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uncertainty principle
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Hermitian Operators and Observables

1. “Every observable is represented in quantum theory by a Hermitian operator”

2. “If an operator is created to represent an observable,
its eigenvalues indicate possible values of a measurement of that observable,
and the eigenstates define the quantum state of the system”

So far, the only operator we have considered has been the Hamiltonian !𝑯
associated with the energy E.

We	can	construct	operators	associated	with	many	other	measurable	quantities.
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Momentum and momentum operator

We may consider the momentum operator corresponding to the 
classical momentum p: p⇾ !𝒑

| ⟩𝑝 here are eigenvectors of <𝒑 and so <𝒑 | ⟩𝑝 =λ! | ⟩𝑝

We postulate that:
"𝒑 ≡ −𝑖ℏ∇
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Momentum and momentum operator

We postulate that:
"𝒑 ≡ −𝑖ℏ∇

Thus:
"𝒑!

2𝑚
= −

ℏ!

2𝑚
∇!

Linking the classical notion of the energy E

𝐸 =
𝒑!

2𝑚
+ 𝑉

To the Hamiltonian operator 

/𝐻 = −
ℏ!

2𝑚
∇! + 𝑉 =

"𝒑!

2𝑚
+ 1𝑉
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Momentum and momentum operator

"𝒑 ≡ −𝑖ℏ∇

The plane wave ei𝐊#𝐫 are solutions of the eigenvector equation for 
the "𝒑 operator, in fact:

"𝒑 ei𝐊#𝐫= ℏ𝐊 ei𝐊#𝐫

with ℏ𝐊 being the corresponding eigenvalues

Thus, we can also write that the momentum p is:
𝐩 = ℏ𝐊

This 𝐩 represents possible values of measurements of the momentum 
of the system, and note that it is in general a vector.
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Position and position operator

T𝒉𝒆 𝒄𝒐𝒓𝒓𝒆𝒔𝒑𝒐𝒏𝒅𝒊𝒏𝒈 𝒐𝒑𝒆𝒓𝒂𝒕𝒐𝒓 𝒊𝒔 𝒂𝒍𝒎𝒐𝒔𝒕 𝒕𝒓𝒊𝒗𝒊𝒂𝒍 𝒘𝒉𝒆𝒏 𝒘𝒆 𝒂𝒓𝒆
𝒘𝒐𝒓𝒌𝒊𝒏𝒈 𝒘𝒊𝒕𝒉 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏𝒔 𝒐𝒇 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 .

𝑰𝒕 𝒊𝒔 𝒔𝒊𝒎𝒑𝒍𝒚 𝒕𝒉𝒆 𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 𝒗𝒆𝒄𝒕𝒐𝒓, 𝒓, 𝒊𝒕𝒔𝒆𝒍𝒇.

W𝒆 𝒕𝒚𝒑𝒊𝒄𝒂𝒍𝒍𝒚 𝒅𝒐 𝒏𝒐𝒕 𝒘𝒓𝒊𝒕𝒆 I𝒓 , 𝒕𝒉𝒐𝒖𝒈𝒉 𝒓𝒊𝒈𝒐𝒓𝒐𝒖𝒔𝒍𝒚 𝒘𝒆 𝒔𝒉𝒐𝒖𝒍𝒅.
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Uncertainty principle

We cannot simultaneously know both the position and 
momentum of a particle.

We have already seen, for the example of a gaussian wave 
packet, that:

Δ𝑥 Δ𝑘 =
1
2

Or, considering the momentum 𝐩 = ℏ𝐊

Δ𝑥 Δ𝑝 =
ℏ
2
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Uncertainty principle

The Gaussian distribution and its Fourier transform have 
the minimum product ΔkΔx of any distribution

Thus, we can state the uncertainty principle as:

Δ𝑥 Δ𝑝 ≥
ℏ
2

Though demonstrated here only for a specific example,
this uncertainty principle is quite general (for all 
observables not mutually-exclusive, e.g. freq. and time)
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Uncertainty principle

The Gaussian distribution and its Fourier transform have 
the minimum product ΔkΔx of any distribution

Thus, we can state the uncertainty principle as:

Δ𝑥 Δ𝑝 ≥
ℏ
2

It is not merely that we cannot simultaneously measure 
these two quantities, but a particle simply does not have 
simultaneously both a well-defined position and a well-
defined momentum.
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Expectation value

|⟨𝛼 A𝑇| ⟩𝛼 = 𝑇 =D
"

D
#

𝑎"∗𝑎# 𝜒" A𝑇 𝜒#

=D
"

D
#

𝑎"∗𝑎#𝜆# 𝜒" 𝜒#

=D
"

𝑎" %𝜆"

It has the meaning of the average value of the observable, which one would “expect” to 
find if the same measurement is repeated multiple times
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Standard deviation

The results of the different measurements of &𝑇 will be scattered around the expectation value, ⟨ &𝑇 ⟩. The 
statistical uncertainty of such measurements is the standard deviation

σ* ≡ A𝑇% − 𝑇 % in general for discrete observ.

σ! ≡ I𝑥" − 𝑥 " = ∫#$
$ 𝑥 − 𝑥 " ψ " 𝑑𝑥 for the x contin. observ.

σ!" is the variance of x
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Standard deviation

σ! ≡ I𝑥" − 𝑥 " = ∫#$
$ 𝑥 − 𝑥 " ψ " 𝑑𝑥 = I𝑥 − 𝑥 "

σ!" is the variance of x Δ𝑥 = 𝑥 − 𝑥

Δ𝑥 = 0

Δ𝑥 ! = 𝑥 − 𝑥 ! = 𝑥! − 2𝑥 𝑥 + 𝑥 !

= 𝑥M − 2 𝑥 𝑥 + 𝑥 M = 𝑥M − 𝑥 M
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Standard deviation

σ! ≡ I𝑥 − 𝑥 "

if σ! = 0 =>  I𝑥 − 𝑥 = 0

That means that:
I𝑥ψ = 𝑥 ψ
Thus:
If 𝑥 coincides with an eigenvalue of the operator, then the uncertainty in 
the measurement is zero.
This is what we have already discussed: if the state of the system is an 
eigenstate, then the corresponding eigenvalue coincides with the expectation 
value of the measurement and the standard deviation is zero. 
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Generalized Uncertainty Principle

Let us define an operator  associated with the variance of A
σ+% ≡ N𝐴% − 𝐴 % = N𝐴 − 𝐴 % =

Thus, σ%" = ψ U𝐴 − 𝐴
"
ψ = ψ U𝐴 − 𝐴

& U𝐴 − 𝐴 ψ =

= U𝐴 − 𝐴 ψ U𝐴 − 𝐴 ψ = 𝑓 𝑓

Similarly, for 1𝐵

σ'" = 𝑔 𝑔
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Generalized Uncertainty Principle

Thus
σ%"σ'" = 𝑓 𝑓 𝑔 𝑔 ≥ 𝑓 𝑔 "

Because of Schwartz inequality stating  

(
!

"
𝑓∗ 𝑥 𝑔 𝑥 𝑑𝑥

$

≤ (
!

"
𝑓 𝑥 $ 𝑑𝑥 (

!

"
𝑔 𝑥 $ 𝑑𝑥

If z is a complex number z = 𝑓 𝑔 :

𝑧 % = Re 𝑧 % + Im 𝑧 % ≥ Im 𝑧 % =
1
2 𝑖 𝑧 − 𝑧∗

%
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Generalized Uncertainty Principle

Thus
σ+% σ,% ≥

-
% . 𝑧 − 𝑧∗

%

One can show that
𝑓 𝑔 =z= .𝐴 0𝐵 − 𝐴 𝐵
𝑔 𝑓 =z*= 0𝐵 .𝐴 − 𝐴 𝐵

Thus
z-z*= N𝐴 A𝐵 − A𝐵 N𝐴 = N𝐴, A𝐵

Finally:

σ+% σ,% ≥
1
2𝑖

N𝐴, A𝐵
%
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Generalized Uncertainty Principle

Let’s consider the canonical commutation relation:

I𝑥, �̂�𝑥 = 𝑖ħ

In fact:                                           and
"𝒑 ≡ −𝑖ℏ 3

3!
"𝒑| ⟩𝑓 = −𝑖ℏ 3

3!
| ⟩𝑓

Thus:

"𝒑, 𝒙 | ⟩𝑓 = −𝑖ℏ
𝑑
𝑑𝑥 𝑥 − 𝑥

𝑑
𝑑𝑥

| ⟩𝑓 =

−𝑖ℏ
𝑑
𝑑𝑥 𝑥| ⟩𝑓 − 𝑥

𝑑
𝑑𝑥
| ⟩𝑓 = −𝑖ℏ

𝑑
𝑑𝑥 𝑥

| ⟩𝑓 + 𝑥
𝑑
𝑑𝑥
| ⟩𝑓 − 𝑥

𝑑
𝑑𝑥
| ⟩𝑓 = −𝑖ℏ| ⟩𝑓
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Generalized Uncertainty Principle

σ+% σ,% ≥
1
2 𝑖

N𝐴, A𝐵
%

If we consider the canonical commutation relation:
I𝑥, �̂�𝑥 = 𝑖ħ

Then

σ!" σ4" ≥
5
" 6
𝑖ħ

"
= ħ

"

"

This is the original Heisenberg uncertainty principle 

Δ𝑥 Δ𝑝 ≥
ℏ
2
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Time evolution operator
S.E. 𝑖ħ 3| ⟩:

3;
= /𝐻| ⟩𝛼 or   3

3;
| ⟩𝛼 = − 6

ħ
/𝐻| ⟩𝛼

If the Hamiltonian "𝐻 is constant in time a very simple solution can be 
obtained by integrating this:

| ⟩𝛼(𝑡) = exp(−𝑖
<=
ħ
𝑡) | ⟩𝛼0

where | ⟩𝛼0 is the state of the system at time t=0

If it is legal to do that, we can have an operator that 
gives us the state at any time when applied to (or 
starting from) that at time t=0.
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Time evolution operator
S.E. 𝑖ħ /| ⟩1/2 = !𝐻| ⟩𝛼 or   //2 | ⟩𝛼 = − .

ħ
!𝐻| ⟩𝛼

If the Hamiltonian "𝐻 is constant in time a very simple solution is:

| ⟩𝛼(𝑡) = exp(−𝑖
<=
ħ
𝑡) | ⟩𝛼0

For practical calculations, the action of the exponent of an operator 
on a vector is not easy to compute…

Now, if we consider | ⟩𝛼0 = | ⟩𝜒% to be an eigenvectors of !𝐻 with 
eigenvalue En, then:

/𝐻| ⟩𝜒A = 𝐸A| ⟩𝜒A
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Time evolution operator
S.E. 𝑖ħ /| ⟩1/2 = !𝐻| ⟩𝛼 or   //2 | ⟩𝛼 = − .

ħ
!𝐻| ⟩𝛼

If the Hamiltonian "𝐻 is constant in time a very simple solution is:

| ⟩𝛼(𝑡) = exp(−𝑖
<=
ħ
𝑡) | ⟩𝛼0

Operator of exponential function: exp $𝑇 ='

!

1
𝑛!
$𝑇!

e! =h

A

𝑥A

𝑛!
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Time evolution operator
S.E. 𝑖ħ /| ⟩1/2 = !𝐻| ⟩𝛼 or   //2 | ⟩𝛼 = − .

ħ
!𝐻| ⟩𝛼

If the Hamiltonian "𝐻 is constant in time a very simple solution is:

| ⟩𝛼(𝑡) = exp(−𝑖
"#
ħ
𝑡) | ⟩𝛼0

Thus:

| ⟩𝛼(𝑡) ='

!

1
𝑚!

−i𝑡
ħ

!
6𝐻!| ⟩𝛼0

exp $𝑇 ='

"

1
𝑛!
$𝑇"
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Time evolution operator
| ⟩𝛼(𝑡) = exp(−𝑖

<=
ħ
𝑡) | ⟩𝛼0

Now, if we consider | ⟩𝛼0 = | ⟩𝜒" to be an eigenvectors of !𝐻 with 
eigenvalue En

| ⟩𝛼(𝑡) ='

!

1
𝑚!

−i𝑡
ħ

!
6𝐻!| ⟩𝜒"
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Time evolution operator
| ⟩𝛼(𝑡) = exp(−𝑖

<=
ħ
𝑡) | ⟩𝛼0

Now, if we consider | ⟩𝛼0 = | ⟩𝜒" to be an eigenvectors of !𝐻 with 
eigenvalue En

| ⟩𝛼(𝑡) ='

!

1
𝑚!

−i𝑡
ħ

!
6𝐻!| ⟩𝜒"

𝐸"! | ⟩𝜒"
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Time evolution operator
| ⟩𝛼(𝑡) = exp(−𝑖

<=
ħ
𝑡) | ⟩𝛼0

Now, if we consider | ⟩𝛼0 = | ⟩𝜒" to be an eigenvectors of !𝐻 with 
eigenvalue En 

!𝐻| ⟩𝜒" = 𝐸"| ⟩𝜒"

Rewritten as exponential

| ⟩𝛼(𝑡) =.

"

1
𝑚!

−i𝑡
ħ

"
𝐸#"| ⟩𝜒# = exp(−𝑖

𝐸𝑛
ħ 𝑡)

| ⟩𝜒#
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Time evolution operator

| ⟩𝛼(𝑡) = exp(−𝑖
𝐸𝑛
ħ 𝑡)

| ⟩𝜒A

This is the solution to the time-dependent Schrödinger equation, that 
we have also written as:

ψ 𝑟, 𝑡 = ψ# 𝑟 e$i%$ &/ℏ

Thus, if a system is initially in a state represented by an 
eigenstate, it remains in this state for ever: the time –dependent 
factor is  a complex number and does not affect any measurable 
quantity, because its modulus squared is equal to unity
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Time evolution operator

This is the solution to the time-dependent Schrödinger equation, that 
we have also written as:

ψ 𝑟, 𝑡 = ψ" 𝑟 e4i5! 2/ℏ

And we also now that a superposition state will be:

Ψ 𝑥 =D
"

𝑐" ψ" 𝑥

And thus:

Ψ 𝑟, 𝑡 =D
"

𝑐" ψ" 𝑟 e4i5! 2/ℏ
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Time evolution operator
Starting with:

Ψ 𝑟, 𝑡 =D
"

𝑐" ψ" 𝑟 e4i5! 2/ℏ

And by exploiting e8 =D
"

8!

"!

Ψ 𝑟, 𝑡 =m
A

𝑐A ψA 𝑟
(−i 𝐸A 𝑡/ℏ)A

n!
=m

A

𝑐A
(−i 𝑡/ℏ)A

𝑛!
(𝐸A )AψA 𝑟

everywhere in the summation term we have 𝐸A ψA 𝑟 , we can 
substitute /𝐻ψA 𝑟
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Time evolution operator

Ψ 𝑟, 𝑡 =m
A

𝑐A ψA 𝑟
(−i 𝐸A 𝑡/ℏ)A

n!

everywhere in the summation term we have 𝐸6 ψ6 𝑟 , we can 
substitute /𝐻ψ6 𝑟

Ψ 𝑟, 𝑡 =m
A

𝑐A
(−i /𝐻𝑡/ℏ)A

n!
ψA 𝑟

And using Ψ 𝑥 = ∑A 𝑐A ψA 𝑥

Ψ 𝑟, 𝑡 = Ψ 𝑟 m
A

(−i /𝐻𝑡/ℏ)A

𝑛!
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Time evolution operator

ψ 𝑟, 𝑡 = ψ 𝑥 m
A

(−𝑖 /𝐻𝑡/ℏ)A

𝑛!

And by exploiting again e! =m
A

!!

A!

Ψ 𝑟, 𝑡 = Ψ 𝑟, 𝑡C e#6 <=;/ℏ

Hence, we have established that there is a well-defined operator 
that given the quantum mechanical wavefunction or “state” at 
time t=0 , will tell us what the state is at a time t.


