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Operators 
(functions and 
operations)
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OPERATORS in quatum mechanics

u An operator is a “rule” prescribing how to change one vector | ⟩𝜶 of a linear vector space H, 
into another abstract vector, | ⟩𝛽 of the same or a different vector space

*note that !𝑇 acts on | ⟩𝛼 (right side) and is place close to 
the vertical line of the ket

u A linear operator can be also seen as a linear function which maps H into itself. In other words, 
to each | ⟩𝜶 in H, %𝑇 assigns another element %𝑇| ⟩𝛼 in H in such a way that:

| ⟩𝛽 = %𝑇| ⟩𝛼

!𝑇 (𝑎| ⟩𝛼 + 𝑏| ⟩𝛾 ) = 𝑎 !𝑇| ⟩𝛼 + 𝑏 !𝑇| ⟩𝛾
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OPERATORS in quatum mechanics

Examples of operators:

u Identity operator | ⟩𝛼 = %𝐼| ⟩𝛼
u Differentiation operator g x = +𝐷| ⟩𝑓 ≡ !"

!#

u Gradient operator ∇𝑓 𝑥, 𝑦, 𝑧 = 𝒆#𝛿 ⁄𝑓 𝛿 𝑥 +𝒆$𝛿 ⁄𝑓 𝛿 𝑦 + 𝒆%𝛿 ⁄𝑓 𝛿𝑧

u It also possible to define an operator acting on a bra vector by making the Hermitian 
conjugation of | ⟩𝛽 = %𝑇| ⟩𝛼 :

⟨ |𝛽 = ⟨ |𝜶 *𝑇!

You may note that the operator is applied to the right of the bra (still closer to the vertical line)…
Why?
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OPERATORS in quatum mechanics

u It also possible to define an operator acting on a bra vector by making the Hermitian 
conjugation of | ⟩𝛽 = %𝑇| ⟩𝛼 :

⟨ |𝛽 = ⟨ |𝜶 *𝑇! You may note that the 
operator is applied to the right 
of the bra (still closer to the 
vertical line)…

Why?
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OPERATORS in quatum mechanics

u So | ⟩𝛽 = %𝑇| ⟩𝛼 and  ⟨ |𝛽 = ⟨ |𝜶 %𝑇&

𝑇! = 𝑇∗ "
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OPERATORS in quatum mechanics

uSo, we confirmed the “formal” rule of Hermitian 
conjugation of a matrix by the “operational” rule of the 
Hermitian conjugation of the matrix operator

𝑇! = 𝑇∗ #
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OPERATORS in quatum mechanics

u It also possible to define an operator acting on a bra vector by making the Hermitian 
conjugation of | ⟩𝛽 = %𝑇| ⟩𝛼 :

⟨ |𝛽 = ⟨ |𝜶 *𝑇!

In this case we know how to make the Hermitian conjugate 
of the matrix, hence of the matrix operator !𝑇, but in general 
we do not have any clue except for the definition of inner 
product, that we may use to get an expression of !𝑇

So, I will make the inner product between   | ⟩𝜷 and      &𝑻| ⟩𝜶
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OPERATORS in quatum mechanics

The inner product will be:     (| ⟩𝛽 )! %𝑇| ⟩𝛼 = ⟨ |𝛽 %𝑇| ⟩𝛼
which is often called as a matrix element

…but we know that

8
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OPERATORS in quatum mechanics

The inner product will be:     (| ⟩𝛽 )! %𝑇| ⟩𝛼 = ⟨ |𝛽 %𝑇| ⟩𝛼
which is often called as a matrix element

…but we know that

so: ⟨ |𝛽 %𝑇| ⟩𝛼 ∗ = ⟨ |𝛼 %𝑇!| ⟩𝛽

By using this equation, we can get      %𝑇!

9
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OPERATORS in quatum mechanics
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OPERATORS in quatum mechanics
11

N.B.:	Integration	by	parts
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OPERATORS in quatum mechanics

uVery important definition:

if ⟨ |𝛽 !𝑇| ⟩𝛼 ∗ = ⟨ |𝛼 !𝑇| ⟩𝛽

and so         !𝑇"= !𝑇 (an operator and its Hermitian conjugate  are equal)

The operator is called Hermitian operator (or self-adjoint )

Such operators have important properties that will be discussed later…

15
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OPERATORS (functions and operations)

u The collection of all operators is itself a linear space, since 
a scalar times an operator (α・ !𝑇) is an operator, and the 
sum of two operators is also an operator

The operator (α !𝑇 + b -𝑆) applied to an element |𝛼 ⟩ of H
yields the result: 

(α !𝑇 + b -𝑆)| ⟩𝛼 = α !𝑇| ⟩𝛼 + b -𝑆| ⟩𝛼

16
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OPERATORS (functions and operations)

u The product !𝑇 #𝑆 of two operators !𝑇 and #𝑆 is the operator 

obtained by first applying #𝑆 to some ket, and then !𝑇 to the ket

which results from applying #𝑆:
!𝑇 #𝑆 | ⟩𝛼 = !𝑇 #𝑆| ⟩𝛼

Of course, in case of bra vector, the order will be opposite:

⟨ |𝛼 !𝑇 #𝑆 = ⟨ |𝛼 !𝑇 #𝑆

17
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OPERATORS (functions and operations)

The product *𝑇 %𝑆 of two operators *𝑇 and %𝑆 is the operator obtained by first 

applying %𝑆 to some ket, and then *𝑇 to the ket which results from applying %𝑆:

*𝑇 %𝑆 | ⟩𝛼 = *𝑇 %𝑆| ⟩𝛼

u Thus, it is evident that operator multiplication, unlike 

multiplication of scalars, is not commutative, and in 

general: !𝑇 -𝑆 ≠ -𝑆 !𝑇

18
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OPERATORS (functions and operations)

u In the exceptional case in which 
!𝑇 -𝑆 = -𝑆 !𝑇

one says that these two operators commute

In general, we can define the commutator of two operators:

!𝑇, -𝑆 = !𝑇 -𝑆 − -𝑆 !𝑇

The commutator is often the most important information that you can have 
about the two operators

19
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OPERATORS (functions and operations)

We have seen the identity operator -𝐼 ∶ | ⟩𝛼 = -𝐼| ⟩𝛼
u We can then define the inverse operator !𝑇9::

!𝑇9: !𝑇 =   !𝑇 !𝑇9: = -𝐼

And thus:
If !𝑇| ⟩𝛼 = | ⟩𝛽
Then | ⟩𝛼 = !𝑇9: | ⟩𝛽

20
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OPERATORS (functions and operations)

We have seen the identity operator -𝐼 ∶ | ⟩𝛼 = -𝐼| ⟩𝛼
u We can then define the inverse operator !𝑇9::

!𝑇9: !𝑇 =   !𝑇 !𝑇9: = -𝐼

𝐼;< ≡ 𝛿;<

A matrix has an inverse if and only if its determinant is nonzero, in fact:

21

%𝑇!" = !
"#$ #$

C% where C is the matrix of cofactors
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OPERATORS (functions and operations)

One can easily show that
( *𝑇 %𝑆)! = %𝑆! *𝑇!

Then, if the two Operators are Hermitian:
( *𝑇 %𝑆)! = %𝑆 *𝑇

But in that case:

[ !𝑇, -𝑆]== !𝑇 -𝑆 − -𝑆 !𝑇
=
= !𝑇 -𝑆

=- -𝑆 !𝑇
== -𝑆 !𝑇- !𝑇 -𝑆= - [ !𝑇, -𝑆]

Operators that change sign upon Hermitian conjugation are anti-Hermitian
Thus, the commutator of two Hermitian Operators is anti-Hermitian

22
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23
OPERATORS (functions and operations)

[ $𝑇, '𝑆]!= - [ '𝑆, $𝑇]
N.B. The commutator of two Hermitian Operators is anti-Hermitian

Let’s put $𝑇, '𝑆 = - $𝐵
Then !𝐵 is anti-Hermitian and :

$𝐵!= - $𝐵
If           '𝐴= 𝑖 $𝐵 then: '𝐴!= -𝑖 $𝐵!= 𝑖 $𝐵= '𝐴 thus '𝐴 must be Hermitian.
Hence:  $𝑇, '𝑆 = 𝑖 '𝐴
If the commutator is a number: $𝑇, '𝑆 = 𝑖𝑎
Where a is real.
We could consider a as a vector, hence '𝐴 will represent a real function, 
and it is Hermitian. 
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24
OPERATORS (functions and operations)

We could consider a as a vector, hence -𝐴 will represent a real 
function, and it is Hermitian. 

For the same reason:
the potential V(x),

which  can be represented by an operator !𝑉(diagonal matrix),
if it is a real function, then its corresponding operator is Hermitian.



M
a

te
ria

ls 
Sc

ie
nc

e

25
OPERATORS (functions and operations)

The potential V(x),
which  can be represented by an operator !𝑉(diagonal matrix),

if it is a real function, then its corresponding operator is Hermitian.

We have seen that the differential operator :𝐷 is anti-Hermitian.
But one can easily prove that 𝑖 >

>?
is Hermitian

Also >
#

>?#
is Hermitian, thus also the operator 𝛁𝟐 is Hermitian.

Thus, :𝐻 = − ℏ#

BC
∇B + 𝑉 r is Hermitian
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26
Eigenvalues and Eigenvectors

In general we have seen that the result of an operator applied to a vector is another different vector.

There is a class of vectors, called eigenvectors, that are not much changed by 
some operators, but they are multiplied by a number (called eigenvalue) 

!𝑇| ⟩𝛼 = 𝜆D| ⟩𝛼

u For each eigenvector there might be one and only one corresponding eigenvalue.
u For each eigenvalue we may have more than one corresponding eigenvector.
u If for each eigenvalue there exists only a single eigenvector, we describe this eigenvalue as 

non-degenerate
u If several eigenvectors correspond to the same eigenvalue, the respective eigenvalue is 

naturally called “degenerate” 
u Any (nonzero) multiple of an eigenvectors still an eigenvector with the same eigenvalue
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27
Eigenvalues and Eigenvectors

Eigenvector equation: !𝑇| ⟩𝛼 = 𝜆D| ⟩𝛼

u With respect to a particular basis | ⟩𝛼 = 𝑎"| ⟩𝑒' +𝑎B| ⟩𝑒# +…+ 𝑎F| ⟩𝑒$
the eigenvector equation assumes the matrix form:

!𝑇𝒂 = 𝜆 𝒂 (with nonzero a vector)

( !𝑇 − 𝜆I)𝒂=0 (0 is the zero matrix)

And because a may not be 0 by assumption, then the determinant of ( %𝑇 − 𝜆I) must be 0:

det( !𝑇 − 𝜆I) =0
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28
Eigenvalues and Eigenvectors

Because a may not be 0 by assumption, then the determinant of ( %𝑇 − 𝜆I) must be 0:

det( !𝑇 − 𝜆I)=

𝑇:: − 𝜆 𝑇:B … 𝑇:I
𝑇B: 𝑇BB − 𝜆 … 𝑇BI
⋮ ⋮ ⋮
𝑇I: 𝑇IB … 𝑇II − 𝜆

=0

Expansion of the determinant yields an algebraic equation for 𝜆 :
𝐶I𝜆I + 𝐶I9:𝜆I9: +⋯+ 𝐶:𝜆 + 𝐶J

This is called the characteristic equation for the matrix allowing to calculate the eigen-values. 
To construct the corresponding eigenvectors one should plug each 𝝀 back into equation
%𝑇𝒂 = 𝜆 𝒂 and solve for the components of a. 
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Eigenvalues and Eigenvectors

Find the eigenvalues and eigenvectors of the following matrix: :

𝑀=
2 0 −2
−2𝑖 𝑖 2𝑖
1 0 −1
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30
Eigenvalues and Eigenvectors
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Eigenvalues and Eigenvectors

&𝑀𝒂 = 𝜆 𝒂
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32
Eigenvalues and Eigenvectors

&𝑀𝒂 = 𝜆 𝒂

2 0 −2
−2𝑖 𝑖 2𝑖
1 0 −1

𝑎:
𝑎B
𝑎M

= 𝜆I
𝑎:
𝑎B
𝑎M
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33
Eigenvalues and Eigenvectors

2 0 −2
−2𝑖 𝑖 2𝑖
1 0 −1

𝑎:
𝑎B
𝑎M

= 0
𝑎:
𝑎B
𝑎M

=
0
0
0
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34
Eigenvalues and Eigenvectors
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35
Eigenvalues and Eigenvectors

2 0 −2
−2𝑖 𝑖 2𝑖
1 0 −1

𝑎:
𝑎B
𝑎M

= 1
𝑎:
𝑎B
𝑎M

=
𝑎:
𝑎B
𝑎M
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36
Eigenvalues and Eigenvectors
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Eigenvalues and Eigenvectors
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Eigenvalues and Eigenvectors



M
a

te
ria

ls 
Sc

ie
nc

e

39
Eigenvalues and Eigenvectors

!𝑇| ⟩𝛼 = 𝜆D| ⟩𝛼

u If several eigenvectors correspond to the same eigenvalue, the respective eigenvalue is 
naturally called “degenerate” 

u To distinguish between different eigenvectors belonging to the same eigenvalue, I need an 
additional index 

!𝑇 | ⟩𝜆, 𝜇I = 𝜆 | ⟩𝜆, 𝜇I
𝜆 is n-fold degenerate

Any linear combination of these vectors is again an eigenvector belonging to the same 
eigenvalue 

In fact, if | ⟩𝛼 = 𝑎" | ⟩𝜆, 𝜇" + 𝑎#| ⟩𝜆, 𝜇#
Then *𝑇 | ⟩𝛼 = *𝑇 𝑎" | ⟩𝜆, 𝜇" + 𝑎#| ⟩𝜆, 𝜇# = 𝑎" 𝜆| ⟩𝜆, 𝜇" + 𝑎# 𝜆| ⟩𝜆, 𝜇# = 𝜆 | ⟩𝛼
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40
Eigenvalues and Eigenvectors (Theorem)

u Consider two operators commuting operators T and S. Also assume that 𝜆& is a non-degenerate 
eigenvalue of T with eigenvector | ⟩𝜇& . Then, this vector is also an eigenvector of the operator S.

if *𝑇 %𝑆 = %𝑆 *𝑇 and *𝑇| ⟩𝜇% = 𝜆% | ⟩𝜇% then %𝑆| ⟩𝜇% = 𝜆& | ⟩𝜇%
Proof:

%𝑆 *𝑇| ⟩𝜇% = %𝑆𝜆% | ⟩𝜇% = 𝜆% %𝑆| ⟩𝜇%
*𝑇 %𝑆| ⟩𝜇% = 𝜆% %𝑆| ⟩𝜇%

So N𝑆| ⟩𝜇( is also an eigenvector of T with still the same eigenvalue 𝜆(
But we imposed that 𝜆( is nondegenerate, so N𝑆| ⟩𝜇( may differ from the initial | ⟩𝜇( only for a 
constant:

%𝑆| ⟩𝜇% = 𝜆&| ⟩𝜇%
thus | ⟩𝜇% is also an eigenvector of S.

u The non-degenerate nature of the eigenvalue of T is essential here. But it can be also proved that one can always form such a 
linear combination of these degenerate eigenvectors which will become an eigenvector of S
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41
Hermitian Operators and Observables

u If you think a bit about Operators, eigenvalues and eigenvectors and all the 
prosperities that we have discussed, you may find several similarities with 
Observables, Values of observables and quantum states.

u In fact, the connection is established by some postulates:

1. “Every observable is represented in quantum theory by a Hermitian 
operator”

2. “If an operator is created to represent an observable,
its eigenvalues indicate possible values of a measurement of that 
observable,
and the eigenstates define the quantum state of the system”

Why the operator should be Hermitian? This is due to several properties of the Hermitian Operators...
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42
Hermitian Operators (properties)

u The eigenvalues of Hermitian operators are real
Proof.
Assume that 𝜆 is an eigenvalue of T with eigenvector | ⟩𝜇 :
*𝑇| ⟩𝜇 = 𝜆| ⟩𝜇 . 
If I multiply everything by ⟨ |𝜇 then:
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43
Hermitian Operators (properties)

Proof.
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Hermitian Operators (properties)

Proof.
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45
Hermitian Operators (properties)

u The eigenvectors of a Hermitian operator belonging to distinct 
eigenvalues are orthogonal.
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46
Hermitian Operators (properties)

u The eigenvectors of a Hermitian operator belonging to distinct 
eigenvalues are orthogonal.

Proof.
Assume that 𝜆" and 𝜆# are two different eigenvalues:

*𝑇| ⟩𝜇" = 𝜆"| ⟩𝜇" and *𝑇| ⟩𝜇# = 𝜆#| ⟩𝜇#
If I multiply everything by ⟨ |𝜇# the first one and ⟨ |𝜇" the second one, then:
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Hermitian Operators (properties)

Proof.
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48
Hermitian Operators (properties)

Proof.
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49
Hermitian Operators (properties)

u The eigenvectors of a Hermitian operator belonging to distinct 
eigenvalues are orthogonal.

Proof.
Assume that 𝜆" and 𝜆# are two different eigenvalues:

*𝑇| ⟩𝜇" = 𝜆"| ⟩𝜇" and *𝑇| ⟩𝜇# = 𝜆#| ⟩𝜇#
Then:

⟨ |𝜇B ⟩𝜇: = 0 QED
THE EIGENVECTRORS OF HERMITIAN OPERERATORS ARE ORTHOGONAL

We do see the link between the concept of mutually exclusive states 
and orthogonal states, being eigenvectors of Hermitian operators.
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50
Hermitian Operators (properties)

u The eigenvectors of a Hermitian Operator span the space, or in other 
words the collection of Eigenvectors of Hermitian Operators form a 
complete basis in the Hilbert vector space, still other words, any state in 
the respective Hilbert space may be represented by a linear 
combination of the Eigenvectors.

In fact, if we consider a generic state | ⟩𝛼 :

| ⟩𝛼 = 𝑎&| ⟩𝑞& + 𝑎'| ⟩𝑞' +𝑎(| ⟩𝑞( +⋯ = ∑)*&+ 𝑎) | ⟩𝑞)
Now, 𝑞) are the eigenvectors here.
Remember that 𝑎&= ⟨ |𝑞& ⟩𝛼

Then | ⟩𝛼 = ∑;Q:R | ⟩𝑞; ⟨ |𝑞; ⟩𝛼 = (| ⟩𝑞; ⟨ |𝑞; ) ⟩𝛼
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51
Hermitian Operators (properties)

Then | ⟩𝛼 = ∑;Q:R | ⟩𝑞; ⟨ |𝑞; ⟩𝛼 = O;Q:
R (P ⟩𝑞; ⟨ |𝑞; ) | ⟩𝛼

Projector operator :𝑃 (;)| ⟩𝛼 = | ⟩𝑞; ⟨ |𝑞; ⟩𝛼

And one can easily demonstrate that O;Q:
R P ⟩𝑞; ⟨ |𝑞; = -𝐼

Indeed, proving that ∑;Q:R 𝑎; | ⟩𝑞; = | ⟩𝛼
In fact:

𝑎!= ⟨ |𝑞! ⟩𝛼 ∑"#!$ 𝑎" | ⟩𝑞" =∑"#!$ | ⟩𝑞" 𝑎"=."#!
$ / ⟩𝑞" ⟨ |𝑞" ⟩𝛼 =| ⟩𝛼
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52
Hermitian Operators (properties)

u Then | ⟩Ψ = ∑I| ⟩ψI ⟨ |ψI ⟩Ψ

Projector operator :𝑃 (;)| ⟩Ψ = | ⟩ψI ⟨ |ψI ⟩Ψ

And one can easily demonstrate that OIP ⟩ψI ⟨ |ψI = -𝐼

Indeed, proving that ∑I 𝑐I | ⟩ψI = | ⟩Ψ


