

Cardiovascular risk and prevention

Sergio Caravita

Dept. of Management, Production and Information Engineering, University of Bergamo Istituto Auxologico Italiano, IRCCS Milan, Italy

Medicine and Surgery [H4102D] CARDIOVASCULAR DISEASES AND RESPIRATORY SCIENCES

Cardiology 2022-4-H4102D024-H4102D084M

Academic year 2022/2023

Cardiovascular diseases

- Cardiovascular disease is the leading cause of premature death
- Stroke is the leading cause of permanent disability
- Costs for patients, healthcare systems and society are incalculable
- The majority of those at risk are not recognised or are not treated

Heart disease and stroke are the leading causes of death worldwide

Top 10 global causes of deaths, 2000

Top 10 global causes of deaths, 2016

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018.

Source: Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018.

Causes of mortality in Italy ISTAT (2019)

SCHOOL OF

Main consequences of atherosclerosis

- Myocardium
 - Angina
 - MI
- Brain
 - TIA
 - Stroke
- GI system
 - Abdominal angina
 - Mesenteric infarction
- Kidney
 - Nephrovascular hypertension
 - Chronic Kidney Disease
- Limbs
 - Trophic changes
 - Claudication
 - Cramps
 - Leriche Sindrome

Risk factors vs. risk markers

Cardiovascular risk marker:

a variable that is quantitatively **associated** with cardiovascular disease, but direct alteration of the risk marker does not necessarily alter the risk of the outcome.

Cardiovascular risk factor:

habit, behavior, circumstance or condition that **increases** a person's risk of developing cardiovascular disease

that means that there is a **causal link** between risk factor and disease and that **intervening** on this factor (if possible) will modify cardiovascular risk

Risk factors/markers – characteristics

- Independent risk prediction
- Potential for risk reclassification
- Modifiable or not
- Benefits from treatment
- Cost of potential interventions

Cardiovascular risk factors/markers

- Cigarette smoking
- Arterial hypertension
- ↑ LDL-cholesterol
- ↓ HDL-cholesterol
- Diabetes mellitus
- Advanced age

- Inflammation/CRP
- fipoprotein(a)
- ↑ homocistein
- Prothrombotic factors

- Obesity
- Abdominal obesity
- Sedentary lifestyle
- Family history of CVD
- Ethnic characteristics
- Psycho-social factors

Multiplicative interactions between risk factors

"Nine easily measurable risk factors "explain" over 90% of myocardial infarctions"

- Smoking
- Hypertension
- Diabetes
- Dyslipidemia
- Abdominal obesity

- Stress
- Physical inactivity
- · Low intake of fruits and vegetables
- Alcohol consumption

Those with all nine factors are more than 330 times more likely to have a myocardial infarction than those with none

Risk factors

PARTIALLY MODIFIABLE RISK FACTORS	NON-MODIFIABLE RISK FACTORS
Arterial hypertension	Age
Diabetes Mellitus	Sex
Hypercholesterolemia Low HDL cholesterol	Genetic factors and family predisposition
Obesity	Personal history of cardiovascular disease
	PARTIALLY MODIFIABLE RISK FACTORSArterial hypertensionDiabetes MellitusHypercholesterolemia Low HDL cholesterolObesity

Age and sex

- The frequency of coronary heart disease increases progressively with age in both sexes, even in the absence of other risk factors
- The increase becomes significant after the age of 60: the average age at which the first heart attack appears is 65.8 years for men and 70.4 years for women. In men atherosclerotic coronary heart disease manifests about 10 years before women

- Cardiovascular diseases are more frequent in men than in women of childbearing age (protection exercised by estrogens). After menopause the difference cancels out
- After menopause in women, the expression of risk factors such as high blood pressure, hypercholesterolemia and hypertriglyceridemia, diabetes or impaired glucose tolerance and obesity becomes greater

Age and sex

A DEGLI STUDI DI MILANO B I C O C C A

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Family predisposition

- The occurrence of episodes of premature ischemic heart disease (before the age of 55 for men and before the age of 65 for women) among relatives is associated with an incremental risk (regardless of risk factors).
- The risk is influenced by the precocity of the event, the degree of relationship (the disease in one of the parents gives a higher risk) and the number of relatives affected by coronary heart disease.

Modifiable risk factors

pollution

WOall	ladie risk ta	ctors	SCHOOL OF MEDICINE
MODIFIABLE RISK FACTORS	PARTIALLY MODIFIABLE RISK FACTORS	NON-MODIFIABLE RISK FACTORS	AND SURGE
Cigarette smoking	Arterial hypertension	Age	
Alcohol abuse	Diabetes Mellitus	Sex	
Diet rich in saturated fat, high calorie	Hypercholesterolemia Low HDL cholesterol	Genetic factors and family predisposition	
Physical inactivity	Obesity Environmental	Personal history of cardiovascular disease	

Cigarette smoking

Heterogeneous mixture of over 4000 gaseous and corpuscular substances, originating from the process of burning tobacco leaves

The most harmful to the organism:

- Nicotine (responsible for addiction)
- Carbon monoxide
- Irritant and oxidant substances
- Benzopyrene and other carcinogens.

Cigarette smoking

- Increases blood pressure levels
- Causes damage to the integrity of the vasal endothelium, facilitating the process of atherosclerosis
- Increases plasma cholesterol levels
- The effect of smoking is synergistic with other risk factors, in particular hypercholesterolemia, hypertension and diabetes mellitus
- The higher the number of cigarettes smoked and the younger the age at which the smoking habit begins, the more serious the damage

Psychosocial factors

- Low socio-economic status, lack of social support, stress at work and in family life, depression, anxiety, hostility, and the type D personality contribute both to the risk of developing CVD and the worsening of clinical course and prognosis of CVD.
- These factors act as barriers to treatment adherence and efforts to improve lifestyle, as well as to promoting health and wellbeing in patients and populations. In addition, distinct psychobiological mechanisms have been identified, which are directly involved in the pathogenesis of CVD.

Social isolation and low social support

- Stress at work and in family life
- Depression
- Anxiety
- Hostility and anger
- Type D personality («distressed»)

The characteristics of the type D personality are found in two broad and stable traits:

1- negative affectivity: tendency to express strong negative emotions in a stable way over time and in different situations;

2- social inhibition: tendency to inhibit the expression of negative emotions in social interactions.

These people tend to worry, take a pessimistic view of life and feel anxious and unhappy, they easily get irritated and generally feel less positive emotions, they do not share negative ones for fear of being rejected or disapproved. They also tend to have few friendships and feel uncomfortable in the presence of strangers.

Hyperuricemia

- Commonly associated with metabolic disorders
- Mechanistic and epidemiological evidence of association with adverse cardiovascular outcomes
- No strong evidence of benefits from treatment in terms of CV risk

Homocysteine

Homocysteine is a sulfidrilic amino acid that derives from the metabolic conversion of the essential amino acid methionine.

Action -> thrombogenic

Linked to congenital metabolism deficits (MTHFR polymorphism) and misconduct (smoking, alcohol and coffee)

Suspected role of the homocysteine on the arterial wall:

- Direct action on endothelium and vasal wall with marked atherogenic effect;
- Action on platelets, with increased adhesiveness and platelet aggregability;
- Action on coagulation factors and lipoproteins (reduction of antithrombin III activity, reduction of C protein activation, activation of factor VII, reduction of PTA activity, oxidation of LDL)

Associated with CV risk – no evidence of benefit from treatment (folic acid)

WHY CALCULATE CARDIOVASCULAR RISK?

Risk is the product of several variables distributed in the population without a clear distinction between normality and pathology (continuum)

In order to define a strategy that is consistent and proportionate to the actual risk of the individual patient, it is therefore necessary to quantify it.

ESC

European Society

of Cardiology

Intervention strategies as a function of total cardiovascular risk and untreated low-density lipoprotein cholesterol levels

www.escardio.org/guidelines

2019 ESC/EAS Guidelines for the management of dyslipidaemias lipid modification to reduce

cardiovascular risk (European Heart Journal 2019 - doi: 10.1093/eurheartj/ehz455)

EAS

Discrepancy between theory and practice in risk assessment

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Mancia G. et al., J Hypertens 2004

Cardiovascular Risk

Absolute risk: Probability, expressed in %, of having, in the next 10 years, CV events:

- Myocardial infarction
- Sudden death
- Non-sudden cardiac death
- Coronary revascularization
- Major cerebrovascular event hemorrhage or cerebral thrombosis (stroke, TIA)

Relative Risk: the probability of an individual with specific risk factors developing an event, compared with a similar individual without those risk factors

How to estimate total cardiovascular risk?

SCORE (high-risk Systemic Coronary Risk Estimation

- 12 prospective studies from 11 European countries
- 117 098 men and 88 080 women (age 40-65)
- 10-year risk of CVD mortality (CAD, stroke, aneurysm of the abdominal aorta). Non fatal CV events (x 4 Men; x 3 Women)
- Sex, Age, total cholesterol/HDL-C ratio, SBP, smoking status
- Version for high and low risk countries

Recommendations	Class	Level
Total CV risk estimation, using a risk estimation system such as SCORE, is recommended for adults >40 years of age unless they are automatically categorised as being at <i>nign-risk</i> or <i>very</i> <i>high-risk</i> based on documented CVD, DM (>40 years of age), kidney disease or highly elevated single risk factor.	I	C

SCORE Cardiovascular Risk Chart

10-year risk of fatal CVD Low-risk regions of Europe

European Society of Cardiology RY

SCORE chart for European populations at low cardiovascular disease risk

2019 ESC/EAS Guidelines for the management of dyslipidaemias lipid modification to reduce

cardiovascular risk (European Heart Journal 2019 - doi: 10.1093/eurheartj/ehz455)

www.escardio.org/guidelines

DI MILANO A

TUDI

0BC

Risk categories

Very high-risk	 Subjects with any of the following: Documented CVD, clinical or unequivocal on imaging. Documented clinical CVD includes previous AMI, ACS, coronary revascularization and other arterial revascularization procedures, stroke and TIA, aortic aneurysm and PAD. Unequivocally documented CVD on imaging includes significant plaque on coronary angiography or carotid ultrasound. It does NOT include some increase in continuous imaging parameters such as intima-media thickness of the carotid artery. DM with target organ damage such as proteinuria or with a major risk factor such as smoking or marked hypercholesterolaemia or marked hypertension. Severe CKD (GFR <30 mL/min/1.73 m²). A calculated SCORE ≥10%.
High-risk	 Subjects with: Markedly elevated single risk factors, in particular cholesterol >8 mmol/L (>310 mg/dL) (e.g. in familial hypercholesterolaemia) or BP ≥180/110 mmHg. Most other people with DM (with the exception of young people with type 1 DM and without major risk factors that may be at low or moderate risk). Moderate CKD (GFR 30-59 mL/min/1.73 m²). A calculated SCORE ≥5% and <10%.
Moderate-risk	SCORE is $\geq 1\%$ and $< 5\%$ at 10 years. Many middleaged subjects belong to this category.
Low-risk	SCORE <1%.

Example of CV risk estimation

- o 55 years old Italian man
- $_{\circ}$ Smoker
- BP: 140/85
- Total cholesterol 230 mg/dl

Low-risk SCORE chart:

CVD mortality < 225/100000 in men, < 175/100000 in women

CARDIOLOGY[®]

DIPARTIMENTO DI MEDICII www.escardio.org/guidelines

Relative risk SCORE chart

Clinical conditions affecting CV risk

- CKD end stage renal disease is associated with very high CV risk
- Influenza can trigger a CV event
- Some studies have linked periodontitis to both atherosclerosis and CVD
- Patients surviving cancer after treatment with chemotherapy are at increased CV risk
- Rheumatoid arthritis (RR of 1.4 -1.5) and other autoimmune diseases
- o OSAS
- Erectile disfunction

Measurment of preclinical vascular damage

- Routine screening with imaging modalities to predict future CV events is generally not reccomended in clinical practice
- Imaging methods may be considered as risk modifiers in CV risk assessment in individuals with calculated CV risk around the decisional thresholds
- Coronary artery calcium score examined through multislice CT (AGATSON score) has a very high negative predictive value.
- A recent meta analyses failed to demonstrate any added value of IMT in predicting future CVD. Many studies demonstrated the greater value of measures of atherosclerotic plaques
- Arterial stifness measured using Pulse Wave Velocity (PWV) or arterial augmentation index (AI) improves CV risk prediction for patients with calculated CV risk around the decisional thresholds.
- Ankle-brachial index (ABI) is controversial

• Echocardiography not recommended to improve CV risk prediction

What is cardiovascular disease prevention?

- Cardiovascular disease prevention is defined as a coordinated set of actions, at the population level or targeted at an individual, that are aimed at eliminating or minimizing the impact of CVDs and their related disabilities.
 - General population level: promotion of healthy lifestyle
 - Individual level: optimisation of risk factors and tackling unhealthy lifestyle in patients at moderate to high risk of CVD or patients with estabilished CVD

Cardiovascular prevention – basic concepts

- Primary subjects without CVD
- 'primordial' prevention of risk factors (e.g. weight control as prevention of diabetes and hypertension)
- Secondary patients with CVD

Importance of cardiovascular prevention

Mortalità

SCHOOLOF

The Cardiovascular Continuum: Treatment Benefits and Residual Risk at Increasing CV Risk Band Surgery

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Zanchetti A. Nat Rev Cardiol 2010;7:66-7
Rischio relativo, assoluto e residuo

Residual Cardiovascular Risk 40 in Major Statin Trials

2. LIPID Study Group. N Engl J Med. 1998;339:1349.

Sacks FM, et al. N Engl J Med. 1996;335:1001.

4. HPS Collaborative Group. Lancet. 2002;360

5. Shepherd J, et al. N Engl J Med. 1995;333:1301.

 Downs JR. et al. JAMA, 1998;279:1615. DIPARTIMENTO DI MEDICINA E UTINUNUIA

Medscape

Prevention strategies:

	Popolazione	Alto rischio
Numero di soggetti	Alto	Basso
Costo dell'intervento	Alto	Basso
Δ rischio relativo	Frequentemente non nota	Di solito ben definita
Δ rischio assoluto	Bassa	Alta
Rischio residuo	Basso	Alto
Orizzonte temporale	Decenni	Mesi/Anni

How to reduce risk – characteristics of interventions

Effectiveness

Cost

Ease of use

Adherence and persistence

Security

Perception of cardiovascular risk as an obstacle to successful prevention prevention

Cardiovascular risk can be controlled by the initiative and will of the individual, But

It has no immediate positive effect on wellbeing

the risk is remote, abstract and does not produce emotional response (anxiety, worry, fear)

Lifestyle changes require major effort

Drugs used in prevention may worsen quality of life

Risk factor intervention: behaviour change

- Cognitive behavioural methods are effective in supporting persons in adopting a healthy lifestyle. Individual and environmental factors impede the ability to adopt a healthy lifestyle, as does complex or confusing advice from caregivers.
- Useful tools to enhance adherence are principles of effective communication, motivational interviews, "ten strategic step" strategy.
- Combining the knowledge and skills of caregivers (physician, nurses, psychologist, expert in nutrition, cardiac rehabilitation and sport medicine) can optimize preventive efforts

Recommendations	Class	Level
Established cognitive-behavioural strategies (e.g. motivational interviewing) to facilitate lifestyle change are recommended.	I	A
Involvement of multidisciplinary healthcare professionals (e.g. nurses, dieticians, psychologists) is recommended.	I	А
In individuals at very high CVD risk, multimodal interventions integrating medical resources with education on healthy lifestyle, physical activity, stress management and counselling on psychosocial risk factors, are recommended.	I	A

Healthy diet characteristics

- Saturated fatty acids to account for <10% of total energy intake, through replacement by polyunsaturated fatty acids.
- Trans unsaturated fatty acids: as little as possible, preferably no intake from processed food, and <1% of total energy intake from natural origin.
- <5 g of salt per day.
- 30-45 g of fibre per day, preferably from wholegrain products.
- ≥200 g of fruit per day (2-3 servings).
- ≥200 g of vegetables per day (2-3 servings).
- Fish 1–2 times per week, one of which to be oily fish.
- 30 grams unsalted nuts per day.
- Consumption of alcoholic beverages should be limited to 2 glasses per day (20 g/d of alcohol) for men and 1 glass per day (10 g/d of alcohol) for women.
- Sugar-sweetened soft drinks and alcoholic beverages consumption must be discouraged.

Risk factor intervention: smoking cessation

- Most cost effective strategy for CVD prevention
- Brief interventions with advice to stop smoking, NRT, bupropion and varencicline are the most used strategies. New approach is e-cigarettes (needs more study on possible harmful effects)
- Smoking enhances atheroscerosis and superimposed thrombotic phenomena: it affects endothelial function, oxidative processes, platelet function, fibrinolysis, inflammation, lipid oxidation and vasomotor function \rightarrow fully or partially reversible.
- Stopping smoking reduces CV deaths/MI (RR 0.57 and 0.74) compared with continued smoking.
- Professional support can increase the odds of stopping. Following the failure of these strategies, drug interventions should be offered (RR 1.60 for NRT; 1.62 for bupropion; > 2.0 for varencicline)

Risk factor intervention: smoking cessation

A-ASK:	Systematically inquire about smoking status at every opportunity.
A-ADVISE:	Unequivocally urge all smokers to quit.
A-ASSESS:	Determine the person's degree of addiction and readiness to quit.
A-ASSIST:	Agree on a smoking cessation strategy, including setting a quit date, behavioural counselling, and pharmacological support.
A-ARRANGE:	Arrange a schedule of follow-up.

Recommendations	Class	Level
It is recommended to identify smokers and provide repeated advice on stopping with offers to help, by the use of follow up support, nicotine replacement therapies, varenicline, and bupropion individually or in combination.	I	A
It is recommended to stop all smoking of tobacco or herbal products, as this is strongly and independently causal of CVD.	I	В
It is recommended to avoid passive smoking.	I	В

18

SCHOOL OF MEDICINE AND SURGERY

Risk factor goals and target levels

Smoking	No exposure to tobacco in any form.
Diet	Low in saturated fat with a focus on wholegrain products, vegetables, fruit and fish.
Physical activity	At least 150 minutes a week of moderate aerobic PA (30 minutes for 5 days/week) or 75 minutes a week of vigorous aerobic PA (15 minutes for 5 days/week) or a combination thereof.
Body weight	BMI 20–25 kg/m ² . Waist circumference <94 cm (men) and or <80 cm (women).
Blood pressure	<140/90 mmHg.ª
Lipid LDL ^b is the primary target	 Very high-risk: <1.8 mmol/L (<70 mg/dL), or a reduction of at least 50% if the baseline is between 1.8 and 3.5 mmol/L (70 and 135 mg/dL).^d High-risk: <2.6 mmol/L (<100 mg/dL) or a reduction of at least 50% if the baseline is between 2.6 and 5.2 mmol/L (100 and 200 mg/dL). Low to moderate risk: <3.0 mmol/L (115 mg/dL).
Non-HDL-C ^b	$<\!2.6, <\!3.3$ and $<\!3.8$ mmol/L (<100, <130 and <145 mg/dL) are recommended for very high, high and low to moderate risk subjects, respectively
HDL-C	No target but >1.0 mmol/L (>40 mg/dL) in men and >1.2 mmol/L (>45 mg/dL) in women indicate lower risk.
Triglycerides	No target but <1.7 mmol/L (<150 mg/dL) indicates lower risk and higher levels indicate a need to look for other risk factors.
Diabetes	HbA1c: <7% (<53 mmol/L).

a. The target can be higher in frail elderly patients, or lower in most patients with DM and in some (very) high risk patients without DM who can tolerate multiple blood pressure lowering drugs

b. A view was expressed that primary care physicians might prefer a single general LDL-C goal of 2.6 mmol/L.

c. Non-HDL-C is a reasonable and practical alternative target because it does not require fasting.

DIPARTIMENTO DI N

d. This is the general recommendation for those at very high risk. It should be noted that the evidence for patients with chronic kidney disease is less strong

Risk factor intervention: Antiplatelet therapy

Antiplatelet therapy is not recommended in individuals without CVD due to the increased risk of major bleeding.

В

III

Arterial hypertension

Sergio Caravita

Dept. of Management, Production and Information Engineering, University of Bergamo Istituto Auxologico Italiano, IRCCS Milan, Italy

DEGLI STUDI DI MIANO BICOCCA INA E CHIRURG

Medicine and Surgery [H4102D] CARDIOVASCULAR DISEASES AND RESPIRATORY SCIENCES Cardiology 2022-4-H4102D024-H4102D084M

Academic year 2022/2023

pathogenesis

BP is the product of cardiac output and total peripheral vascular resistance.

Multiple factors are involved in short-term and long-term regulation of BP for adequate tissue perfusion; these include the following:

- Cardiac output and circulatory blood volume
- Vascular caliber, elasticity, and reactivity
- Humoral mediators
- Neural stimulation

Pressure Profile of the Circulatory System

R – peripheral resistances

 $R = 8\eta L/\pi r^4$

Dipendenza di R da r

SCHOOL OF MEDICINE AND SURGERY

Mean BP therefore depends on:

- volemia (fluid intake, renal function, other losses)
- systolic function of the heart (β 1-sympathetic activity, myocardial ischemia)
- heart rate (β1-sympathetic activity, parasympathetic activity)
- blood viscosity (heamatocrit, plasma proteins)
- peripheral resistances (α 1 and β 2 adrenergic activity, hormonal and

local humoral factors, arteriole autoregulation)

Cardiac distension Sympathetic stimulation Angiotensin II Endothelin

The role of humoral systems in BP regulation

Richard E. Klabunde

Cardiovascular Physiology Concepts: Atrial and Brain Natriuretic Peptides,

DIPARTIMENTO DI MEDICINA E HTTP://www.cvphysiology.com/Blood%20Pressure/BP017%20ANP%20new.gif

Contribution of Three BP Control Mechanisms in Hypertension Pathogenesis in Different Patients

DEGLI STUDI DI MILANO B I C O C C A

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Arterial hypertension classification

Primary/essential (about 90%) – the ethiology is multifactorial and depends on the interaction of environmental and lifestyle factors (salt intake, stress, sedentary lifestyle, obesity...) and genetic influences.

Secondary (about 10%) - has known pathogenic mechanisms, develops due to an underlying pathology that, if identified in time, can often be corrected with the consequent resolution of the hypertensive state. It can be suspected in young people with severe hypertension and in patients who do not respond to therapy (false resistant hypertension)

Why focus on CV diseases and hypertension?

1Volpe. Aging Clin Exp Res 2005;17 (4 Suppl.) :46-53

2Chobanian et al. JAMA 2003;289:2560-72

" High blood pressure is the most common cardiovascular disease and is one of the main risk factors for other cardiovascular and cerebrovascular diseases."

MacMahon et al. Lancet 90,335,765

DIPARTIMENTO DI ME**Hypertens**ion causes 7.5 million deaths per year, about 12.8% of total mortality

Prevalence of hypertension in the world School of MEDICINE AND SURGERY

Fig. 2 | Hypertension prevalence by world region in 2010. Prevalence of hypertension defined as systolic blood pressure \geq 140 mmHg or diastolic blood pressure \geq 90 mmHg or use of antihypertensive medication in men (part **a**) and women (part **b**). Data obtained from REF.³.

Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020

26% of the world's adult population (972 million people)

The problem of arterial hypertension

- Globally, over 1 billion people have hypertension. The worldwide prevalence of hypertension will continue to rise towards 1.5 billion by 2025¹;
- Elevated BP is the leading global contributor to premature death, accounting for almost 10 milion deaths in 2015, 4.9 milion due to ischemic heart disease and 3.5 million due to stroke.
- Hypertension is also a major risk factor for heart failure, AF, CKD, PAD and cognitive decline².
 - 1. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 . to 2015: a pooled analysis of 1479 populationbased measurement studies with . 19.1 million participants. Lancet 2017;
 - Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure lowering on . outcome incidence in hypertension. 1. Overview, meta-analyses, and meta- . regression analyses of randomized trials. J Hypertens 2014.

MORTALITY DUE TO LEADING GLOBAL RISK FACTORS Lopez et al. Lancet 2006;367:1747-1757

DIAGNOSTIC EVALUATION OF HYPERTENSIVE PATIENTS

Establish blood pressure levels

Identify causes of secondary hypertension

Assess global cardiovascular risk by researching the presence of other risk factors, organ damage and concomitant diseases

DIAGNOSTIC EVALUATION OF HYPERTENSIVE PATIENTS

Establish blood pressure levels

The first blood pressure measurement (1707-1711)

"Blood pressure continuously fluctuates to such a degree that the same two minutes of blood pressure will never be seen throughout the whole life of an animal."

"On account of some hydraulick and hydrostatick experiments made on the blood vessels of animals"

In: Statistical Essays: Containing Hemastatick; London 1733.

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Stephen Hales (1677-1761)

DI MILANO

OSCILLOMETRIC METHOD

A LISSIENINU DE MILANO BICOCCA

DIPARTIMENTO DI M

Classification of office BP and definition of hypertension grade ESH/ESC GL 2018

Category	Systolic (mmHg)		Diastolic (mmHg)
Optimal	< 120	and	< 80
Normal	120-129	and/or	80-84
High normal	130-139	and/or	85-89
Grade 1 hypertension	140-159	and/or	90-99
Grade 2 hypertension	160-179	and/or	100-109
Grade 3 hypertension	≥ 180	and/or	≥ 110
Isolated systolic hypertension	≥ 140	and	< 90

Categories of BP in Adults*

BP Category	SBP		DBP
Normal	<120 mm Hg	and	<80 mm Hg
Elevated	120–129 mm Hg	and	<80 mm Hg
Hypertension			
Stage 1	130–139 mm Hg	or	80–89 mm Hg
Stage 2	≥140 mm Hg	or	≥90 mm Hg

OOL OF BP is a highly variable physiological paramete

I STUDI

Factors responsible for variability in blood pressure over the short term School of MEDICINE AND SURGERY

Approximate increase in SBP (mmHg)

Psychological stress (e.g. public speaking)	20-60
Anger / conflict	20-60
Sexual intercourse	20-60
Major physical exertion (e.g. running, lifting)	20-60
Pain	20-40
Waking from sleep	20-40
Mid-morning surge	20-40
Driving	10-20
Posture (e.g. squatting etc)	10-20
Anticipation of major physical exertion	10-20
Minor physical exertion (e.g. dressing, walking)	0-20
Ambient temperature	10-20
Eating	10
Smoking	10
Telephone call	10
Distended bladder	10
Alcohol	5-10
Coffee	5-10

White coat effect

Mancia G. et al., Lancet 1983; 2: 695-698

DIPARTIMENTO DI MEDICINA E CHIRURGIA
Home Blood Pressure monitoring

Non-invasive discontinuous ambulatory

24-hour ambulatory blood pressure tracing

SCHOOL OF MEDICINE AND SURGERY

DIPARTIMENTO DI I

24-h Blood Pressure Profile in Two Patients with Hypertension (Dipper and Non-Dipper)

SCHOOL OF MEDICINE AND SURGERY

Table 9Definitions of hypertension according tooffice, ambulatory, and home blood pressure levels

Category	SBP (mmHg)		DBP (mmHg)
Office BP ^a	≥140	and/or	≥90
Ambulatory BP			
Daytime (or awake) mean	≥135	and/or	<u>≥</u> 85
Night-time (or asleep) mean	≥120	and/or	≥70
24 h mean	≥130	and/or	≥80
Home BP mean	≥135	and/or	≥ 85

©ESC/ESH 2018

DIPARTIMENTO DI N

DIPARTIMENTO DI MEDICINA E CHIRURGIA

130/80 mmHg 24h ABP

Risk of white coat and masked hypertension

BICOCCA

SCHOOL OF MEDICINE AND SURGERY

Screening and diagnosis of hypertension

DIAGNOSTIC EVALUATION OF HYPERTENSIVE PATIENTS

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Patient characteristics that should raise the suspicion of secondary hypertension

Characteristic

Younger patients (< 40 years) with grade 2 hypertension or onset of any grade of hypertension in childhood

Acute worsening hypertension in patients with previously documented chronically stable normotension

Resistant hypertension

Severe (grade 3) hypertension or a hypertension emergency

Presence of extensive HMOD

Clinical or biochemical features suggestive of endocrine causes of hypertension or CKD

Clinical features suggestive of obstructive sleep apnoea

Symptoms suggestive of phaeochromocytoma or family history of phaeochromocytoma

Family history of juvenile hypertension or secondary form of hypertension

Family history of cerebrovascular event at a young age (<40 years)

Early onset hypertension and/or early stroke

2° - 3° grade hypertension or resistant hypertension (PA>140/90 mmHg with 3 full dose drugs, one of which is a diuretic)

Adrenal incidentaloma

Hypokalemia (spontaneous or caused by diuretics), also normal-low K+

levels on ACE-I, ARB or with CKD

Common causes of secondary hypertension - 1

Cause	Prevalence in hypertensive patients	Suggestive symptoms and signs	Screening Investigations
Obstructive sleep apnoea	5-10%	Snoring; obesity (can be present in non-obese); morning headache; daytime somnolence	Epworth score + ambulatory polygraphy
Renal parenchymal disease	2-10%	Mostly asymptomatic; diabetes; haematuria, proteinuria, nocturia; anaemia, renal mass in adult polycystic CKD	Plasma creatinine and electrolytes, eGFR; urine dipstick for blood and protein, urinary albumin:creatinine ratio; renal ultrasound
Renovascular disease:			
Atherosclerotic renovascular disease	1-10%	Older; widespread atherosclerosis (especially PAD); diabetes; smoking; recurrent flash pulmonary oedema; abdominal bruit	Duplex renal artery Doppler or CT angiography or MR angiography
Fibromuscular dysplasia		bruit	
Primary Aldosteronism	5-15%	Mostly asymptomatic; muscle weakness (rare)	Plasma aldosterone and renin, and aldosterone:renin ratio; hypokalaemia (in a minority) – note hypokalaemia can depress aldosterone levels

Common causes of secondary hypertension - 2

Prevalence in Cause hypertensive Suggestive symptoms and signs **Screening Investigations** patients Episodic symptoms – the 5 'Ps': paroxysmal hypertension, pounding headache, perspiration, palpitations, pallor; labile BP; BP surges Plasma or 24-h urinary fractionated Phaeochromocvtoma < 1% precipitated by drugs (e.g. beta-blockers, metanephrines metoclopramide, sympathomimetics, opioids, and tricyclic antidepressants) Moon face, central obesity, skin atrophy, striae Cushing's syndrome < 1% 24-h urinary free cortisol and bruising; diabetes; chronic steroid use Thyroid disease (hyper-1 - 2%Signs and symptom of hyper- or hypothyroidism Thyroid function tests or hypothyroidism) Hyperparathyroidism < 1% Hypercalcaemia, hypophosphatemia Parathyroid hormone, Ca²⁺ Usually detected in children or adolescence; different BP ($\geq 20/10 \text{ mmHg}$) between upperlower extremities and/or between right-left arm Coarctation of the aorta < 1% Echocardiogram and delayed radial-femoral femoral pulsation; low ABI interscapular ejection murmur; rib notching on chact V rov

Medications and other substances that may increase BP

Medication/substance	
Oral contraceptive pill	Especially oestrogen containing – cause hypertension in \sim 5% of women, usually mild but can be severe
Diet pills	For example, phenylpropanolamine and sibutramine
Nasal decongestants	For example, phenylephrine hydrochloride and naphazoline hydrochloride
Stimulant drugs	Amphetamine, cocaine, and ecstasy – these substances usually cause acute rather than chronic hypertension
Liquorice	Chronic excessive liquorice use mimics hyperaldosteronism by stimulating the mineralocorticoid receptor and inhibiting cortisol metabolism
Immunosuppressive medications	For example, cyclosporin A (tacrolimus has less effect on BP and rapamycin has almost no effect on BP), and steroids (e.g. corticosteroids, hydrocortisone)
Antiangiogenic cancer therapies	Antiangiogenic drugs, such as VEGF inhibitors (e.g. bevacizumab), tyrosine kinase inhibitors (e.g. sunitinib), and sorafenib, have been reported to increase BP
Other drugs and substances that may	Anabolic steroids, erythropoietin, non-steroidal anti-inflammatory drugs, herbal

Other causes

- ✓ Intracranic mass and other causes of intracranic hypertension
- ✓ Lead toxicity
- ✓ Acute stress (pain!)
- ✓ Eclampsia e pre-eclampsia
- ✓ Polycythemia

DIAGNOSTIC EVALUATION OF HYPERTENSIVE PATIENTS

Assess global cardiovascular risk by researching the presence of other risk factors, organ damage and concomitant diseases

Low-risk SCORE chart:

CVD mortality < 225/100000 in men, < 175/100000 in women

CARDIOLOGY[®]

DIPARTIMENTO DI MEDICII www.escardio.org/guidelines

Classification of hypertension stages according to BP levels, presence of CV risk factors, HMOD, or comorbidities

		BP (mmHg) grading			
Hypertension disease staging	Other risk factors, HMOD, or disease	High-normal SBP 130–139 DBP 85–89	Grade 1 SBP 140-159 DBP 90-99	Grade 2 SBP 160-179 DBP 100-109	Grade 3 SBP \ge 180 DBP \ge 110
	No other risk factors	Low risk	Low risk	Moderate risk	High risk
Stage 1 (uncomplicated)	1 or 2 risk factors	Low risk	Moderate risk	Moderate – high risk	High risk
	≥ 3 risk factors	Low -moderate risk	Moderate – high risk	High risk	High risk
Stage 2 (asymptomatic disease)	HMOD, CKD grade 3, or diabetes mellitus without organ damage	Moderate – high risk	High risk	High risk	High – very high risk
Stage 3 (symptomatic disease)	Syptomatic CVD, CKD g^{ra} de ≥ 4, or diabetes mellicus with organ damage	Very high risk	Very high risk	Very high risk	Very high risk

Factors influencing CV risk in patients with hypertension

Demographic characteristics and laboratory parameters				
Sex (men > women)				
Age				
Smoking – current or past history				
Total cholesterol and HDL-C				
Uric acid				
Diabetes				
Overweight or obesity				
Family history of premature CVD (men aged < 55 years and wome	en aged < 65 years)			
Family or parental history of early onset hypertension	Asymptomatic HMOD	-		
Early onset menopause	Arterial stiffening: Pulse pressure	(in older people) ≥ 60 mmHg		
Sedentary lifestyle	Carotid-femore	al PWV > 10 m/s		
Psychosocial and socioeconomic factors	ECG LVH			
Heart rate (resting values > 80 beats per min)	Echocardiographic LVH			
	Microalbuminuria or elevated albu	umin-creatinine ratio		
	Moderate CKD with eGFR > $30-59$	θ mL/min/1.73 m ² (BSA) or severe CKD eGFR < 30 mL/min/1.73 m ²		
	Ankle-brachial index < 0.9	Ankle-brachial index < 0.9		
	Advanced retinopathy: haemorrha	ges or exudates, papilloedema		
	Established CV or renal disease	e		
	Cerebrovascular disease: ischaem			
	CAD: myocardial infarction, angine	a, myocardial revascularization		
	Presence of atheromatous plaque	on imaging		
	Heart failure, including HFpEF	Heart failure, including HFpEF		
DIPARTIMENTO DI MEDICINA E CHIRUBGIA	Peripheral artery disease	Peripheral artery disease		
	Atrial fibrillation	Atrial fibrillation		

Routine diagnostic tests - Laboratory

- **•** Fasting blood sugar
- **•** Total cholesterolemia
- **Cholesterol LDL**
- **Cholesterol HDL**
- **9** Fasting triglyceridemia
- **9** Potassium
- left Uricemia
- 🌻 🛛 Plasma creatininemia
- Creatinine clearance (Cockroft formula Gault) or estimated glomerular filtration rate (MDRD or CKD-EPI formula)
- Hemoglobin and hematocrit
- Urinalysis (complemented by a stick test for microalbuminuria and a urinary sediment analysis)
- Glucose tolerance test if fasting blood glucose is > 5.6 mmol/L (102 mg/dL)

Diagnostic tests

- Electrocardiogram
- **Echocardiogram**
- **Output** Carotid ultrasonographic evaluation
- Quantitative measurement of albuminuria in the presence of a positive stick
- **Output** Lower limbs / upper limbs pressure index
- **Examination of the ocular fundus**
- **9** Blood pressure measurement at home and 24-hour monitoring
- Pulse wave velocity measurement

Indicators of cardiac subclinical organ

Electrocardiography:

Left Ventricular hypertrophy, ischemia, arrhythmias, "strain"

Echocardiography:

Left Ventricular Hypertrophy, Contractile Function, Left Ventricle Geometry, Diastole (Distensibility)

Left Ventricular Hypertrophy

Risk of :

cardiovascular events cardiovascular and all-cause mortality is 2-8 times higher

in individuals with left ventricular mass (MVS) above normal compared to subjects with normal MVS

ECST <u>C - A</u> x 100% NASCET <u>B - A</u> x 100% B

Rothwell 1994, Stroke 25:2435-39

DIPARTIMENTO DI N

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Identification of subclinical atherosclerosis

Doppler US of lower limbs

ABI

Indicators of subclinical organ damage

✓ ESTIMATED GLOMERULAR FILTRATE (eGFR),

(CALCULATED ON THE BASIS OF CREATININE)

✓ MICROALBUMINURIA O PROTEINURIA

Cross-Classification of Microalbuminuria and Reduced Glomerular Filtration Rate

Associations Between Cardiovascular Disease Risk Factors and Clinical Outcomes

HYPERTENSION TREATMENT

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Best Proven Nonpharmacological Interventions for Prevention and Treatment Hypertension*

	Nonpharmacolog	Dose	Approximate Impact on SBP	
	i-cal Intervention		Hypertension	Normotension
Weight loss	Weight/body fat	Best goal is ideal body weight, but aim	-5 mm Hg	-2/3 mm Hg
		for at least a 1-kg reduction in body		
		weight for most adults who are		
		overweight. Expect about 1 mm Hg		
		for every 1-kg reduction in body		
		weight.		
Healthy diet	DASH dietary	Consume a diet rich in fruits,	-11 mm Hg	-3 mm Hg
	pattern	vegetables, whole grains, and low-fat		
		dairy products, with reduced content		
		of saturated and total fat.		
Reduced intake	Dietary sodium	Optimal goal is <1500 mg/d, but aim	-5/6 mm Hg	-2/3 mm Hg
of dietary		for at least a 1000-mg/d reduction in		
sodium		most adults.		
Enhanced	Dietary	Aim for 3500–5000 mg/d, preferably	-4/5 mm Hg	-2 mm Hg
intake of	potassium	by consumption of a diet rich in		
dietary		potassium.		
potassium	*Type, dose, and exp	ected impact on BP in adults with a normal BP and v	ith hypertension.	
R	esources: Your Guide to	b Lowering Your Blood Pressure With DASH—How E	the DASH	?

Available at: https://www.nhlbi.nih.gov/health/resources/heart/hbp-dash-how-to.

Top 10 Dash Diet Tips. Available at: http://dashdiet.org/dash_diet_tips.asp

Best Proven Nonpharmacological Interventions for Prevention and Treatment SCHOOL OF Hypertension* (cont.)

*Type, dose, and expected impact on BP in adults with a normal BP and with hypertension.

Women: ≤1 drink daily

†In the United States, one "standard" drink contains roughly 14 g of pure alcohol, which is typically found in 12 oz

of regular beer (usually about 5% alcohol), 5 oz of wine (usually about 12%

alcohol), and 1.5 oz of distilled spirits (usually about 40% alcohol).

Lowering BP reduces cardiovascular risk

Small SBP reductions yield significant benefit

Meta-analysis of 61 prospective, observational studies One million adults, 12.7 million person-years

7% reduction in risk of ischaemic heart disease mortality

10% reduction in risk of stroke mortality

Lifestyle changes

Aims:

- Lower blood pressure values,
- Control other CV risk factors,
- Reduce the number of drugs and the dose of antihypertensive therapy
- Lifestyle changes are also advisable for individuals with high-normal blood pressure and additional risk factors in order to reduce the risk of developing frank hypertension.

Non-pharmacological treatment

Lifestyle modifications that have been shown to reduce blood pressure or cardiovascular risk, and should therefore be considered include:

- □ abolition of smoking;
- □ weight loss;
- □ reduction of excessive consumption of alcoholic beverages;
- □ exercise;
- □ low sodium diet;
- □ increase in the dietary intake of fruits and vegetables and
- reduction in the intake of total and saturated fats.

Specific objectives

- Limit salt consumption to <5 g per day
- Limit alcohol consumption to <14 units per week (men) and <8 units (women), avoiding compulsive consumption (binge drinking)
- Increase the consumption of vegetables fresh fruits, nuts, unsaturated fatty acids; reduce red meat; prefer low-fat dairy products
- avoid obesity (BMI >30 kg/m2 or waist circumference >102 cm in men and >88 cm in women), trying to achieve optimal values of BMI (about 20–25 kg/m2) and waist circumference (<94 cm in men and <80 cm in women)
- perform regular aerobic physical activity (e.g. at least 30 min of moderate exercise 5–7 days a week)
- cease smoking

2018 ESC/ESH Guidelines When to start antihypertensive treatment

DESC/ESH

SCHOOL OF MEDICINE AND SURGERY

Main antihypertensive drugs classes

Diuretics

Beta blockers

Calcium channel blockers

□ ACE inhibitors

□ Angiotensin II receptor antagonists

□ Alpha1 blockers

Central adrenergic receptor blockers

Renin and Bradikinin

Cough and ACE inhibitors

Features:

Onset:

Prevalence:

Insisting, non-productive, persistent

2-4 weeks (from a few hours after the first administration to a few months)

From 0.2 to 33% Female: unrelated age, severity hypertension or heart failure, dose

Pathogenesis:

Lung accumulation of bradykinins, prostaglandins, substance P; stimulation J receptors

Treatment:

Regression with suspension

ACEIs and ARBs

- Less effective in some patient groups (elderly, blacks)
- □ Favourable metabolic effects
- □ Side effects:
 - Dry cough (only ACEI) most common
 - □ Angioedema (only ACEI)
 - Hyperkalemia
- Best tolerated antihypertensives
- Controindicated in pregnancy and bilateral renal
- stenosis
- Require monitoring of kalemia

Pharmacological Blockade of the Renin Angiotensin-Aldosterone System

Calcium antagonists

- □ Effective in most patients
- □ Short acting compounds may cause hypotension (avoid)
- Neutral metabolic effects
- Common side effects:
 - □ Ankle edema (less if with ACEI/ARB) most common
 - □ Flushing
 - Constipation
 - Gum hypertrophy

Dihydropiridines (amlodipine, nifedipine, lercanidipine, nimodipine, lacidipine) are mainly used (mainly cause vasodilation)
Non-dihydropiridines (verapamil, diltiazem) – cardiodepressive effects (bradycardia, reduced contractility) – less commonly used in HT

Available antihypertensive drugs

Diuretics

Beta blockers

Calcium channel blockers

□ ACE inhibitors

□ Angiotensin II receptor antagonists

□ Alpha1 blockers

Central adrenergic receptor blockers

A DEGLI STUDI DI MILAN

BICOCC

Diuretics

- Effective in most patients
- Significant side effects:
 - Thiazides hyperglycemia, diabetes
 - Hypokalemia (thiazides, loop D)
 - Hyperkalemia (potassium sparing D)
 - Gynecomastia (spironolactone)
- Short acting drugs not suitable for long term Tx (furosemide!)
 - Thiazides less effective with low eGFR (<30)</p>

Beta-blockers

- Less effective in some patients (e.g. blacks)
- Significant side effects:
 - May favour hyperglycemia, diabetes (esp. with thiazides)
 - Bradycardia
 - Bronchospasm
 - Erectile dysfunction
 - Sleep disturbances
- Newer drugs with vasodilating properties prefrrable (nebivolol, carvedilol)

Alpha-blockers

- Not first line drugs
- Orthostatic hypotension (elderly!)
- Favourable metabolic profile
- Useful in prostatic hypertrophy

Summary results of the direct comparisons of each class vs all other classes of BP-lowering drugs on seven major outcomes

Each class vs all other						
	D	BB	СА	ACEI	ARB	RASB
Stroke						
СНД						
HF						
St + CHD						
St + CHD + HF						
CV Death						
All-cause Death						

DIPARTIMENTO DI MEDICINA E CHIRURGIA

Thomopoulos, Parati, Zanchetti, J Hypertens 2015; 33: 1321-1341

Multiple antihypertensive agents are needed to achieve target BP

DBP, diastolic BP; SBP, systolic BP; MAP, mean arterial pressure; UKPDS, United Kingdom Prospective Diabetes Study; ABCD, Appropriate Blood Pressure Control in Diabetes; MDRD, Modification of Diet in Renal Disease; HOT, Hypertension Optimal Treatment; AASK, African American Study of Kidney Disease; IDNT, Irbesartan Diabetic Nephropathy Trial

Bakris GL et al. Am J Kidney Dis 2000 ;36: 646-661

2018 ESC/ESH Guidelines Antihypertensive therapy algorithm

SCHOOL OF

MEDICINE AND SURGERY

Older patients

In fit older patients with hypertension (even if age > 80 years), BP lowering drugs treatment and lifestyle intervention are recommended when SBP is ≥160 mmHg.	IA
BP-lowering drug treatment and lifestyle intervention are recommended in the fit older patients (> 65 years but not over 80 years) when SBP is the grade 1 range (140-159 mmHg), provided that treatment is well tollerated.	IA
Antihypertensive treatment may also be considered in frail older patients if tolerated	IIb B
Withdrawal of BP lowering drug treatment on the basis of age, even when patients attain age of \geq 80 years, is not recommended, provided that treatment is well tollerated	III A

Summary of office BP thresholds for treatment

		Diastolic				
Age group	Hypertension	+ Diabetes	+ CKD	+ CAD	+ Stroke/TIA	threshold (mmHg)
18-65 years	≥ 140	≥ 140	≥ 140	≥ 140	≥ 140	≥ 90
65–79 years	≥ 140	≥ 140	≥ 140	≥ 140	≥ 140	≥ 90
≥ 80 years	≥ 160	≥ 160	≥ 160	≥ 160	≥ 160	≥ 90
Diastolic treatment threshold (mmHg)	≥ 90	≥ 90	≥ 90	≥ 90	≥ 90	

Office BP treatment targets in hypertensive patients and surgery

Systolic BP During Follow-up

DIPARTIMENTO DI MEDICINA E CHIRURGI

Office BP treatment targets in hypertensive patients and surgery

SPRINT Primary Outcome

Cumulative Hazard

Risk of Adverse Outcomes by Age and Blood Pressure

Am J Med. 2010;123:719 –26

	Office SBP treatment target ranges (mmHg)					Diastolic treatment
Age group	Hypertension	+ Diabetes	+ CKD	+ CAD	+ Stroke/TIA	target range (mmHg)
	Target to 130	Target to 130	Target to	Target to 130	Target to 130	
19 65 4000	or lower if	or lower if	< 140 to 130	or lower if	or lower if	< 90 to 70
10-05 years	tolerated	tolerated	if tolerated	tolerated	tolerated	< 80 to 70
	Not < 120	Not < 120		Not < 120	Not < 120	
	Target to	Target to	Target to	Target to	Target to	
65–79 years	< 140 to 130	< 140 to 130	< 140 to 130	< 140 to 130	< 140 to 130	< 80 to 70
	if tolerated	if tolerated	if tolerated	if tolerated	if tolerated	
	Target to	Target to	Target to	Target to	Target to	
≥ 80 years	< 140 to 130	< 140 to 130	< 140 to 130	< 140 to 130	< 140 to 130	< 80 to 70
	if tolerated	if tolerated	if tolerated	if tolerated	if tolerated	
Diastolic treatment target range(mmH g)	< 80 to 70	< 80 to 70	< 80 to 70	< 80 to 70	< 80 to 70	

Resistant Hypertension

Definition

Resistant hypertension is defined as a systolic and/or diastolic pressure > 140/90 mmHg, despite adequate lifestyle correction and drug therapy with at least three drugs at full or maximum tolerated dosage, of which at least one diuretic.

Diagnosis should be confirmed with MAP 24 h or home monitoring

Guidelines for Management of Hypertension ESC-ESH 2018

Resistant hypertension

2013	2018	
Mineralocorticoid receptor anta alph Spironolactone versus placebo	Recommended treatment of resista v-	ant
cons determine the optimal treatme exis (Cla hypertension (PATHWAY-2): a	ent for drug-resistant ^{9r} randomised, double-blind,	-
Bryan Williams, Thomas M MacDonald, Steve Morant, David J Webb, Pet Mark J Caulfield, Jackie Salsbury, Isla Mackenzie, Sandosh Padmanabhar Studies Group*	iter Sever, Gordon McInnes, Ian Ford, J Kennedy Cruickshank, IC n, Morris J Brown, for The British Hypertension Society's PATHWAY ال	; cop cl
	(Classe IB)	

Catheter-Based Treatment for Achieving Renal Sympathetic Denervation

Symplicity® Catheter System™ Ardian, Inc., Palo Alto, CA, USA

increased reabsorption of Na+ increased renin secretion reduction of renal flow

radiofrequency ablation of renal afferences and efferences of the sympathetic nervous system, resulting in isolation of the renal parenchymal and iuxtaglomerular structures from abnormal stimulation by adrenergic efferences.

Hypertensive emergencies requiring immediate BP lowering with i.v. drug therapy

Clinical presentation	Time line and target for BP reduction	First-line treatment	Alternative
Malignant hypertension with or without acute renal failure	Several hours Reduce MAP by 20–25%	Labetalol Nicardipine	Nitroprusside Urapidil
Hypertensive encephalopathy	Immediately reduce MAP by 20–25%	Labetalol Nicardipine	Nitroprusside
Acute coronary event	Immediate reduce SBP to < 140 mmHg	Nitroglycerine Labetalol	Urapidil
Acute cardiogenic pulmonary oedema	Immediately reduce SBP to < 140 mmHg	Nitroprusside OR nitroglycerine (with loop diuretic)	Urapidil (with loop diuretic)
Acute aortic dissection	Immediately reduce SBP to < 120 mmHg AND heart rate to < 60 bpm	Esmolol AND nitroprusside OR nitroglycerine OR nicardipine	Labetalol OR metoprolol
Eclampsia and severe pre- eclampsia/HELLP	Immediately reduce SBP to < 160 mmHg AND DBP to < 105 mmHg	Labetalol OR nicardipine AND magnesium sulphate	Consider delivery

This calls for earlier intervention in the natural history of hypertension, before organ damage develops or

The earlier the better

insufficiently treated

The earlier the better

B I C O C C A

Thomopoulos, Parati, Zanchetti, J.Hypertens 2014

DIPARTIMENTO DI MEDICINA E CHIRURGIA

"At the beginning, a disease is easy to cure, but difficult to diagnose; as time passes, not having been treated or recognized at the outset, it becomes easy to diagnose, but difficult to cure" Niccolò Machiavelli, *II Principe*, 1513

PRINCIPE

Niccolo Machiavelli