.

Conceptually, it is just like a derivative operator /
/0

The “hat” is indicating that H is not a function or a constant, but 
an operator.
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18
Operators

!𝐻𝜓 𝑟 = 𝐸 𝜓 𝑟

:𝐻 is nor a number or a function, but it is an operator.

The F𝐻 operator is called Hamiltonian

and like the classical Hamiltonian

In non-relativistic quantum mechanics 

The Hamiltonian operator is related to the total energy of the 

system
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Operators and expectation values
We can use F𝐻 to write another expression of the expectation 
value of the energy:

𝐸 = %
#$

$
Ψ ∗ 𝑥, 𝑡 F𝐻Ψ 𝑥, 𝑡 dx

In fact, if we introduce into the integral  

Ψ 𝑥, 𝑡 =,
"

𝑐" ψ" 𝑥 e#i'! (/ℏ

We will get: 

𝐸 = %
#$

$
Ψ ∗ 𝑥, 𝑡 F𝐻Ψ 𝑥, 𝑡 dx =,

"

𝐸" 𝑐" %

Thus, the expectation value!
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20
Operators and expectation values
We can use F𝐻 to write another expression of the expectation 
value of the energy:

𝐸 = %
#$

$
Ψ ∗ 𝑥, 𝑡 F𝐻Ψ 𝑥, 𝑡 dx

In general 

for any operator which is a function of x

Thus, to get the expectation value of an observable, we can use 
the corresponding operator, solving the integral above but not 
necessarily the S.E. 

𝑓 𝑥 = *
"(

(
Ψ ∗ 𝑥, 𝑡 𝑓 𝑥 Ψ 𝑥, 𝑡 dx
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Quantum States

u We are dealing with “mechanical states”
The term “state” in physics is used with different meanings, i.e.:
States of matter (liquid, solid, etc.)
Thermodynamic states (e.g. the state for a gas is identified by its P,V,T)

u The exact meaning of “mechanical states” depends upon the 
framework in which we are working:
classical or quantum physics?

21
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Mechanical States in classical phys.
u In classical physics:

a mechanical state is described by specifying its 
position and velocity (or momentum p)

u If I know the initial coordinates and velocities of any object in the universe, we 
can determine  (or predict) its future position with any accuracy limited only by 
the accuracy of the available instrument (experimental and computational). 

u The evolution of classical states is described by the laws of classical physics

22
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Quantum States

u OBSERVABLE: any quantity whose numerical value can be 
experimentally measured. 
Actually, the list of Observables for a quantum system is not very different 
than that characterizing classical mechanics: coordinates, momentums, 
energies, angular momentums, etc

u But in QM not all observables can be measured within the same 
set of experiments: e.g. Heisenberg’s uncertainty principle 

23

𝛥x Δ𝑝 ≥
ħ
2
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Quantum States

u But in QM not all observables can be measured within the same 
set of experiments: e.g. Heisenberg’s uncertainty principle

u Still, one can consider observables that can be measured with 
certainty, called mutually consistent.

u The largest set of such observables is called a complete set of 
mutually consistent observables.

24
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Quantum States: Dirac notation

u But in QM not all observables can be measured within the same 
set of experiments: e.g. Heisenberg’s uncertainty principle

u Still, one can consider observables that can be measured with 
certainty, called mutually consistent.

u The largest set of such observables is called a complete set of 
mutually consistent observables.

25

q !
q % : i’th observable
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Quantum States: Dirac notation

u The largest set of such observables is called a complete set of 
mutually consistent observables:

u represent a k’th value of i’th observable

u According to the Dirac’s notation the quantum state can be 
represented by:

26

q :

𝑞;
(")

! "𝑞!
" , 𝑞#

$ ⋯𝑞%
&
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Quantum States: Dirac notation 27

Observables (example)
q > : 𝑥 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, q % : 𝑦 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, q ? : 𝑧 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Results of measurements
𝑞;
(>) =3 Å,  𝑞@

(%) =1 Å, 𝑞!
(?) =2 Å

! "𝑞!
" , 𝑞#

$ ⋯𝑞%
&

Note that the q % observables can change continuisly (see the example above) 
or can  have a discrete spectrum.
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Quantum States: Dirac notation 28

Observables (example)
q > : 𝑥 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, q % : 𝑦 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, q ? : 𝑧 − 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

Results of measurements
𝑞;
(>) =3 Å,  𝑞@

(%) =1 Å, 𝑞A
(?) =2 Å

𝑞B
(>) =-3 Å,  𝑞C

(%) =-1 Å, 𝑞D
(?) =-2 Å

| ⟩0,0,0
| ⟩1,1,1

Assuming a discrete spectrum and in the hypotesys that the  system can be in 
just two states.

! "𝑞!
" , 𝑞#

$ ⋯𝑞%
&
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Quantum States: Dirac notation

u But it is not always that simple: there are states in QM in which the 
observables may have not definite values, because we cannot 
predict with absolute certainty the output of the measurement. 
(remember the complementary principle: it is the measurement itself to “force” the 
observable to have a determined value) 

u In general, repeating measurements on the same system (provided it 
is returned back to its initial state) returns different outcomes after 
each measurement.

u Still, states with uncertain outcomes of a measurement can be 
described as a linear superposition of the simple states.

29
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Linear vector space

All quantum states can be represented by special objects belonging to a certain “space” 
and have some properties.

30

| ⟩𝑆𝑈𝑃 = 𝑎R| ⟩𝑞" + 𝑎"| ⟩𝑞"

1. There is a null object | ⟩0 such that 4 ⟩𝒒 +| ⟩𝟎 = | ⟩𝒒 and 𝟎 9 4 ⟩𝒒 =| ⟩𝟎

2. Distributive property between these objects
𝒂(| ⟩𝒒𝟏 + | ⟩𝒒𝟐 ) = 𝒂4 ⟩𝒒𝟏 + 𝒂| ⟩𝒒𝟐

3. Associative properties w.r.t. the complex numbers and their multiplication
𝒂𝟏4 ⟩𝒒𝒊 + 𝒂𝟐| ⟩𝒒𝒊 =(𝒂𝟏+𝒂𝟐)| ⟩𝒒𝒊

𝒂𝟏(𝒂𝟐 | ⟩𝒒𝒊 ) = (𝒂𝟏 𝒂𝟐) | ⟩𝒒𝒊
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Linear vector space

We know from basic physics courses that examples of  objects satisfying all the 
properties mentioned so far are three-dimensional vectors (e.g. displacement 
and velocity vectors).
Ø More in general, abstract objects satisfying these properties  are 

called vectors belonging to linear space vector and are 
generally represent as:

Ø We will use what you (may) know from linear algebra course to 
work with these abstract objects.

31

| ⟩𝛼 , | ⟩𝛽 , | ⟩𝛾
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Linearly independent vectors
u A linear combination of the vectors | ⟩𝛼 , | ⟩𝛽 , | ⟩𝛾 ,…:

a| ⟩𝛼 + 𝑏| ⟩𝛽 + 𝑐| ⟩𝛾 + ⋯

Ø A vector | ⟩𝛾 is linearly independent of the set | ⟩𝛼 , | ⟩𝛽 , | ⟩𝛾 ,… if it cannot be written as a linear 
combination of them. (example: x, y, z, unit vectors in three dimensions)

Ø A set of vectors is linearly independent if each one is linearly independent of all the rest

Ø A set of vectors is said to span the space if every vector can be written as a linear combination of 
the members of this set. In other words, this set of linearly independent vectors is also complete
because adding any other distinct vector to the set makes it linearly dependent.

Ø A set of linearly independent vectors that spans the space is called a basis and  the number of 
vectors in any basis is called the dimension of the space. 

32
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Linearly independent vectors
u A set of vectors is said to span the space if every vector can be written as a 

linear combination of the members of this set. In other words, this set of 
linearly independent vectors is also complete because adding any other 
distinct vector to the set makes it linearly dependent.

33
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Linear vector space
Ø With respect to a prescribed basis

We can state:

34

| ⟩𝒆𝟏 , | ⟩𝒆𝟐 , | ⟩𝒆𝟑 ,…, | ⟩𝒆𝒏

| ⟩𝛼 = 𝑎1| ⟩𝒆𝟏 + 𝑎2| ⟩𝒆𝟐 + 𝑎3| ⟩𝒆𝟑 +…+ 𝑎𝑛 | ⟩𝒆𝒏

| ⟩𝛼 ⟷ (𝑎1, 𝑎2, 𝑎3,…,𝑎𝑛 )

| ⟩𝛼 + | ⟩𝛽 ⟷ (𝑎1+ 𝑏1, 𝑎2+ 𝑏2, 𝑎3+ 𝑏3,…,𝑎𝑛 + 𝑏𝑛)

c| ⟩𝛼 ⟷ (𝑐𝑎1, 𝑐𝑎2, 𝑐𝑎3,…,c 𝑎𝑛 )

| ⟩0 ⟷ (0, 0, 0,…,0)

− | ⟩𝛼 ⟷ (−𝑎1,−𝑎2,−𝑎3,…,−𝑎𝑛 )



M
a

te
ria

ls 
Sc

ie
nc

e

Inner products
Ø The dot product, that we know in three-dimensional space vector, generalize in n-dimensional space 

vector as inner product (in the Dirac notation bra-ket)

Ø With the following properties:

35

|𝛼 𝛽

|𝛼 𝛽 = |𝛽 𝛼 ∗1 ⋅

2 ⋅

3 ⋅

|𝛼 𝛼 ≥ ∅ |𝛼 𝛼 = 𝛼 ≥ 0

|𝛼 (𝑏 𝛽 + 𝑐 | ⟩𝛾 ) = 𝑏 |𝛼 𝛽 +c |𝛼 𝛾

𝛼 NORM of | ⟩𝛼
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Orhonormal set
Ø Normalized vector:                                                Normalization:

Ø Orthogonal vectors:

Ø Collection of mutually orthogonal normalized vectors is called ORTHONORMAL SET

36

|𝛼! 𝛼" = 𝛿!"

|𝛼 𝛽 = 0

𝛼 = 1 | ⟩𝛼
𝛼
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Inner products
Ø Bra-ket

In term of vectors:

37

|𝛼 𝛽

| ⟩𝛼 =

𝑎>
𝑎%
…

𝑎!

and | ⟩𝛽 =

𝑏>
𝑏%
…

𝑏𝑛

| ⟩𝛼 = 𝑎1| ⟩𝒆𝟏 + 𝑎2| ⟩𝒆𝟐 + 𝑎3| ⟩𝒆𝟑 +…+ 𝑎𝑛 | ⟩𝒆𝒏

| ⟩𝛽 = 𝑏1| ⟩𝒆𝟏 + 𝑏2| ⟩𝒆𝟐 + 𝑏3| ⟩𝒆𝟑 +…+𝑏𝑛 | ⟩𝒆𝒏
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Inner products
Ø Bra-ket

Complex Conjugate:

38

|𝛼 𝛽 = 𝑎=∗ 𝑎*∗ … 𝑎>∗

𝑏=
𝑏*
…

𝑏𝑛

= ∑!?=@ 𝑎!∗𝑏!
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Inner products
Ø Bra-ket

If we choose an orthonormal base:

39

|𝑒! 𝑒" = 𝛿!" ⇒ |𝑒# 𝑒# = 1

|𝛼 𝛽 = 𝑎=∗ 𝑎*∗ … 𝑎>∗

𝑏=
𝑏*
…

𝑏𝑛

= ∑!?=@ 𝑎!∗𝑏!

|𝛼 𝛽 = 𝑎$∗𝑏$ + 𝑎&∗𝑏&+ ⋯ + 𝑎#∗𝑏#
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Inner products
Thus in term of vectors, ket and               bra- :

40

| ⟩𝛼 =

𝑎>
𝑎%

𝑎!

⟨ |𝛼 = [𝑎>∗ 𝑎%∗ …𝑎!∗ ]

| ⟩𝛼 ∗ =

𝑎>∗
𝑎%∗

𝑎!∗

| ⟩𝛼 ∗ P = | ⟩𝛼 † = ⟨ |𝜶
Hermitian conjugate or Hermitian transpose or adjoint
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Inner products
Ø Bra-ket

If 𝛃 = 𝜶

and the component a1 can be found:

41

|𝛼 𝛽 = 𝑎=∗ 𝑎*∗ … 𝑎>∗

𝑏=
𝑏*
…

𝑏𝑛

= ∑!?=
@ 𝑎!

∗𝑏!
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Hilbert Space
Ø Bra-ket

Ø Norm

Ø A linear vector space with a defined inner product and a norm is 
an Hilbert space

42
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Functions of coninuous variable 
Consider a class of complex functions ψ(x) with x	∈	[-∞,∞]	and:

Ø square integrable functions with

Ø defining the norm

Ø The linear combinations of such functions also belong to the same class (forming a linear vector space) 

Ø The inner product of 𝜓 𝑥 𝜑 𝑥 is defined as:

Ø This is also called the “overlap integral” of 𝜓 and 𝜑

43

%
#$

$

𝜓 𝑥 % d𝑥 < ∞

‖‖𝜓 = %
#$

$

𝜓 𝑥 % d𝑥

(𝜓,𝜑) = ∫#$
$ 𝜓∗ 𝑥 𝜑 𝑥 d𝑥 Thus, these functions do form a Hilbert vector space
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Functions of coninuous variable 

We can make a link between the bra and ket vectors and these functions:

Ø We have shown two very different concrete realizations of abstract Hilbert space: 
column vectors and square-integrable functions with two different operational definitions of the inner 
product. Despite their differences they have the same defining properties.

44

| ⟩𝜶 ≡ 𝝍 𝒙 and     ⟨ |𝜶 ≡ 𝝍∗ 𝒙
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Functions of coninuous variable 45

𝐟 =
𝑓(𝑥>)
𝑓(𝑥%)
𝑓(𝑥?)

We can see the function and, more generally, the quantum 
mechanical state as a vector in a space. 
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Functions of coninuous variable 46

| ⟩𝒇(𝒙) =

𝑓(𝑥>) δx
𝑓(𝑥%) δx
𝑓(𝑥?) δx

⋮

We can see the ket as a function:

more strictly, in the limit of  δx → 0
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Functions of coninuous variable 47

The integral of the modulus squared of the f function:

* 𝑓 𝑥 *𝑑𝑥 = 𝑓∗(𝑥=) δx 𝑓∗(𝑥=) δx… 𝑓∗(𝑥I) δx

𝑓(𝑥=) δx
𝑓(𝑥*) δx

⋮
𝑓(𝑥I) δx

≡ |𝒇(𝒙) 𝒇(𝒙)
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48

Is not the state | ⟩𝛼 and has no physical meaning 

In the Probability Density

Wavefunction

Observable with Continuous spectrum
Starting with :      | ⟩𝜶 ≡ 𝝍 𝒙 and     ⟨ |𝜶 ≡ 𝝍∗ 𝒙
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Functions of coninuous variable 

We can make a link between the bra and ket vectors and these functions:

Ø We have shown two very different concrete realizations of abstract Hilbert space: 
column vectors and square-integrable functions with two different operational definitions of the inner 
product. Despite their differences they have the same defining properties.

Ø It has been introduced as a definition of the state | ⟩𝜶 but we have 
seen that 𝝍 𝒙 has no physical meaning

49

| ⟩𝜶 ≡ 𝝍 𝒙 and     ⟨ |𝜶 ≡ 𝝍∗ 𝒙
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Superposition principle and probabilities 50

Ø Let’s use a more convenient symbol for | ⟩𝑆𝑈𝑃

| ⟩𝑆𝑈𝑃 = 𝑎>| ⟩𝑞> + 𝑎%| ⟩𝑞%
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Superposition principle and probabilities 51

Ø Probability that the measurement of observable q on a state | ⟩𝜶 will give qi
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Superposition principle and probabilities 52

Ø Probability that the measurement of observable q on a state | ⟩𝜶 will give qi

Ø If the norm of the state | ⟩𝜶 is 1 also the sum of probability of measuring the 
different values is 1 in agreement with what expected for probabilities

Ø That’s why we need to have normalized vectors

𝛼 ! = 𝑎" ! + 𝑎! ! ≡ 𝑝" + 𝑝!

𝑝 𝑞! = |𝑞! 𝛼 "
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53

Thus in general:
| ⟩𝛼 = 𝑎"| ⟩𝑞" + 𝑎$| ⟩𝑞$ +𝑎'| ⟩𝑞' +⋯ = ∑()"& 𝑎( | ⟩𝑞(

and: 
𝑎*= ⟨ |𝑞( ⟩𝛼

𝑝 𝑞( = |𝑞( 𝛼 $

Superposition principle and probabilities
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Thus, in general:
| ⟩𝛼 = 𝑎"| ⟩𝑞" + 𝑎$| ⟩𝑞$ +𝑎'| ⟩𝑞' +⋯ = ∑()"& 𝑎( | ⟩𝑞(
and: 
𝑎*= ⟨ |𝑞( ⟩𝛼

Remembering that: 

Ψ 𝑥 =8
+

𝑐+ ψ+ 𝑥

Superposition principle and probabilities
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Thus :

| ⟩Ψ =8
+

𝑐+ | ⟩ψ+

and: 
𝑐+= ⟨ |ψ+ ⟩Ψ

Superposition principle and probabilities



M
a

te
ria

ls 
Sc

ie
nc

e

56

| ⟩Ψ = ∑+ 𝑐+ | ⟩ψ+
and:      𝑐+= ⟨ |ψ+ ⟩Ψ
Thus :

| ⟩Ψ =8
+

𝑐+ | ⟩ψ+ =8
+

: ⟩ψ+ 𝑐+ =

=8
+

| ⟩ψ+ ⟨ |ψ+ ⟩Ψ

Superposition principle and probabilities

Cn can be 
moved in 
the product


