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A B S T R A C T   

Urological cancers include bladder, prostate and renal cancers that can cause death in males and females. Pa
tients with urological cancers are mainly diagnosed at an advanced disease stage when they also develop 
resistance to therapy or poor response. The use of natural products in the treatment of urological cancers has 
shown a significant increase. Curcumin has been widely used in cancer treatment due to its ability to trigger cell 
death and suppress metastasis. The beneficial effects of curcumin in the treatment of urological cancers is the 
focus of current review. Curcumin can induce apoptosis in the three types of urological cancers limiting their 
proliferative potential. Furthermore, curcumin can suppress invasion of urological cancers through EMT inhi
bition. Notably, curcumin decreases the expression of MMPs, therefore interfering with urological cancer 
metastasis. When used in combination with chemotherapy agents, curcumin displays synergistic effects in sup
pressing cancer progression. It can also be used as a chemosensitizer. Based on pre-clinical studies, curcumin 
administration is beneficial in the treatment of urological cancers and future clinical applications might be 
considered upon solving problems related to the poor bioavailability of the compound. To improve the 
bioavailability of curcumin and increase its therapeutic index in urological cancer suppression, nanostructures 
have been developed to favor targeted delivery.   

1. Introduction 

Cancer is a devastating disease characterized by high morbidity and 
mortality. Cancer currently causes 7.6 million deaths annually and this 
is expected to increase to 13.1 million by 2030 [1]. There are different 
types of cancers and each has distinct malignancy features. However, 

breast, lung, colorectal, prostate and pancreatic cancers along with 
bladder and renal cancers are the most common. For this reason, a 
wealth of studies has focused on developing new therapeutics for these 
malignancies [1–6]. Cancer can develop at any time, although the 
incidence rate usually increases with age. Early diagnosis of cancer 
greatly helps in improving patients' survival and currently, there are 
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three major forms of treatment for cancer and these include surgery, 
chemotherapy, and radiotherapy. However, tumor cells are prone to 
recurrence and migration in the presence of conventional therapies and 
this represents a challenge for physicians. Chemotherapeutic agents 
eliminate both cancer and normal cells, this representing a drawback of 
this form of treatment, which is also associated with some debilitating 
side effects [7]. Furthermore, drug resistance in cancer is responsible for 
chemotherapy failure [8–14]. 

Because of low efficacy of conventional therapeutics, new types of 
anti-cancer agents have been considered in recent years [7]. Phyto
chemicals are plant-based chemicals derived from nature and they might 
be relevant for cancer therapy [15–19] . There are several reasons for 
using natural products in disease treatment to achieve cancer suppres
sion and these include low price, multi-targeting ability and safety 
profile [20–27]. Vegetables, fruits, spices and grains are rich in phyto
chemicals and their health promoting effects have been known from 
ancient times [28–32]. The use of natural products in cancer treatment 
has undergone a significant increase since tumor cells cannot develop 
resistance to phytochemicals with anti-cancer activity [33–35] 
Furthermore, co-administration of natural products and conventional 
chemotherapeutic agents has considerable synergistic effect [36,37]. 
Natural products can also increase sensitivity of tumor cells to chemo
therapy by regulating cell death mechanisms and different signaling 
cascades [38–42]. In the current review, we emphasize the role of cur
cumin as a naturally occurring compound for the treatment of urological 
cancers, with a focus on the molecular pathways modulated by this 
compound. Although some reviews have been previously published, this 
is an updated review with aim to shed light on new findings about role of 
curcumin in treatment of urological cancers. The outline of current re
view is different from previously published studies and due to high 
incidence rate of urological cancers (for instance, prostate cancer is now 
the most common cancer in men), this review article can provide new 
insight about role of curcumin in cancer therapy. 

2. Search strategy 

The databases like “Google scholar”, “PubMed” and “Science direct” 
have been used for literature review. We used words like “curcumin”, 
“urological cancers”, “prostate cancer”, “bladder cancer” and “renal 
cancer” to conduct our search. 

3. Curcumin and cancer suppression: a brief review 

Turmeric is a spice derived from Curcuma longa and it is a natural 
source of curcuminoids. Turmeric has three distinct bioactive com
pounds that include curcumin, demethoxycurcumin and bisdemethox
ycurcumin. The main component of turmeric is curcumin that is also 
known as diferulomethane and has a molecular weight of 368.38 kDa 
[43]. Curcumin is present as a crystalline powder with orange-yellow 
color. This polyphenolic phytochemical has been extensively deployed 
for medicinal purposes. Its pharmacological activities are linked to its 
antioxidant, anti-inflammatory, analgesic, anti-cancer, and anti-diabetic 
properties [44–46]. Curcumin is a potent immunomodulatory agent and 
can interact with various cells such as dendritic cells, macrophages, 
natural killer cells, B and T cells to regulate inflammation and cell 
proliferation [47]. 

In recent years curcumin use has been considered in cancer treat
ment due to the impacts on cell death mechanism and ability to regulate 
tumor microenvironment components [20,44,48,49]. Curcumin is an 
inducer of cell death via down-regulation of ZAKα and subsequent 
suppression of JNK and NF-κB pathways [50]. In cervical cancer cells, 
curcumin administration impairs migration and invasion tumor cells. In 
this regard, curcumin has been found to reduce the expression levels of 
pirin to inhibit EMT [51]. By down-regulating NADPH oxidase 5, cur
cumin inhibits Akt signaling and increases cisplatin sensitivity of human 
epithelial cancer [52]. Bis-chalcones of curcumin can induce 

endoplasmic reticulum stress to reduce survival rate of glioblastoma 
[53]. HMGB1 is key to VEGF-D upregulation with subsequent angio
genesis in the context of gastric cancer. Curcumin administration de
creases HMGB1 expression to down-regulate VEGF-D and therefore 
impair lymphangiogensis of gastric cancer cells [54]. Curcumin induces 
apoptosis and cell cycle arrest and increases sensitivity of tumor cells to 
cisplatin chemotherapy. Furthermore, it suppresses oncogenic molecu
lar pathways like STAT3 and NF-ĸB, this resulting in impairment of 
tumor progression and enhancement of cisplatin sensitivity [20]. When 
reducing the growth rate of glioblastoma cells, curcumin promotes 
expression of PTEN that suppresses Akt/mTOR axis [55]. An important 
aspect to consider is that not only curcumin mediates chemo-sensitivity, 
but it also alleviates the adverse effects of chemotherapy, which can 
therefore improve quality of life of affected patients [56]. Curcumin 
suppresses EMT by downregulating N-cadherin, and through upregula
tion of E-cadherin; these events are associated with increase in colon 
cancer cells' sensitivity to irinotecan [57]. Furthermore, curcumin in
creases the levels of miRNA-34a to trigger cell cycle arrest (G0/G1 
phase) in gastric tumor cells [58]. GO-Y030, an analog of curcumin, can 
reduce the generation of IL-10 from Th17 cells, this enhancing immu
notherapy effects in cancer [59]. 

Despite the substantial use of curcumin in cancer treatment and the 
promising results that have been obtained, there are still challenges that 
should be addressed. The most important drawback of curcumin relates 
to its poor bioavailability and rapid metabolism that contributes to 
decrease in its anti-cancer potential in vivo. Therefore, it is highly rec
ommended to use nano-scale delivery systems to improve curcumin 
health-promoting impacts [49]. In a recent study, curcumin-loaded 
superparamagnetic iron oxide nanostructures were reported to in
crease the sensitivity of pancreatic cancer cells to gemcitabine chemo
therapy evidenced by further suppression of proliferation and invasion 
of the tumor cells [60]. Biodegradable polymeric nanostructures have 
been deployed for the co-delivery of curcumin and paclitaxel to syner
gistically suppress breast cancer progression; their effectiveness has 
been also supported in vivo studies in animal models [61]. These delivery 
systems increase the efficacy of curcumin and suggest that targeted 
delivery of curcumin by nanoparticles could represent a promising 
strategy to achieve tumor suppression [62–66]. 

4. Urological cancers: an overview 

4.1. Bladder cancer 

Bladder, prostate and renal cancers are among the most common 
urological malignancies that cause high mortality and morbidity 
worldwide. The ninth most common malignancy around the world is 
bladder cancer and it also represents the most common tumor of urinary 
tract. Up to 83,730 new cases were diagnosed in 2021 mainly in men 
[67–69]. There are important aspects to consider in bladder cancer, 
which accounts for 5–10 % of all cancer cases, and these relate to its 
recurrence and high treatment costs [70–73]. Urothelial carcinoma is 
the most common type of bladder cancer and it derives from stratified 
epithelium-urothelium [74]. 70–75 % of bladder malignancies consist of 
superficial non-muscle invasive bladder cancers (NMIBC) at the time of 
diagnosis [70,75–77]. The prognosis of patients with NMIBC is favorable 
and 5-year overall survival is 80 %. In the case of muscle-invasive 
bladder cancer (MIBC), 5-year survival rate is 17–57 %, and 50 % dur
ing invasion of bladder wall by tumor cells [78]. Although there are 
different types of therapy available for bladder cancer like surgery, 
chemotherapy and radiotherapy, bladder cancer is still responsible for 
high death rate and genetic mutations have been implicated in its pro
gression [4,79]. Plant-derived natural products have been extensively 
used in the treatment of bladder cancer. As an example, resveratrol 
decreases the expression of miRNA-21 to suppress Akt/Bcl-2 axis and 
trigger apoptosis in bladder tumor [80]. Resveratrol prevents the 
phosphorylation of Akt, while it induces phosphorylation of MAPK, 
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therefore impairing cancer progression [81]. Quercetin, another 
phytochemical with anti-cancer activity, stimulates AMPK signaling and 
triggers apoptosis in bladder tumor cells [82]. Quercetin suppresses the 
proliferation of bladder tumor cells by increasing the activity of Ca- 
activated K channels [83]. Kaempferol can reduce the levels of 
DNMT3B via methylation, with consequent inhibition of protein syn
thesis and limitation of tumor progression [84]. Kaempferol triggers 
apoptosis and suppresses the proliferative potential of bladder tumor 
cells through inhibition of the c-Met/p38 axis [85]. Based on these 
studies, use of natural products might be beneficial in the treatment of 
bladder cancer. 

4.2. Prostate cancer 

Prostate cancer is the most common non-cutaneous tumor among 
American men [86]. Androgen-deprivation therapy (ADT) is deployed in 
the treatment of prostate cancer sensitive to castration; ADT, however, 
does not represent an effective treatment in castration-resistant prostate 
cancer. Targeting of androgen receptor (AR) has been considered a 
promising strategy to achieve prostate cancer suppression although it 
might also lead prostate tumor cells to proliferate in an AR-independent 
manner [87]. 1.3 million patients are diagnosed annually with prostate 
cancer and the death rate is 360,000 [88]. Surgery and radiotherapy 
have been beneficial in improving the survival of prostate cancer pa
tients although advanced and metastatic prostate cancers have unfa
vorable prognosis, as indicated by the substantial decrease in their 
survival rate [89–92]. Gene therapy is a new emerging therapeutic 
strategy that enables targeting oncogenic pathways in prostate cancer 
[93]. Besides, activation of pro-survival autophagy can promote pro
gression of prostate tumor cells [5]. As for bladder cancer, phyto
chemicals have been applied for the treatment of prostate cancer 
[94–97]. Resveratrol suppresses cancer stem cell features and EMT to 
increase radio-sensitivity of prostate cancer cells [98]. Resveratrol- 
loaded PLGA nanostructures induce apoptosis and cell cycle arrest at 
G1/S phase [99]. Further, resveratrol promotes the expression of E- 
cadherin and reduces HGF secretion to inhibit prostate cancer progres
sion [100]. Quercetin is known to promote ROS generation and inhibit 
Akt signaling to limit prostate cancer progression [101]. Furthermore, 
quercetin induces ROS generation and mediates endoplasmic reticulum 
stress to increase paclitaxel sensitivity in prostate tumor cells [102]. 
Ginsenoside Rh2 reduces the expression of CNNM1 that suppresses 
angiogenesis in prostate cancer [103]. Overall, these studies highlight 
potential of plant derived-natural products in suppressing prostate 
cancer progression [104–107]. 

4.3. Renal cancer 

One of the most common renal neoplasia is renal cancer, of which 
clear cell renal cell carcinoma (ccRCC) is a common subtype [108,109]. 
Although significant advances have been made to dissect renal cancer 
pathogenesis and management, its incidence rate is still increasing 
[110]. Patients with renal cancer may undergo recurrence or metastasis 
and its incidence rate is higher in men than in women. The incidence 
rate of renal cancer might differ based on geographical locations and the 
highest incidence rates have been observed in North America, Europe 
and Australia. The highest mortality rate for renal cancer is present in 
USA, Chile, Argentina and Uruguay [111]. In addition to ccRCC that 
represents 75 % of total renal cancer cases, papillary renal cell carci
noma, and chromophobe renal cell carcinoma are other types of renal 
malignancies, accounting for 1 % of all cases [112,113]. Despite 
different strategies having been used for renal cancer treatment, its 
mortality and morbidity remain high, this prompting the development 
of novel therapeutics to improve patients' survival [114,115]. Plant 
derived-natural products with anti-cancer activity have been extensively 
used in the treatment of renal cancer. Resveratrol can decrease the size 
and number of spheres in renal cancer and it suppresses Sonic Hedgehog 

signaling to impair stemness [116]. Resveratrol decreases the expression 
of VEGF and suppresses the growth of renal cancer cells [117]. A com
bination of quercetin and hyperoside reduces the levels of miRNA-27a as 
a tumor-promoting factor, to ultimately impair renal cancer progression 
[118]. Kaempferol can inhibit both Akt and FAK molecular pathways, 
therefore suppressing the invasion and metastasis of renal cancer cells 
[119]. Overall, these studies provide evidence that natural products 
could limit renal cancer progression [120,121]. In the following section, 
we will review the role of curcumin in the treatment of urological can
cers with a focus on molecular interactions modulated by this 
phytochemical. 

5. Curcumin and bladder cancer 

Overall, curcumin is a beneficial agent in suppressing the develop
ment of bladder cancer and in increasing the sensitivity of tumor cells to 
therapy [122,123]. Both clinical and pre-clinical studies have confirmed 
the role of curcumin as a drug sensitizer that also limits progression of 
bladder cancer cells [124]. One of the new emerging targets in bladder 
cancer therapy is the Wnt/β-catenin axis. Inhibition of Wnt/β-catenin 
signaling by TMEM88 is important to achieve reduction in the prolif
eration and metastasis of bladder tumor cells [125]. Mitofusin 2 is 
downregulated in bladder cancer and is negatively associated with 
cancer stage and lymph node metastasis. Down-regulation of mitofusin 2 
favors bladder tumor cells in growth and invasion. It has been reported 
that mitofusin 2 suppresses Wnt/β-catenin signaling, therefore exerting 
anti-cancer activity [126] EFEMP2 reverses EMT in bladder cancer 
through inhibition of the Wnt/β-catenin signaling [127]. As the Wnt/ 
β-catenin signaling has an oncogenic role in bladder cancer [128,129] its 
blockade might represent a new avenue for this tumor treatment. Some 
studies have shown heightened expression of β-catenin in bladder cancer 
cells. Curcumin administration has been shown to reduce the prolifer
ation and invasion of bladder tumor cells through inhibition of β-catenin 
signaling [130]. β-catenin is associated with the metastasis of cancer 
cells via EMT induction. It has been found that RNF128 down-regulation 
activates β-catenin signaling, this promoting EMT [131]. Increasing 
evidence demonstrates β-catenin as an upstream mediator of EMT, being 
involved in EMT induction and increased cancer metastasis 
[65,132,133]. Curcumin suppresses EMT via β-catenin down-regulation 
to impair bladder cancer migration [130]. In addition to EMT that me
diates the metastasis of bladder cancer cells, heightened expression of 
matrix metalloproteinases (MMPs) increases the detachment of bladder 
tumor cells from the basement membrane, therefore increasing their 
motility. By reducing the levels and activity of MMPs, curcumin sup
presses the metastatic potential of bladder cancer [74]. The oncogenic 
molecular pathways responsible for bladder cancer progression like 
mTOR, PI3K/Akt and VEGF among others, undergo inhibition by cur
cumin [134]. 

Genetic mutations are associated with cancer progression and their 
role has been examined and confirmed in different studies [135–137]. 
Based on these investigations, curcumin affects gene expression in 
bladder cancer therapy. An interesting aspect to consider is the 
involvement of epigenetic factors in tumor progression [138–141], as 
well as their regulation by curcumin [142]. microRNAs (miRNAs) are 
short non-coding RNAs consisting of up to 24 nucleotides in length that 
can regulate expression of other genes and play an importance role in 
cancer [4,143–145]. miR-7641 is an oncogenic factor that increases the 
invasion of breast tumor cells and confers poor prognosis [146]. Exo
somes derived from cancer-associated fibroblasts promote the expres
sion of miR-7641 to induce glycolysis and cancer stemness via HIF-1α 
upregulation [147]. Overall, down-regulation of miR-7641 impairs 
tumor progression and represents a potential target for effective cancer 
therapy [148,149]. Another study revealed the ability of curcumin in 
regulating miRNA-7641 to obtain bladder cancer suppression. Over
expression of miR-7641 occurs in bladder cancer and is known to pro
mote migration of tumor cells. Furthermore, miR-7641 upregulation 
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was found to prevent apoptosis in bladder cancer. Curcumin adminis
tration reduces miR-7641 expression, which ultimately leads to 
increased levels of p16; this event triggers apoptosis and interferes with 
the invasion of bladder tumor cells [142]. In vitro data have confirmed 
the role of curcumin in suppressing bladder cancer progression. Curcu
min exerts its anti-cancer activity in a time- and concentration- 
dependent manner. Curcumin at 10–40 μM promotes the expression of 
caspase 3/7 in triggering apoptosis; and reduces the levels of MMP-2 and 
MMP-9, therefore suppressing the invasion of bladder tumor cells [150]. 

Cancer stem cells (CSCs) are a rare population present in tumors that 
because of their self-renewal capacity develop new colonies for tumor 
progression [151,152]. LncRNA LBCS mediates SOX2 down-regulation 
to prevent self-renewal ability of CSCs and suppress drug resistance in 
bladder cancer [153]. Reduced expression of Mettl3 in CSCs impairs the 
progression of bladder tumor cells and inhibits angiogenesis [154]. 
Various molecular pathways are involved in the regulation of CSCs and 
stemness of bladder tumor cells. It has been reported that stimulation of 
Sonic hedgehog signaling is of importance for stemness and for preser
ving CSC features in bladder cancer [155–157]. Curcumin modulates 
Sonic Hedgehog signaling, therefore inhibiting cancer progression. 
Curcumin administration at 10, 30 and 50 μM decreases the expression 
of CSC markers like CD44, CD133, ALDH1-A1, Oct-4 and Nanog to 
suppress bladder tumor stemness. Curcumin administration prevents 
colony formation, impairs growth and induces apoptosis of bladder 
cancer cells by suppressing the Sonic Hedgehog signaling [158]. 
Increasing evidence has revealed a role for TROP2 in tumor progression 
and its association with unfavorable prognosis [159]. High levels of 
TROP2 promote growth and metastasis of tumor cells [160,161]. Pre
vious work has shown that TROP2 down-regulation induces apoptosis 
via Akt/β-catenin signaling inhibition [162] TROP2 is a potential target 
of curcumin in cancer therapy. It has been reported and that curcumin 
limits the growth and invasion of bladder tumor cells and interferes with 
invasion via TROP2 down-regulation. Upon inhibition of TROP2 by 
curcumin, a significant reduction in the expression of downstream tar
gets like cyclin E1 occurs; whereas the expression of p27 increases to 
impede bladder cancer progression [163]. 

PI3K/Akt signaling is an oncogenic factor in bladder cancer. Deme
thoxycurcumin suppresses PI3K/Akt signaling in triggering apoptosis in 
bladder cancer cells [164]. The down-regulation of PI3K/Akt by flac
cidoxide leads to induction of apoptosis in bladder tumor [165]. 
CTHRC1 activates the PI3K/Akt axis to enhance growth and metastasis 
of bladder tumor cells [166]. Therefore, inhibition of PI3K/Akt could 
limit bladder cancer progression [167,168]. Curcumin administration at 
0–45 μM inhibits PI3K/Akt axis, while it promotes c-Myc expression in a 
time-dependent manner; this triggers apoptosis and reduces viability of 
bladder tumor cells [169]. Noteworthy, in vivo studies have also 
confirmed the potential of curcumin in triggering apoptosis and 
reducing bladder tumor progression [170]. 

One of the hallmarks of cancer cells is their cell cycle progression 
[171]. Aurora A is a new emerging target in cancer as it can promote 
growth and invasion of tumor cells. Aurora A overexpression is 
responsible for cell cycle progression and mediates drug resistance 
[172–175]. Additional studies have indicated that curcumin decreases 
the expression of aurora A and histone H3, the Aurora A downstream 
target, to prevent the generation of monopolar spindle, induce cell cycle 
arrest (G2/M phase) and decrease cell division [176]. Curcumin ability 
in impeding cancer progression, including bladder cancer is attributed 
to EMT inhibition [177]. Specificity protein (Sp) transcription factors 
undergo upregulation in bladder tumor. Curcumin exerts anti-cancer 
activities by reducing the levels of Sp1, Sp3 and Sp4 [178]. Upon inhi
bition of YAP/TAZ axis, curcumin induces the degradation of KLF5 via 
proteasomal pathway to impair progression of bladder tumor cells 
[179]. 

Two important strategies in the treatment of bladder cancer include 
radiotherapy and chemotherapy. In addition to the fact that radio
therapy and chemotherapy are associated with adverse effects, bladder 

tumor cells develop resistance to these therapeutic modalities and 
different underlying mechanisms are involved in these processes 
[180–186]. Proliferation and survival of bladder tumor cells exposed to 
radiotherapy increase due to activation of DNA repair mechanism. 
Radiotherapy exerts lethal impact by triggering DNA damage. Curcumin 
decreases the volume of bladder tumor cells and interferes with their 
migration and invasion. Furthermore, curcumin prevents DNA damage 
repair to prevent radio-resistance in cancer cells [187]. Most studies 
have focused on the ability of curcumin to act in synergy with chemo
therapy and in reversing drug resistance [188–190]. A combination of 
curcumin and resveratrol might help in regulating factors involved in 
chemoresistance. Further, this combination was shown to suppress 
metastasis of bladder cancer cells [191] through PARP upregulation 
[192]. Notably, a combination of curcumin and light is of importance in 
impairing progression of bladder tumor cells and promotes efficacy of 
curcumin in this case [191]. 

Although cisplatin is a potent anti-cancer agent used in the treatment 
of bladder cancer, it has limitations due to development of resistance. 

Table 1 
Curcumin as an inhibitor of bladder cancer progression.  

In vitro/ 
in vivo 

Cell line/ 
Animal model 

Study 
design 

Remarks Refs 

In vitro RT112, 
UMUC3, and 
TCCSUP cells 

0.2 μg/ 
ml 

Preventing migration 
A combination of curcumin and 
visible light is important in 
suppressing bladder cancer 
progression 

[191] 

In vitro EJ bladder 
cancer cells 

0–45 
μM 

Apoptosis induction 
Inhibition of PI3K/Akt 
signaling 
c-Myc overexpression 

[169] 

In vitro 5637 and WH 
bladder cancer 
cells 

10 and 
20 μM 

Inhibition of YAP/TAZ axis to 
increase degradation of KLF5 

[179] 

In vitro 253 J-Bv and 
T24 cells 

5–20 
μM 

ROS generation 
Activation of ERK1/2 signaling 
Increasing cisplatin sensitivity 
of bladder cancer cells 

[197] 

In vitro T24, J82 and 
TCCSUP cells 

10 μM miRNA-203 overexpression by 
curcumin to suppress Src/Akt 
axis in bladder cancer therapy 

[201] 

In vitro T24 cells 0–30 
μM 

Cell cycle arrest 
Triggering mitotic spindle 
defect 
Down-regulation of Aurora A 

[176] 

In vitro T24 cells 0–20 
μM 

Inhibition of ERK1/2 signaling 
to repress tumor growth 

[205] 

In vitro 
In 
vivo 

Immune 
deficient mice 

– Synergistic co-delivery of siRNA 
and curcumin 
Tumor proliferation 
suppression 

[206] 

In vitro 
In 
vivo 

MBT-2 cell line 
C3H female 
mice 

10 
μmol/L 

Curcumin improves anti-cancer 
activity of Bacillus Calmette- 
Guerin 
Upregulation of TRAIL 
receptors 
Inhibition of NF-kB signaling 

[207] 

In vivo Mice 100 
mg/kg 

MAPK down-regulation 
EMT inhibition 
Preventing bladder cancer 
progression caused by tobacco 
smoke 

[208] 

In vitro KU-7 cells 0–100 
μM 

Down-regulation of NF-kB by 
curcumin 
Apoptosis induction 
Reducing generation of 
cytokines 

[209] 

In vitro T24 cells – COX-2 down-regulation 
G2/M arrest by curcumin in 
bladder tumor cells 

[210] 

In vitro 5637 cells and 
BFTC 905 cells 

10 μM HO-1 is induced by curcumin; 
using HO-1 inhibitors promotes 
curcumin anti-cancer activity 

[211]  
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Circ0008399 cooperates with WTAP to increase methyltransferase ac
tivity and expression, this being a key step in triggering cisplatin resis
tance in bladder cancer [193]. Down-regulation of HNRNPU prevents 
DNA damage repair and promotes sensitivity of bladder tumor cells to 
cisplatin chemotherapy [194]. STAT3 and FOXO1 are additional regu
lators modulating drug sensitivity/resistance in bladder cancer 
[195,196]. There is evidence that curcumin not only prevents cisplatin 
resistance, but also boosts the anti-cancer properties of this agent. It has 
also been reported that curcumin mediates ROS generation; this induces 
ERK1/2 signaling that, in turn, potentiates the effect of cisplatin in 
suppressing bladder cancer [197]. To increase curcumin efficacy, nano- 
scale delivery systems have been developed and subsequently tested in 
vitro and in vivo [198,199]. The potential of curcumin and associated 
regulatory effects on the various molecular pathways in suppressing 
bladder cancer progression have been discussed in various studies 
[200–211] and summarized in Table 1. Fig. 1 shows the role of curcumin 
in bladder cancer inhibition. 

Overall, these studies clearly support the role of curcumin in regu
lating molecular pathways and in suppressing bladder cancer progres
sion. It has been shown that curcumin regulates the levels of miRNAs 

and circRNAs in bladder cancer. Future studies should focus on the role 
of curcumin in regulating lncRNA expression and in the inhibition of 
bladder cancer progression. Furthermore, additional important path
ways regulated by curcumin and governed by STAT3 and PTEN, should 
be also investigated in future studies. Although nanostructures have 
been designed for curcumin delivery, studies focusing on nano
theranostics would be preferable to achieve both delivery of curcumin 
and bioimaging of bladder cancer. 

6. Curcumin and prostate cancer 

The best-known mechanism through which curcumin reduces pros
tate cancer progression is related to induction of apoptosis [212]. 
Increasing evidence demonstrates that curcumin regulates autophagy in 
various diseases, including cancer [213–217]. Additional data have 
indicated that curcumin induces both apoptosis and autophagy in 
prostate cancer therapy. Curcumin induces these cell death mechanisms 
via iron chelation and by enhancing the expression of TfR1 and IRP1. 
The use of 3-MA, an autophagy inhibitor, promotes curcumin ability to 
induce apoptosis in prostate cancer, supporting the notion that 

Fig. 1. Curcumin in bladder cancer treatment. Apoptosis induction and cell cycle arrest are the mechanisms through which curcumin suppresses bladder cancer. The 
combination with other agents such as resveratrol can potentiate anti-tumor activity of curcumin. Furthermore, curcumin promotes DNA damage to limit bladder 
tumor progression. 
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autophagy exerts a pro-survival function [212]. It is important noting 
that autophagy may promote prostate cancer progression; for this 
reason, it is crucial adding an autophagy inhibitor along with curcumin 
in cancer therapy. miRNAs are key players involved in prostate cancer 
progression, as they affect proliferation, invasion, and therapy response 
of tumor cells [218–220]. When considering the modulatory impact of 
curcumin on miRNAs [221–224], it is known that it can suppress pros
tate cancer progression by regulating miRNAs and downstream targets. 
It has been reported that curcumin increases the expression of miRNA- 
30a-5p. This miRNA decreases PCLAF, which, in turn, reduces the 
growth and invasion of prostate tumor cells. Curcumin also induces 
apoptosis in a concentration- and time-dependent manner [225]. 
Further, miRNA-143 is upregulated by curcumin and this event is key in 
mediating suppression of proliferation and metastasis of cancer cells. 
Following miR-143 upregulation by curcumin, levels of PGK1 decrease, 
with consequent increase in FOXD3 expression. These events limit the 
growth and metastasis of prostate tumor cells [226]. Furthermore, 
cadmium is known as one of the important risk factors for prostate 
carcinogenesis and tissue levels of cadmium in prostate have been linked 
with the malignant disease. [227–229]. Future studies should focus on 
the role of curcumin in reversing cadmium-mediated prostate cancer 
development. Besides, zinc-curcumin complexes have shown high anti- 
cancer activity [230] and their function in regulating prostate cancer 
progression should be also evaluated in the near future. 

miR-34a is a new emerging target in cancer therapy. This onco- 
suppressor miRNA decreases the levels of CDC25A to suppress cervical 
cancer progression [231]. In addition to reducing the growth and in
vasion of tumor cells [232], miR-34a inhibits drug resistance in cancer 
[233]. Therefore, overexpression of miR-34a is pivotal in cancer ther
apy. Curcumin administration induces miR-34a; this is followed by 
reduced expression of c-Myc and β-catenin, with consequent inhibition 
of tumor cells growth [234]. The high viability and survival rate of 
prostate tumor cells represent challenges for the treatment. Curcumin is 
beneficial in triggering both apoptosis and necroptosis and in decreasing 
viability of prostate tumor cells. It has been reported that curcumin 
mediates ATP depletion and induces mitochondrial dysfunction to ulti
mately trigger apoptosis and necroptosis [235]. Notably, the efficacy of 
curcumin in prostate cancer treatment can be enhanced by combination 
with light. A recent study has shown that low dose curcumin and light 
irradiation can reduce the expression of CDK1, cyclin A and B to sup
press the growth and invasion of prostate tumor cells [236]. Prostate 
tumor cells grow in both androgen-dependent and independent man
ners, and this is the reason for their resistance to therapies such as ADT. 
The advantage of curcumin relates to the fact that this phytochemical 
suppresses the progression of prostate tumor cells that are both depen
dent and independent of androgen [237]. 

The factors responsible for prostate cancer progression are sup
pressed by curcumin. Activation of Notch-1 signaling promotes the 
progression of prostate cancer. Overexpression of Notch-1 ensures the 
survival of prostate tumor cells and enhances their migratory ability. 
Curcumin administration suppresses the growth and invasion of prostate 
tumor cells in a time- and concentration-dependent manner. It has been 
reported that curcumin blocks the DNA-binding activity of NICD, the 
active product of Notch-1. It also reduces the expression of MMP-2 and 
MT1-MMP, in this way interfering with prostate cancer invasion [238]. 
Curcumin analogs can also affect prostate cancer progression. As an 
example, Dehydrozingerone (DZG), a bioactive compound of curcumin, 
suppresses progression of prostate tumor cells in vitro and in vivo by 
limiting growth and angiogenesis. DZG has higher serum concentration 
when compared to curcumin. After intraperitoneal administration, it 
remains in the blood for 3 h, having a longer half-life and better a bio
distribution profile than curcumin [239]. 

Development of castration-resistant prostate cancer depends on 
intratumoral androgen biosynthesis and curcumin might be considered 
as an ideal agent in this context. Curcumin oral administration at 200 
mg/kg/day prevents androgen generation in prostate cancer and 

Table 2 
Curcumin administration and prostate cancer therapy.  

In 
vitro/In 
vivo 

Cell line/Animal 
model 

Study 
design 

Remark Refs 

In vitro PC3 cells – Co-delivery of curcumin and 
doxorubicin with 
functionalized graphene 
oxide nanoparticles 
Cargo release in response to 
pH 
Cancer suppression 

[279] 

In vitro 
In 
vivo 

PC3 cells 
Mice 

– Delivery of curcumin by 
single-walled carbon 
nanotubes in prostate cancer 
therapy 
Suppression of tumor growth 
Providing photothermal 
ablation 

[280] 

In vitro PC3 cells – Using scorpion venom- 
conjugated phytosomes for 
the delivery of curcumin 
Particle size of 137.5–298.4 
nm 
Zeta potential of 2.9–26.9 mV 
Apoptosis and necrosis 
induction 
Cell cycle arrest 

[281] 

In vitro PC3 cells – Application of PLGA 
nanoparticles for the delivery 
of curcumin 
More cytotoxicity against 
cancer cells than curcumin 
alone 
Apoptosis and autophagy 
induction 

[282] 

In vitro LNCaP and PC3 
cells 

15 μM Combination of curcumin 
and As2O3 suppresses 
prostate cancer progression 
Growth inhibition 
Apoptosis induction 
Angiogenesis inhibition 

[283] 

In vitro DU145 cells – Curcumin-loaded 
nanoliposomes suppress 
tumor progression 

[284] 

In vitro TRAMP C1 cells 1000 
nM 

Hypomethylation of Nrf2 
promoter 
Activation of Nrf2 signaling 

[285] 

In vitro DU145 cells – Co-delivery of curcumin and 
resveratrol by alginate 
nanoparticles 
Particle size of 60.23 nm 
Up to 70.99 % encapsulation 
efficiency 
High cellular uptake 
Suppression of tumor 
progression 

[286] 

In vitro 
In 
vivo 

LNCaP cells 
Mice 

30 mg/ 
kg 

Inhibition of JNK pathway 
Apoptosis induction 
Suppression of cancer cell 
proliferation 

[287] 

In vitro PC3 cells 25 μM Preventing ROS generation 
EMT inhibition 
Decrease in tumor cell 
metastasis 
Down-regulation of CXCR4 
and IL-6 

[288] 

In vitro 
In 
vivo 

PC3 cells 
Immunodeficient 
mice 

15 μM Down-regulation of CXCL1 
and CXCL2 
Apoptosis induction 
Proliferation inhibition 
Preventing metastasis via 
COX-2, SPARC and EFEMP 
down-regulation 

[289]  
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inhibits testosterone production by upregulating AKR1C2, this impair
ing tumor progression [240]. Combination therapy has been of impor
tance in impeding progression of cancer cells [241,242]. Increasing 
evidence has supported the role of metformin as a potent anti-prostate 
cancer agent [243–246]. A recent study has used a combination of 
curcumin and metformin to suppress the progression of prostate tumor 
cells. The authors have reported increased efficacy of curcumin and 
metformin combination in prostate cancer suppression. The synergistic 
effects depend on curcumin reduction of Bcl-2 and hTERT, metformin- 
induced upregulation of Bax and PUMA, and metformin down- 
regulation of hTERT, mTOR, p53 and Bcl-2. These events trigger 
apoptosis and suppress the progression of prostate tumor cells [247]. 

Curcumin can also be used to sensitize prostate tumor cells to ther
apy. As prostate cancer cells depend on hormones for their progression, 
castration has been considered an ideal strategy in this context. How
ever, the resistance of prostate cancer cells to castration would 
compromise efficacy of surgery. Curcumin has shown the ability to limit 
the progression of castration-resistant prostate cancer. Cyclohexanone 
curcumin analogs reduce the expression of MMP-2 and MMP-9 and 

suppress prostate cancer metastasis by preventing degradation of 
extracellular matrix. In vivo studies have also demonstrated the ability of 
curcumin analogs to suppress the growth and angiogenesis in mice 
[248]. Curcumin and its analogs were found to induce apoptosis and cell 
cycle arrest at G2/M phase in castration-resistance prostate cancer 
[249]. One of the molecular mechanisms involved in prostate cancer is 
autophagy, the modulation of which could be deployed in prostate 
cancer therapy [250–254]. Autophagy inhibition by curcumin increases 
the sensitivity of prostate tumor cells to radiation therapy. In this regard, 
curcumin promotes the expression of miR-143 to mediate autophagy 
inhibition and therefore re-sensitizes prostate tumor cells to radiation 
therapy [255]. 

Nanostructures have been used for the delivery of curcumin in 
prostate cancer therapy [256]. Curcumin-loaded nanostructures have 
been used to suppress the progression of docetaxel-resistant, castration- 
resistant prostate tumor cells. The lipid-based nanoparticles had cur
cumin encapsulated and they had a particle size of 150 nm or less. Their 
loading efficiency was 7.5 % and entrapment efficiency was 90 %. These 
curcumin-loaded nanoparticles demonstrated superior cytotoxicity 

Fig. 2. Curcumin in prostate cancer treatment. Curcumin limits prostate cancer metastasis by downregulating MMPs and by inhibiting angiogenesis. Furthermore, 
curcumin decreases the expression of Bcl-2 and Mcl-1 to induce apoptosis and can affect autophagy. 
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against prostate tumor cells and they effectively inhibited cancer pro
gression [257]. In another study, curcumin- and cabazitaxel-co-loaded 
lipid-polymer hybrid nanostructures have been developed; these had 
particle size of 121.3 nm, zeta potential of 23.5 mV and effectively 
accumulated at the tumor [258]. Based on these investigations, the 
potential of curcumin in prostate cancer suppression has been validated 
in several prior studies [259–278]. Future studies should therefore 
evaluate the role of curcumin in the treatment of prostate cancer pa
tients. Curcumin induces apoptosis and cell cycle arrest and its analogs 
have shown higher anti-prostate cancer activity. Curcumin anti-cancer 
activity enhances significantly when using nanostructures (Table 2 
and Fig. 2), [279–289]. There are two important limitations associated 
with the use of curcumin in prostate cancer treatment. Curcumin regu
lates apoptosis and autophagy as programmed cell death mechanisms 
involved in prostate cancer suppression. More studies should be planned 
to assess the role of curcumin in affecting ferroptosis and mitophagy as 
additional important mechanisms. Furthermore, curcumin has been 
shown to regulate MMPs, therefore inhibiting prostate cancer metas
tasis. However, no studies have tested that how curcumin can actually 
regulate EMT in prostate cancer therapy. This should be therefore 
addressed in future studies. 

7. Curcumin and renal cell carcinoma 

Curcumin has shown effectiveness in suppressing the progression of 
renal cancer cells [290–293]. Nuclear factor-kappaB (NF-κB) signaling 
has been implicated in tumor progression and therapy resistance 
[144,294–297]. Noteworthy, NF-κB can induce radio-resistance in 
various tumors [298,299]. In tumor cells exposed to radiotherapy, 
cancer-associated fibroblasts induce NF-κB signaling that increases 
tumor cell viability [300]. Inhibiting NF-κB signaling results in cancer 
cell radio-sensitivity [299]. LncRNA NKILA induces NF-κB signaling, 
which, in turn, increases progression of laryngeal cancer cells and trig
gers radio-resistance [301]. Interference with NF-κB signaling is key to 
induce radio-sensitivity [302] and this is the mechanism by which 
curcumin operates in renal cancer treatment. Curcumin administration 
impairs the proliferation of renal cancer cells and mediates DNA dam
age. Furthermore, curcumin induces apoptosis and G2/M arrest. Cur
cumin suppresses NF-κB signaling and related molecular pathways such 
as VEGF and COX2 to enhance radio-sensitivity of renal cancer cells 
[303]. Mammalian target of rapamycin (mTOR) signaling is an onco
genic pathway in renal cancer. Decreased phosphorylation of mTOR is 
associated with a decrease in growth of renal tumor cells [304]. Inhi
bition of mTOR signaling by simvastatin impairs the metastatic potential 
of renal cancer cells [305]. It has been reported that curcumin sup
presses mTOR signaling and reduces the levels of MMP-2 and MMP-9, 
facilitating apoptosis and decreasing the invasion of renal tumor cells 
[306]. Activation of PI3K/Akt signaling promotes renal cancer pro
gression. DUXAP9 can activate PI3K/Akt signaling to enhance growth 
and metastasis [307]. Nobiletin and eupatilin suppress the PI3K/Akt 
signaling, this resulting in apoptosis induction and reduction in renal 
cancer cell survival [308]. Eupatilin inhibits PI3K/Akt signaling in 
mediating apoptosis in renal cancer [309]. Akin to other anti-cancer 
agents, curcumin at 10–100 μM inhibits PI3K/Akt signaling and re
duces the expression of cyclin B1. This results in cell cycle arrest, 
impaired proliferative ability and decreased viability of renal cancer 
cells [310]. 

Sunitinib is used for the treatment of renal cancer and its efficacy 
could be potentiated upon addition of curcumin. Curcumin prevents the 
phosphorylation of Rab to mediate down-regulation of cyclin D1, which, 
in turn, limits tumor progression while enhancing cancer cell sensitivity 
to sunitinib [311]. The invasion potential of renal cancer cells mainly 
depends on EMT induction. TRIM24 promotes the expression of N- 
cadherin and β-catenin that favor renal cancer cell metastasis by 
inducing EMT [312]. In contrast, RUNX3 decreases miR-6780a-5p 
expression to upregulate E-cadherin and reduce the progression of 

renal cancer cells through EMT inhibition [313]. miR-124 and miR-203 
jointly reduce the levels of ZEB2, this also leading to EMT inhibition and 
limitation of renal cancer cell progression [314]. It has been reported 
that cigarette smoking is associated with EMT induction in enhancing 
renal cancer cell progression. Curcumin administration inhibits the 
ERK5/AP-1 axis to reverse EMT via E-cadherin upregulation, and 
through vimentin, N-cadherin and TWIST down-regulation [315]. 

Potassium bromate (KBrO3) is an FDA approved additive that is still 
used in some countries as an oxidizing agent in food [316]. Pre-clinical 
studies have shown that KBrO3 promotes oxidative stress and favors 
renal cancer development, this being reversed by curcumin [317–319]. 
Furthermore, KBrO3 promotes inflammation and proliferation, while it 
inhibits apoptosis, all mechanisms being negated by curcumin [320]. 
One of the problems associated with the treatment of renal cancer is the 
ability of tumor cells to develop resistance to apoptosis. Curcumin 
administration appears to be beneficial because it sensitizes renal tumor 
cells to apoptosis. It has been reported that curcumin promotes the 
expression of death receptor 5 (DR5) via ROS generation and induces 
apoptosis of renal cancer cells by activating TRAIL pathway [321]. 
Furthermore, curcumin increases the levels of p53 via YAP upregulation. 
This enhances the ability of temsirolimus to trigger apoptosis of renal 
cancer cells [322]. It has also been reported that curcumin down- 
regulates Bcl-2 and Mcl-1 to increase renal cancer suppression by 

Table 3 
Curcumin in treatment of renal cancer.  

In vitro/ 
In vivo 

Cell line/ 
Animal model 

Study 
design 

Remark Refs 

In vitro ACHN cells 
line 

5–80 
μmol/L 

Proliferation inhibition 
DNA damage induction 
Cell cycle arrest at G2/M phase 
Increasing radio-sensitivity 
NF-κB signaling inhibition 

[303] 

In vitro 786-O cells 0–50 
μmol/L 

Inhibition of tumor cells 
growth 
Inhibition of mTOR signaling 
Decreasing levels of MMP-2 
and MMP-9 

[306] 

In vitro RCC-949 cells 20 and 
100 μM 

Decreasing viability of tumor 
cells 
Cell cycle arrest 
Inhibition of PI3K/Akt 
signaling 

[310] 

In vitro 786-O and 
ACHN cell 
lines 

2 μM Inhibition of ERK5/AP-1 
signaling 
EMT inhibition 

[315] 

In vitro ACHN cell 
lines 

– Exerting chemo-preventive 
activity 
Preventing inflammation 
Apoptosis induction 
Preventing tumorigenesis 
linked to KBrO3 

[320] 

In vitro Caki-1 and OS- 
RC-2 cells 

– Apoptosis induction 
Potentiating temsirolimus 
effects in renal cancer therapy 
YAP down-regulation to 
promote p53 expression 

[322] 

In vitro ACHN cell 
lines 

30 μM Apoptosis induction 
Down-regulation of Bcl-2 and 
Mcl-1 
p53 overexpression 

[323] 

In vitro 
In 
vivo 

Caki cells 
Xenograft 
model 

20 μM A combination of curcumin 
and mTORC1/2 inhibitor 
induces apoptosis 
Tumor growth inhibition in 
xenografts 
Autophagy induction 

[324] 

In vitro Caki cells 10–80 
μM 

Inducing apoptosis and 
decreasing viability of tumor 
cells 
ROS generation 
Cytochrome C release 
Caspase-3 overexpression 

[329]  
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NVP-BEZ235 as mTOR and PI3K/Akt inhibitors [323]. By increasing the 
permeability of lyosomal membrane, mTORC1/2 inhibitors and curcu
min induce autophagy to sensitize apoptosis in renal cancer cells. Cur
cumin and mTORC1/2 inhibitors induce autophagy by decreasing the 
levels of Akt and Rictor [324]. As autophagy may have a pro-survival 
role in cancer and its capacity in apoptosis inhibition [325–328], 
further studies should carefully focus on autophagy induction for pro
moting apoptosis in renal cancer The best known pathway through 
which curcumin and its analogs trigger apoptosis in renal cancer in
volves ROS generation, cytochrome C release and overexpression of 
caspase-3 [329]. Table 3 and Fig. 3 summarize the role of curcumin in 
renal cancer treatment. Overall, the studies highlighted above show that 
curcumin suppresses renal cancer metastasis by down-regulating MMPs 
and through inhibition of EMT. Future studies should evaluate how 
curcumin affects autophagy in regulating renal cancer progression. 
Furthermore, since different studies have focused on the ability of cur
cumin to regulate PI3K/Akt signaling, additional investigations should 
evaluate the impact of curcumin on PTEN signaling, an upstream 
regulator of this pathway. Future studies should also test the potential of 
nanostructures for the delivery of curcumin in renal cancer treatment. 

8. Conclusion and remarks 

As affordable and effective compounds in tumor cell suppression, 
plant derived-natural products have been extensively used in cancer 
treatment in recent years. Curcumin has been used in the treatment of 
various cancers including urological tumors. The potential of curcumin 
in cancer suppression is linked to the regulation of various biological 
mechanisms related to tumor progression. Furthermore, curcumin can 
affect different molecular pathways in cancer therapy. The present re
view has provided an updated discussion on the role of curcumin in 
suppressing urological cancers like bladder, prostate and renal cancers. 

Curcumin has been found to affect several factors involved in bladder 
cancer, like Wnt/β-catenin, mTOR, PI3K/AKT and VEGF. By reducing 
the expression of these factors, curcumin limits bladder cancer pro
gression. Curcumin has a role in the inhibition of EMT and MMP, with 
both promoting motility of bladder cancer cells. Epigenetic factors such 
as miRNAs are also affected by curcumin. Additional effects mediated by 
curcumin include stemness and CSC suppression; apoptosis induction 
and downregulation of Aurora A, thus resulting in cell cycle arrest in 
tumor cells. 

In prostate cancer therapy, curcumin has been beneficial in trig
gering apoptosis and cell cycle arrest. Curcumin can impair progression 

Fig. 3. Curcumin as a potent anti-cancer agent in renal cancer treatment. By inducing oxidative stress, curcumin promotes apoptosis and decreases the proliferation 
of renal cancer cells. Furthermore, curcumin down-regulates MMP-2 and MMP-9 levels and decreases renal cancer invasion. Finally, it can also induce DNA damage 
and is beneficial in increasing radio-therapy and drug sensitivity of renal cancer cells. 
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of castration-resistance prostate cancer cells and can prevent production 
of androgen. Curcumin increases the sensitivity of prostate cancer cells 
to chemotherapy and radiotherapy. Curcumin nanoparticles have been 
developed to improve the agent's anti-cancer activity. Interestingly, 
curcumin analogs demonstrate superior serum concentration and bio
distribution compared to curcumin and might be therefore considered as 
additional therapeutic options for prostate cancer. 

Radio-resistance and chemoresistance are two major challenges in 
renal cancer treatment. Increasing evidence has shown the ability of 
curcumin in enhancing the sensitivity of renal tumor cells to radio
therapy and chemotherapy. Curcumin mediates DNA damage to induce 
apoptosis. Curcumin favors pro-death autophagy, thus sensitizing renal 
cancer cells to apoptosis. Curcumin mediates cell cycle arrest and limits 
cancer cell progression by inhibiting EMT. The most important molec
ular pathways regulated by curcumin in the treatment of renal cancer 
include VEGF, COX2, mTOR and PI3K/Akt. 

Based on the literature presented above, curcumin can be extensively 
used in the treatment of patients with urological cancers. However, 
before testing curcumin in clinical trials, some of its limitations should 
be overcome, especially the poor bioavailability. In vitro studies indicate 
that curcumin inhibits the progression of urological cancers with high 
efficacy. Although in vivo studies support the role of curcumin in uro
logical cancer therapy, efficacy is lower when compared to in vitro 
studies. Future studies should aim at developing nanostructures to favor 
curcumin-targeted delivery and enhance its therapeutic index. 
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