
PURIFICAZIONE dell'ACIDO BENZOICO

MATERIA

Qualunque cosa che abbia una massa e un volume Esiste in tre stati di aggregazione: solido, liquido, gassoso

MISCELE

Due o più elementi o composti in proporzioni variabili I componenti conservano le loro proprietà.

Miscele eterogenee

- · Parti visibili
- · Differente composizione locale

Miscele omogenee (soluzioni)

- Assenza di parti visibili
- · Stessa composizione dovunque

TRASFORMAZIONI FISICHE

Filtrazione
Estrazione
Distillazione
Cristallizzazione
Cromatografia

SOSTANZE PURE

Composizione fissa dovunque

Elementi

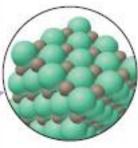
- · Costituiti da una sola specie di atomo
- Classificati come metalli, non metalli, o metalloidi
- Il tipo più semplice di materia che ne conserva le proprietà caratteristiche
- Possono esistere come singoli atomi o come molecole
- La massa atomica è la media delle masse isotopiche ponderata con l'abbondanza

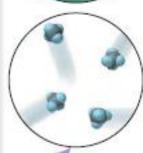
Composti

- Due o più elementi combinati in frazione fissa in massa
- Le proprietà differiscono da quelle degli elementi componenti
- La massa molecolare è la somma delle masse atomiche

TRASFORMAZIONI CHIMICHE

Atomi


- Protoni (p⁺) e neutroni (n⁰) nel nucleo molto piccolo, massivo, positivo; numero di p⁺ – numero atomico (Z)
- Gli elettroni (e⁻) occupano Il volume attorno al nucleo; numero di p⁻ – numero di e


Composti ionici

- Solidi costituiti da cationi e anioni
- Si formano ioni per trasferimento di e⁻ da metallo a non metallo

Composti covalenti

- Sono costituiti spesso da molecole separate
- Atomi (di solito non metalli) legati da coppie di e⁻ condivise

MISCELE, SOLUZIONI

Alcune nozioni di base

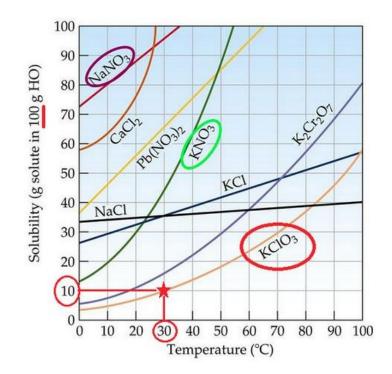
Composto

Iron pyrite is a **chemical compound** composed of iron and sulfur. It is often found in nature as perfect, golden cubes.

Separabile **solo con** reazioni chimiche

Miscela

The material in the dish is a mixture of iron chips and sulfur.
The iron can be separated easily from the sulfur by using a magnet.


Separabile con metodi fisici

- Una soluzione è una miscela omogenea (i.e. la sua composizione e le sue proprietà sono uniformi in ogni parte del campione) di due o più sostanze formate da ioni o molecole.
- Le soluzioni possono esistere in ognuno dei tre stati della materia: gas, liquido o solido.
- Il solvente è il componente presente in quantità maggiore o che determina lo stato della materia in cui la soluzione esiste.
- Il soluto è un componente presente in quantità minore.

SOLUBILITA'

Alcune nozioni di base

- Soluzione satura = soluzione contenente la massima quantità di soluto che il solvente è in grado di sciogliere a quella data temperatura.
- Solubilità di un soluto in un solvente = concentrazione della soluzione satura (viene di solito espressa in moli/l, ma si può trovare anche espressa in g/l o nelle altre forme in cui viene espressa la concentrazione).

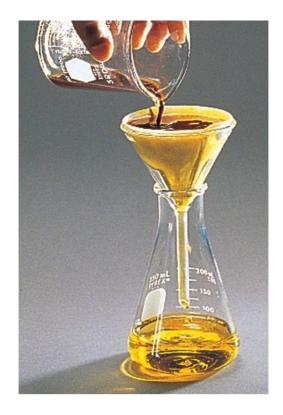
La solubilità in un determinato solvente dipende dalla temperatura

TECNICHE DI SEPARAZIONE

Alcune nozioni di base

Filtrazione: separa i componenti di una miscela sulla base di *differenze tra le dimensioni delle particelle.* La filtrazione viene usata spesso per separare un solido da un liquido.

Cristallizazione: la separazione è basata sulle *differenze di solubilità* dei componenti di una miscela.

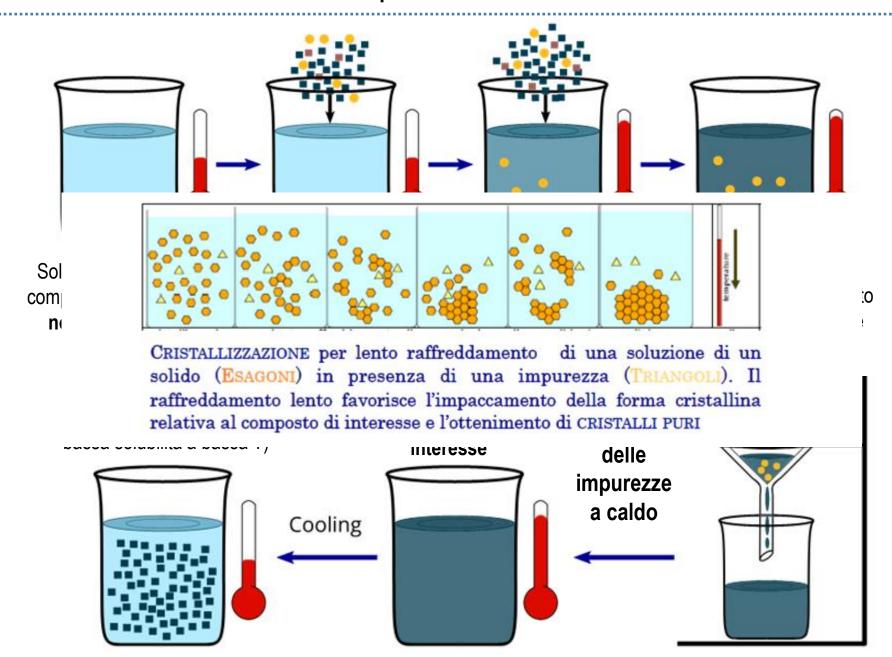

Distillazione: separa I componenti sulla base di differenze di volatilità.

Estrazione: la separazione è basata sulle differenze di solubilità in diversi solventi.

Cromatografia : la separazione è basata sulle *differenze di solubilità* in una fase stazionaria.

FILTRAZIONE, CRISTALLIZZAZIONE

Alcune nozioni di base


Filtrazione

Cristallizzazione

Process of producing crystals from a homogeneous phase which is obtained from a solution.

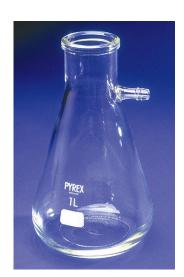
PURIFICAZIONE per RI-CRISTALLIZZAZIONE

ESPERIENZA di LABORATORIO

Principali equipments e vetreria necessari

Cilindro graduato

Beuta


Provetta

Vetrini di orologio

Imbuto di Buchner

Beuta da vuoto

Pipette

Carta da filtro

Beaker

Spatola

Cilindro graduato

ancoretta magnetica

Piastra riscaldante e agitante

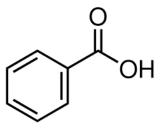
BILANCIA TECNICA

In laboratorio

portata: fino a qualche Kg

sensibilità: 0.01 g

Lasciare pulita la bilancia dopo la pesata !!!


Reattivi necessari

CuSO₄ •5H₇O

Acido benzoico

Carbone grafitico

Si presenta sotto forma di una polvere cristallina bianca o di cristalli incolori e inodori, poco solubili in acqua a freddo, ma solubili a caldo, molto solubili in alcol, etere e negli oli grassi.

Ha azione antibatterica, antimicotica e conservante per prodotti farmaceutici ed alimentari. Viene impiegato per uso topico per il trattamento delle infezioni fungine della pelle.

Procedura sperimentale

- 1. Pesare su bilancia tecnica circa 4 g della miscela acido benzoico/carbone/solfato di rame, trasferire in una beuta da 300 mL ed aggiungere 80 ml di acqua.
- 2. Riscaldare all'ebollizione, sotto agitazione magnetica, fino a completa dissoluzione dell'acido benzoico (se necessario aggiungere altra acqua a piccole quantità successive).
- 3. Scaldare H_2O in un beaker da 150 ml sulla piastra riscaldante.

Pompa meccanica

filtrazione sotto vuoto

Polmone

- Separare la polvere di carbone mediante filtrazione a caldo su un imbuto di Buchner, raccogliendo le acque madri in una beuta da vuoto da 500 ml.
- . Lavare due volte sul filtro la polvere di carbone **con 5-10 ml di acqua calda** per sciogliere l'acido benzoico
 eventualmente cristallizzato sul filtro.

Procedura sperimentale

Filtrazione su buchner in vuoto per la separazione e recupero dell'acido benzoico

6. Raffreddare la soluzione filtrata prima lentamente all'aria poi ponendo il fondo della beuta nel cristallizzatore contenente acqua e ghiaccio (pulire il Buchner durante la pausa per il raffreddamento). Precipitano cristalli bianchi di acido benzoico. Lasciare nel bagno di raffreddamento per 10-15 minuti. **Qui separo Acido benzoico da CuSO**_{4,} che rimane in soluzione

T (°C)	C ₆ H₅COOH [g/l]	CuSO ₄ [g/I]
0	1.7	129
10	2.1	-
20	2.9	175
25	3.4	-
30	4.2	-
40	6.0	228
50	9.5	-
60	12.0	281
70	17.7	-
80	27.5	342
90	45.5	-
95	68.8	-
100	-	424

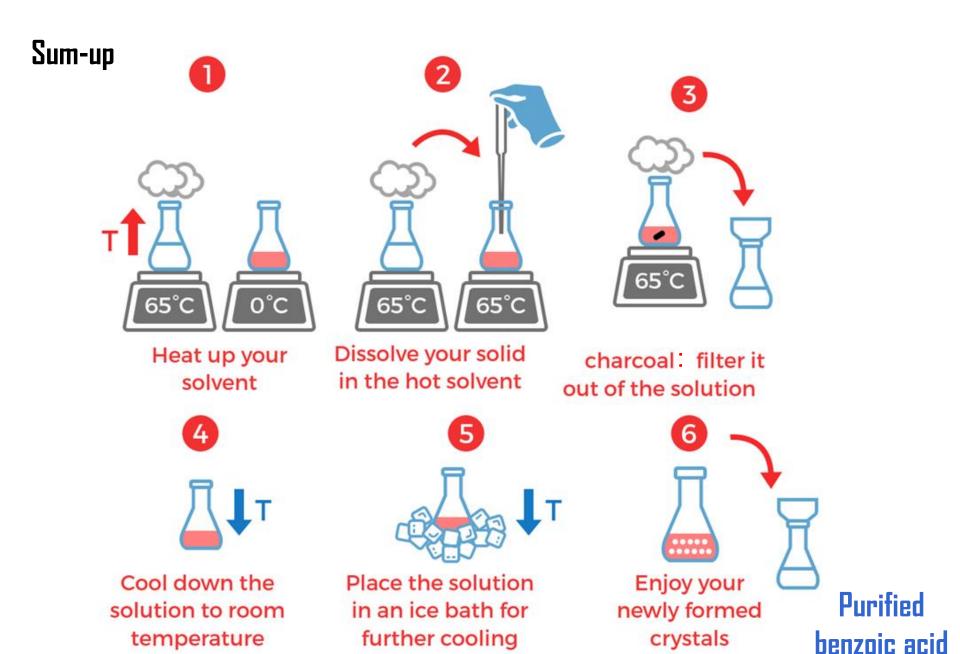
- 7. Filtrare i cristalli ottenuti raccogliendo le acque madri nella beuta da vuoto. Usare le acque madri per trasferire sul filtro anche i cristalli rimasti sulle pareti della prima beuta.
- 8. Lavare il precipitato con poca acqua fredda sul filtro.

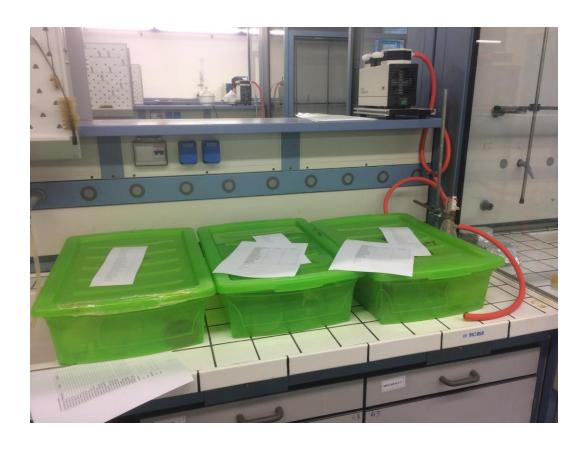
Procedura sperimentale

Pesata e identificazione di acido benzoico per reazione con FeCl₃

9. Trasferire l'acido benzoico purificato in un vetrino di cui si conosce la tara e poi pesare su bilancia tecnica.

O. Prelevare una piccola quantità di acido benzoico e **sciogliere in H₂O calda in una provetta** (immergere la provetta nel beaker di acqua calda), **quindi aggiungere una pipettata di FeCl₃ O.5 M: si forma un solido bruno**


di benzoato di ferro che conferma la purezza del prodotto



$$3 C_6 H_5 OH + FeCl_3 \longrightarrow (C_6 H_5 COO)_3 Fe + 3 HCl$$

Benzoic acid Ferric benzoate

DOTAZIONE DI LABORATORIO

Seguire indicazioni del **Dr. Lagrasta e dei tutors**Completare foglio consegna **indicando solo ciò che manca Riporre poi scatola nell'armadietto sottostante**