Continuous random variables

\& the Gaussian distribution

Continuous random variables

It can take on an infinite number of values included in an interval of finite or infinite amplitude.
->The probability for any single value is $0 \mathrm{P}(\mathrm{X}=\mathrm{x})=0$
->A probability is assigned for a range of values $\mathrm{P}(\mathrm{a}<\mathrm{X}<\mathrm{b}) \geq 0$

Example

What is the probability of having a BMI of $23 \mathrm{~kg} / \mathrm{m}^{2}$?

What is the probability of having a $\mathrm{BMI}<18 \mathrm{~kg} / \mathrm{m}^{2}$?

From discrete to continuous...
 ... bins smaller and smaller, n $\rightarrow \infty$

Expected value and variance for continuous random variables

$$
\begin{aligned}
E(X) & =\int_{\Omega} x f(x) d x=\mu \\
\operatorname{Var}(X) & =\int_{\Omega}[x-E(X)]^{2} f(x) d x=\sigma^{2}
\end{aligned}
$$

Uniform (rectangular) Distribution

A continuous random variable has a uniform distribution if its values are spread evenly over the range. The graph of a uniform distribution results in a rectangular shape.

Density Curve

A density curve is the graph of a continuous probability distribution. It must satisfy the following properties:

1. The total area under the curve must equal 1 .
2. Every point on the curve must have a vertical height that is 0 or greater. (That is, the curve cannot fall below the x-axis.)

Area and Probability

Because the total area under the density curve is equal to 1 , there is a correspondence between area and probability.

Using Area to Find Probability

Given the uniform distribution illustrated, find the probability that a randomly selected voltage level is greater than 124.5 volts.

Shaded area represents voltage levels greater than 124.5 volts.

Correspondence between area and probability: 0.25 .

Gaussian distribution

Gaussian (or normal) distribution

The random variable Gaussian plays a fundamental role because:

- describes well the manifestation of many phenomena, for example:

Karl Friedrich Gauss
\checkmark Measurement errors (Gaussian genesis)
(1777-1855).
\checkmark Morphological characteristics (height, length)

- enjoys important properties (relevant technical aspect)

Gaussian (or normal) distribution

If a continuous random variable has a symmetric and bell-shaped distribution and it can be described by the following equation we say that it has a normal distribution.

Karl Friedrich Gauss
(1777-1855).

$$
f(x)=\frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}}{\sigma \sqrt{2 \pi}}
$$

e: Euler's number, - mathematical constant approximately equal to 2.71828
π : mathematical constant, approximately equal to 3.14159
Distribution determined by fixed values of mean and standard deviation

Gaussian distribution \& measurment errors

The random measurement errors ($\varepsilon=x-\mu$), taken as a whole, show a typical behavior that can be described as follows:

1. small errors are more frequent than large ones;
2. errors of negative sign tend to occur with the same frequency as those with a positive sign;
3. as the number of measures increases, $2 / 3$ of the values tend to be included in the interval mean ± 1 standard deviation \& 95% of the values tend to be included in the interval average ± 2 standard deviations
Gaussian parameters: μ and $\sigma \quad \mathrm{f}(\mathrm{x})=\frac{1}{\sigma \sqrt{2 \pi}} \mathrm{e}^{-(\mathrm{x}-\mathbb{T})^{2} / 2 \sigma^{2}}$

$$
\begin{array}{ll}
\mathrm{N}(\mu=60, & \sigma=12) \\
\mathrm{N}(\mu=80, & \sigma=12) \\
\mathrm{N}(\mu=100, & \sigma=12)
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{N}(\mu=80, & \sigma=4) \\
\mathrm{N}(\mu=80, & \sigma=12) \\
\mathrm{N}(\mu=80, & \sigma=24)
\end{array}
$$

The standard Normal distribution: z score

The standard normal distribution is a specific normal distribution having the following three properties:

1. Bell-shaped (gaussian)
2. $\mu=0$ - null mean
3. $\sigma=1$ - standard deviation equal to 1

The total area under its density curve is equal to 1 (corresponding to a probability of 100\%)

$$
y=f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{1}{2} \cdot x^{2}\right]
$$

Example: Bone Density Test

A bone mineral density test can be helpful in identifying the presence or likelihood of osteoporosis, a disease causing bones to become more fragile and more likely to break. The result of a bone density test is commonly measured as a z score. The population of z scores is normally distributed with a mean of 0 and a standard deviation of 1 , so test results meet the requirements of a standard normal distribution.

1) A randomly selected adult undergoes a bone density test. Find the probability that this person has a bone density test score less than 1.27.

The Gaussian functions are not integrable and should be tabulated.

From Triola \& Triola book

The z score-tabulated values of areas (probabilities)

Table A-2		Standard Normal (z) Distribution: Cumulative Area from the LEFT								
z	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
$\begin{aligned} & -3.50 \\ & \text { and } \\ & \text { lower } \end{aligned}$. 0001									
-3.4	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0003	. 0002
-3.3	. 0005	. 0005	. 0005	. 0004	. 0004	. 0004	. 0004	. 0004	. 0004	. 0003
-3.2	. 0007	. 0007	. 0006	. 0006	. 0006	. 0006	. 0006	. 0005	. 0005	. 0005
-3.1	. 0010	. 0009	. 0009	. 0009	. 0008	. 0008	. 0008	. 0008	. 0007	. 0007
-3.0	. 0013	. 0013	. 0013	. 0012	. 0012	. 0011	. 0011	. 0011	. 0010	. 0010
-2.9	. 0019	. 0018	. 0018	. 0017	. 0016	. 0016	. 0015	. 0015	. 0014	. 0014
-2.8	. 0026	. 0025	. 0024	. 0023	. 0023	. 0022	. 0021	. 0021	. 0020	. 0019
-2.7	. 0035	. 0034	. 0033	. 0032	. 0031	. 0030	. 0029	. 0028	. 0027	. 0026
-2.6	. 0047	. 0045	. 0044	. 0043	. 0041	. 0040	. 0039	. 0038	. 0037	. 0036
-2.5	. 0062	. 0060	. 0059	. 0057	. 0055	. 0054	. 0052	. 0051	*. 0049	. 0048
-2.4	. 0082	. 0080	. 0078	. 0075	. 0073	. 0071	. 0069	. 0068	¢. 0066	. 0064
-2.3	. 0107	. 0104	. 0102	. 0099	. 0096	. 0094	. 0091	. 0089	. 0087	. 0084
-2.2	. 0139	. 0136	. 0132	. 0129	. 0125	. 0122	. 0119	. 0116	. 0113	. 0110
-2.1	. 0179	. 0174	. 0170	. 0166	. 0162	. 0158	. 0154	. 0150	. 0146	. 0143
-2.0	. 0228	. 0222	. 0217	. 0212	. 0207	. 0202	. 0197	. 0192	. 0188	. 0183
-1.9	. 0287	. 0281	. 0274	. 0268	. 0262	. 0256	. 0250	. 0244	. 0239	. 0233
-1.8	. 0359	. 0351	. 0344	. 0336	. 0329	. 0322	. 0314	. 0307	. 0301	. 0294
-1.7	. 0446	. 0436	. 0427	. 0418	. 0409	. 0401	. 0392	. 0384	. 0375	. 0367
-1.6	. 0548	. 0537	. 0526	. 0516	. 0505	*. 0495	. 0485	. 0475	. 0465	. 0455
-1.5	. 0668	. 0655	. 0643	. 0630	. 0618	$\uparrow .0606$. 0594	. 0582	. 0571	. 0559

Example : Bone Density Test

1) A randomly selected adult undergoes a bone density test. Find the probability that this person has a bone density test score less than 1.27.

$$
\mathrm{P}(z<1.27)=
$$

Look at Table A-2

TABLE A-2 (continued) Cumulative Area from the LEFT

| | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| z | .00 | .01 | .02 | .03 | .04 | .05 | .06 | .07 |
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 |
| 1.2 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 |
| 1.4 | .9849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 |

Example : Bone Density Test

1) A randomly selected adult undergoes a bone density test. Find the probability that this person has a bone density test score less than 1.27.

$$
\mathrm{P}(z<1.27)=0.8980
$$

Example : Bone Density Test

The probability of randomly selecting an adult with bone density test score less than 1.27 is 0.8980 .

Example : Bone Density Test

$$
\mathrm{P}(z<1.27)=0.8980
$$

Or 89.80\% of adults will have bone density test score below 1.27.

Example : Bone Density Test

A bone mineral density test can be helpful in identifying the presence or likelihood of osteoporosis, a disease causing bones to become more fragile and more likely to break. The result of a bone density test is commonly measured as a z score. The population of z scores is normally distributed with a mean of 0 and a standard deviation of 1 , so these test results meet the requirements of a standard normal distribution.

1) A randomly selected adult undergoes a bone density test. Find the probability that this person has a bone density test score less than 1.27.
2) A bone density test reading between -1.00 and -2.50 indicates that the subject has osteopenia, which is some bone loss. Find the probability that a randomly selected subject has a reading between -1.00 and -2.50 .
3) Find the bone density score corresponding to P_{95}, the 95th percentile. That is, find the bone density score that separates the bottom 95% from the top 5\%.

From Triola \& Triola book

Exercise: Bone Density Test

2) A bone density test reading between -1.00 and -2.50 indicates that the subject has osteopenia, which is some bone loss. Find the probability that a randomly selected subject has a reading between -1.00 and -2.50.
1. The area to the left of $z=-1.00$ is $0.1587 \rightarrow P(z<-1)=0.1587$.

Exercise: Bone Density Test

2) A bone density test reading between -1.00 and -2.50 indicates that the subject has osteopenia, which is some bone loss. Find the probability that a randomly selected subject has a reading between -1.00 and -2.50.
1. The area to the left of $z=-1.00$ is $0.1587 \rightarrow P(z<-1)=0.1587$.
2. The area to the left of $z=-2.50$ is $0.0062 \rightarrow P(z<-2.50)=0.0062$.

Exercise: Bone Density Test

2) A bone density test reading between -1.00 and -2.50 indicates that the subject has osteopenia, which is some bone loss. Find the probability that a randomly selected subject has a reading between -1.00 and -2.50.
1. The area to the left of $z=-1.00$ is $0.1587 \rightarrow P(z<-1)=0.1587$.
2. The area to the left of $z=-2.50$ is $0.0062 \rightarrow P(z<-2.50)=0.0062$.
3. The area between $z=-2.50$ and $z=-1.00$ is the difference between the areas found in the preceding two steps:

Notation

$\mathrm{P}(a<z<b)$

denotes the probability that the z score is between a and b.
$\mathrm{P}(z>a)$
denotes the probability that the \mathbf{z} score is greater than a.
$\mathrm{P}(z<a)$
denotes the probability that the z score is less than a.

Exercise: Bone Density Test

3) Find the bone density score corresponding to P_{95}, the 95 th percentile. That is, find the bone density score that separates the bottom 95% from the top 5%.

Finding a z Score When Given a Probability Using Table A-2

1. Draw a bell-shaped curve and identify the region under the curve that corresponds to the given probability. If that region is not a cumulative region from the left, work instead with a known region that is a cumulative region from the left.
2. Using the cumulative area from the left, locate the closest probability in the body of Table A-2 and identify the corresponding z score.

Exercise: Bone Density Test

3) Find the bone density score corresponding to P_{95}, the 95 th percentile. That is, find the bone density score that separates the bottom 95% from the top 5%.

(z score will be positive)

Finding the $95^{\text {th }}$ Percentile

Exercise: Bone Density Test

3) Find the bone density score corresponding to P_{95}, the 95 th percentile. That is, find the bone density score that separates the bottom 95% from the top 5%.

Finding the $95^{\text {th }}$ Percentile

Exercise: Bone Density Test

3) Find the bone density score corresponding to P_{95}, the 95 th percentile. That is, find the bone density score that separates the bottom 95% from the top 5%.

INTERPRETATION

For bone density test scores, 95% of the scores are less than or equal to 1.645, and 5\% of them are greater than or equal to 1.645 .

Example:

Adults have pulse rates with a mean of 72 bpm (beats per minute), a standard deviation of 13 bpm , and a distribution that is approximately normal (data from GISSI-HF prevention trial).
The normal range is generally considered to be between 60 bpm and 100 bpm . What is the proportion of adults who are expected to have Tachycardia (pulse rates greater than 100 bpm)?

$$
N(\mu=72, \quad \sigma=13)
$$

Hearth rate (beats per minute)

How can we do with PULSE variable?

```
pulse }~N(72,13
```

In order to work with any nonstandard normal distribution (with a mean different from 0 and/or a standard deviation different from 1) the key is a simple conversion that allows us to "standardize" any normal distribution so that x values can be transformed to z scores; then the methods of the preceding section can be used.

(a) Nonstandard

Normal Distribution
(b) Standard

Normal Distribution

Converting to a Standard Normal Distribution

Round z scores to 2 decimal places

Exercise

In GISSI-prevention trial we noted that pulse rates of adult are normally distributed with a mean of 72 bpm and a standard deviation of 13 bpm .
1)Find the proportion of adults with a pulse rate greater than 100 bpm . These are considered to be at a high risk of stroke, heart disease, or cardiac death.
2) Normal pulse rates are generally considered to be between 60 bpm and 100 bpm , find the percentage of subjects with normal pulse rates.
3) Find the pulse rate that separates the highest 1\% from the lowest 99\%. That is, find P_{99}.
pulse ${ }^{\sim} N(72,13)$

Exercise

In GISSI-prevention trial we noted that pulse rates of adult are normally distributed with a mean of 72 bpm and a standard deviation of 13 bpm .
1)Find the proportion of adults with a pulse rate greater than 100 bpm . These are considered to be at a high risk of stroke, heart disease, or cardiac death.
pulse $\sim N(72,13)$
$Z=(100-72) / 13=2.15$

Exercise

In GISSI-prevention trial we noted that pulse rates of adult are normally distributed with a mean of 72 bpm and a standard deviation of 13 bpm .
1)Find the proportion of adults with a pulse rate greater than 100 bpm . These are considered to be at a high risk of stroke, heart disease, or cardiac death.
pulse $\sim N(72,13)$
$Z=(100-72) / 13=2.15$
$P(X>100)=P(Z>2.15)=1-P(Z<2.15)=$ $1-0.9842=0.0158$

Solution

2) Normal pulse rates are generally considered to be between 60 bpm and 100 bpm , find the percentage of subjects with normal pulse rates.
$Z=(60-72) / 13=-0.92$

Solution

2) Normal pulse rates are generally considered to be between 60 bpm and 100 bpm , find the percentage of subjects with normal pulse rates.
$Z=(60-72) / 13=-0.92$
$\mathrm{P}(\mathrm{X}<60)=\mathrm{P}(\mathrm{Z}<-0.92)=0.1788$ (from the table)

Solution

2) Normal pulse rates are generally considered to be between 60 bpm and 100 bpm , find the percentage of subjects with normal pulse rates.
$Z=(60-72) / 13=-0.92$
$\mathrm{P}(\mathrm{X}<60)=\mathrm{P}(\mathrm{Z}<-0.92)=0.1788$ (from the table)
$P(60<X<100)=P(-0.92<Z<2.15)=$
$=1-0.0158-0.1788=0.8054$

Solution

3) Find the pulse rate that separates the highest 1% from the lowest 99%. That is, find P_{99}.

$$
\begin{aligned}
& P\left(X>x_{0.99}\right)=P\left(Z>z_{0.99}\right)=0.01 \\
& z_{0.99}=2.33 \text { (from the table) }
\end{aligned}
$$

$z=\frac{x-\mu}{\sigma}$

FIGURE 6-14 Finding the 99th Percentile
$2.33=\frac{x-70}{13}$
$x=70+(2.33 * 13)=100.29$

Conversion of percentiles into z-scores

If a distribution of data is approximately symmetric and bell-shaped, about 95% of the data should fall within two standard deviations of the mean.

The z-score for a data value, x, is

$$
z=\frac{x-\bar{x}}{s}
$$

Note 1-z-score puts values on a common scale
Note $\mathbf{2 - z}$-score is the number of standard deviations a value falls from the mean

Applications with Normal Distributions

Find a probability (from a known value of x)

Convert to the standard normal distribution by finding z :

$$
z=\frac{x-\mu}{\sigma}
$$

Look up z in Table A-2 and find the cumulative area to the left of z.

Find the probability by using the technology.

Find a value of x
(from known probability or area)

Histogram with Gaussian approximation - intervals around μ

Histogram with Gaussian approximation - intervals around μ

Histogram with Gaussian approximation - intervals around μ

