

UNIVERSITÀ DEGLI STUDI DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione



## Pulmonary hypertension

Sergio Caravita, MD, PhD

Dyspnea and PH center, IRCCS Istituto Auxologico Italiano San Luca Hospital, Milano Department of Management, Information and Production Engineering, University of Bergamo

sergio.caravita@unibg.it



## Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV) → understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)



## Agenda

#### - Physiology of the pulmonary circulation and of the right ventricle (RV) $\rightarrow$ understanding RV failure

- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)



# Physiology of the pulmonary circulation and of the right ventricle (RV)

The pulmonary circulation is a low-pressure, high flow system

The right ventricle is a low-pressure flow generator



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione





## The pulmonary circulation: a hydraulic perspective





TÅ | Dipartimento
DI di Ingegneria Gestionale,
dell'Informazione e della Produzione



Istituto di ricovero e cura a carattere scientifico

## **Evolution of the pulmonary circulation**





West JB. Am J Physiol Regul Integr Comp Physiol 2013

## Physiology of the pulmonary circulation

| Hemodynamic variables        | Normal values |  |
|------------------------------|---------------|--|
| Q, L/min                     | 4.5 - 8.5     |  |
| HR, bpm                      | 40 - 100      |  |
| Systolic PAP, mmHg           | 13 - 26       |  |
| Diastolic PAP, mmHg          | 6 - 16        |  |
| Mean PAP, mmHg               | 8 - 20        |  |
| PAWP or LAP, mmHg            | 5 - 12        |  |
| P <sub>cap</sub> , mmHg      | 8 - 12        |  |
| RAP, mmHg                    | 1 - 8         |  |
| PVR, dyne*s*cm <sup>-5</sup> | 12 - 100      |  |
| PVR, WU                      | < 1.25        |  |

| Systemic circulation<br><b>x 5-6 times</b> |          |  |  |
|--------------------------------------------|----------|--|--|
| Systolic SAP, mmHg                         | 90 - 140 |  |  |
| Diastolic SAP, mmHg                        | 50 - 90  |  |  |
| Mean SAP, mmHg                             | 60 - 105 |  |  |

Q=cardiac output; HR=heart rate; PAP=pulmonary artery pressure; PAWP=pulmonary artery wedge pressure; LAP=left atrial pressure; Pcap=pulmonary capillary pressure; RAP=right atrial pressure; PVR=pulmonary vascular resistance; SAP=systemic arterial pressure



### **Alveolo-capillary membrane**



Fick's law of diffusion state that the extent of gas moving through a tissue membrane is proportional to the surface of the membrane and inversely proportional to its thickness.

Alveolo-capillary blood-gas barrier is extraordinarily thin (≈0,3 µm) and covers a surface of 50-100 m<sup>2</sup>.



West JB. Book of Respiratory Physiology, 2006 Low FN. Anat Rec 117: 241–263, 195

## **Recrutability of the pulmonary circulation**





 TÅ
 Dipartimento

 JDI
 di Ingegneria Gestionale,

 MO
 dell'Informazione e della Produzione

West JB. Book of Respiratory Physiology, 2006 Naeije R et al. Eur Respir J 2013;41:217-23

## Evolution of the pulmonary circulation (and of the right ventricle)





West JB. Am J Physiol Regul Integr Comp Physiol 2013

# Physiology of the pulmonary circulation and of the right ventricle (RV)

The pulmonary circulation is a low-pressure, high flow system...

... and the right ventricle follows !! (unloaded & reshaped)



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione





## Anatomy of the right ventricle

Anterior position, behind the sternum

Three components

- Inlet (tricuspid valve, chordae tendinae and papillary muscles)
- Trabeculated apical myocardium
- Outlet (infundibolum)

Walls

- Anterior
- Lateral
- Inferior
- (interventricular septum)

Complex shape

- Triangular from a lateral perspective
- Crescent from a transversal section
- Influenced by the interventricular septum



Haddad F et al. Circulation 2008;117:1436-1448

### **Ventricular interdependence**

Continuity between the muscle fibers of the RV and LV:

- functionally binds the ventricles together
- represents the anatomic basis of free ventricular wall traction caused by LV contraction
- contributes, along with the interventricular septum and pericardium, to ventricular interdependence

The RV is connected in series with the LV and is, therefore, obligated to pump on average the same effective stroke volume



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

Haddad F et al. Circulation 2008;117:1436-1448

## **Right ventricular physiology**

RV contraction is sequential, starting with the contraction of the inlet and trabeculated myocardium and ending with the contraction of the infundibulum (approximately 25 to 50 ms apart)

- The RV contracts by 3 separate mechanisms:
  - 1. <u>inward movement of the free wall</u> (bellows effect)
  - <u>contraction of the longitudinal fibers</u>, (shortens the long axis, draws the tricuspid annulus toward the apex)
  - LV contraction acting with a traction on RV free wall at the points of attachment (contribution for 20-40% at RV ejection → in the presence of RV scarring, the septum is able to maintain circulatory stability as long as the RV is not dilated)
- Shortening of the RV is greater longitudinally than radially





Haddad F et al. Circulation 2008;117:1436-1448

## Pathophysiology of RV failure

<u>Acute</u> ↑↑↑ in RV afterload (Pulmonary embolism, PE)





UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Naeije R et al. Pulm Circ 2014

## Pathophysiology of RV failure





 SITÀ
 Dipartimento

 FUDI
 di Ingegneria Gestionale,

 AMO
 dell'Informazione e della Produzione

### Pathophysiology of RV failure RV remodeling in chronic pressure overload





А

Hsu S et al. Circulation 2018

Tian L et al. Circ Res 2020

## RV failure evolves as a systemic syndrome due to low output and venous congestion





UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

Rosenkranz S et al. Circulation 2020

## Chronic elevation in RV afterload and mortality





UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

## Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV) → understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)





## Measuring pulmonary hemodynamics



William Ganz and H.J.C. Swan



UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione "In the fall of 1969, I was on the beach in Santa Monica, California, with my young children and noted a sailboat with a large spinnaker making good progress in a calm sea.

I wondered whether a sail or parachute at the tip of a flexible catheter would solve the problem"









Troianos CA et al. J Am Soc Echocardiogr 2011



UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione







## CO measurement Direct Fick method

 $VO_2 = CO \times d(a-v)O_2$  $CO = VO_2 / d(a-v)O_2$ 



 $CO = VO_2 / [Hb*1.37*(SaO_2-SvO_2)] / 10 * 1000$ 

VO<sub>2</sub>= oxygen consumption CO=cardiac output

 $d(a-v)O_2$ =arteriovenous oxygen difference



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione



## The pulmonary circulation: a hydraulic perspective









## Estimating pulmonary artery and filling pressures Echocardiography

Non - invasive

Low cost

Dedicated personnel

Pulmonary artery pressure estimation

Indirect signs of pulmonary pressure increase: right heart dimensions and function

Morphology and function of left heart chamber and valves



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

## Estimating pulmonary artery and filling pressures Systolic PAP



RV-RA systolic pressure gradient =  $4 \times \text{TRV}^2$ Systolic PAP = RV-RA systolic pressure gradient + RAP



 ITÅ
 Dipartimento

 UDI
 di Ingegneria Gestionale,

 MO
 dell'Informazione e della Produzione

PAP=pulmonary artery pressure RA=right atrium RAP=right atrial pressuer RV=right ventricle TRV=tricuspid regurgitant jet velocity measured with CW Doppler

## Estimating pulmonary artery and filling pressures Right atrial pressure (RAP)



Inferior vena cava (IVC) diameter and collapsibility:

- Normal diameter and collapsibility  $\rightarrow$  RAP 0-5 mmHg
- Dilated IVC or reduced collapsibility  $\rightarrow$  RAP 5-10 mmHg
- Dilated IVC and reduced collapsibility  $\rightarrow$  RAP 10-15 mmHg



 UNIVERSITA
 Dipartimento

 DEGLI STUDI
 di Ingegneria Gestionale,

 DI BERGAMO
 dell'Informazione e della Produzione

### Estimating pulmonary artery and filling pressures Additional signs of PH – right heart dimensions



**Dilated PA** 

Dilated IVC and/or ↓ collapsibility

Dilated RV, RV > LV, septal shift

**Dilated RA** 



 ITÀ
 Dipartimento

 UDI
 di Ingegneria Gestionale,

 MO
 dell'Informazione e della Produzione

#### Estimating pulmonary artery and filling pressures Additional signs of PH – Doppler study of the RV outflow tract

PW Doppler on RVOT





 ITÀ
 Dipartimento

 UDI
 di Ingegneria Gestionale,

 MO
 dell'Informazione e della Produzione

## Estimating pulmonary artery and filling pressures Left heart filling pressures



(\* : LAP indeterminate if only 1 of 3 parameters available. Pulmonary vein S/D ratio <1 applicable to conclude elevated LAP in patients with depressed LV EF) Normal diastolic function  $\rightarrow$  normal left heart filling pressures Grade I diastolic dysfunction  $\rightarrow$  normal left heart filling pressures

Grade II diastolic dysfunction  $\rightarrow \uparrow LAP$ 

Grade III diastolic dysfunction  $\rightarrow \uparrow \uparrow LAP$ 



## **Echocardiographic probability of PH**

TABLE 1 Echocardiographic probability of pulmonary hypertension (PH) in symptomatic patients with a suspicion of PH

| Peak tricuspid regurgitation velocity m·s <sup>-1</sup> | Presence of other<br>echocardiographic "PH signs"# | Echocardiographic<br>probability of PH |
|---------------------------------------------------------|----------------------------------------------------|----------------------------------------|
| ≤2.8 or not measurable                                  | No                                                 | Low                                    |
| ≤2.8 or not measurable<br>2.9–3.4                       | Yes<br>No                                          | Intermediate                           |
| 2.9–3.4<br>>3.4                                         | Yes<br>Not required                                | High                                   |



UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione



**Figure 5** Echocardiographic probability of pulmonary hypertension and recommendations for further assessment. CPET, cardiopulmonary exercise testing, CTEPH, chronic thrombo-embolic pulmonary hypertension; echo, echocardiography; LHD, left heart disease; N, no; PAH, pulmonary arterial hypertension; PH, pulmonary hypertension; RHC, right heart catheterization; TRV, tricuspid regurgitation velocity; Y, yes. <sup>a</sup>Or unmeasurable. The TRV threshold of 2.8 m/s was not changed according to the updated haemodynamic definition of PH. <sup>b</sup>Signs from at least two categories in *Table 10* (A/B/C) must be present to alter the level of echocardiographic probability of PH. <sup>c</sup>Further testing may be necessary (e.g. imaging, CPET). <sup>d</sup>RHC should be performed if useful information/a therapeutic consequence is anticipated (e.g. suspected PAH or CTEPH), and may not be indicated in patients without risk factors or associated conditions for PAH or CTEPH (e.g. when mild PH and predominant LHD or lung disease are present).



## Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV)  $\rightarrow$  understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)


#### Chronic elevation in RV afterload and mortality





UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

## PH: hemodynamic definition(s)

|                   | Definition              | Haemodynamic characteristics            |         |
|-------------------|-------------------------|-----------------------------------------|---------|
| Post-capillary PH | PH                      | mPAP >20 mmHg                           |         |
|                   | Pre-capillary PH        | mPAP >20 mmHg                           |         |
|                   |                         | $PAWP \leq 15 mmHg$                     |         |
|                   |                         | PVR > 2 WU                              |         |
|                   | IрсPH                   | mPAP >20 mmHg                           |         |
|                   | Isolated post-capillary | PAWP >15 mmHg                           |         |
|                   | РН                      | $PVR \leq 2 WU$                         |         |
|                   | СрсРН                   | mPAP >20 mmHg                           |         |
|                   | Combined post- and      | PAWP >15 mmHg                           | 2022    |
|                   | pre- capittary PT       | PVR > 2 WU                              | RS      |
| $\bigcirc$        | Exercise PH             | mPAP/CO slope between rest and exercise | SC/E    |
|                   |                         | >3 mmHg/L/min                           | Ш<br>() |

CO, cardiac output; CpcPH, combined post- and pre-capillary pulmonary hypertension; IpcPH, isolated post-capillary pulmonary hypertension; mPAP, mean pulmonary arterial pressure; PAWP, pulmonary arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; WU, Wood units.

UNIVERSITÀ DEGLI STUDI DI BERGAMO Some patients present with elevated mPAP (>20 mmHg) but low PVR ( $\leq$ 2 WU) and low PAWP ( $\leq$ 15 mmHg); this haemodynamic condition may be described by the term 'unclassified PH' (see text for further details).

#### **Pulmonary circulation**





Pulmonary capillaries

• PVR = (mean PAP - LAP) / Q



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

mean  $PAP = PVR \times Q + LAP$ 

PAP=pulmonary artery pressure PAWP=pulmonary artery wedge pressure PVR=pulmonary vascular resistance Q=cardiac output

#### **Pulmonary circulation**



Inflow Pressure (PAP)

Blood flow (Q)

# $\uparrow\uparrow$ mPAP = PVR x Q + $\uparrow\uparrow$ LAP



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione Post-capillary PH

#### **Pulmonary circulation**





# $\uparrow\uparrow$ mPAP = $\uparrow\uparrow$ PVR x Q + LAP



 TÅ
 Dipartimento

 JDI
 di Ingegneria Gestionale,

 MO
 dell'Informazione e della Produzione



## **PH: hemodynamic definition(s)**

|                   | Definition                                       | Haemodynamic characteristics                          |         |
|-------------------|--------------------------------------------------|-------------------------------------------------------|---------|
|                   | PH                                               | mPAP >20 mmHg                                         |         |
| Post-capillary PH | Pre-capillary PH                                 | mPAP >20 mmHg<br>PAWP $\leq$ 15 mmHg<br>PVR >2 WU     |         |
|                   | IpcPH<br>Isolated post-capillary<br>PH           | mPAP >20 mmHg<br>PAWP >15 mmHg<br>PVR $\leq$ 2 WU     |         |
|                   | CpcPH<br>Combined post- and<br>pre- capillary PH | mPAP >20 mmHg<br>PAWP >15 mmHg<br>PVR >2 WU           | RS 2022 |
|                   | Exercise PH                                      | mPAP/CO slope between rest and exercise >3 mmHg/L/min | © ESC/E |

CO, cardiac output; CpcPH, combined post- and pre-capillary pulmonary hypertension; IpcPH, isolated post-capillary pulmonary hypertension; mPAP, mean pulmonary arterial pressure; PAWP, pulmonary arterial wedge pressure; PH, pulmonary hypertension; PVR, pulmonary vascular resistance; WU, Wood units.

UNIVERSITÀ **DEGLI STUDI DI BERGAMO** 

Some patients present with elevated mPAP (>20 mmHg) but low PVR ( $\leq$ 2 WU) and low PAWP ( $\leq$ 15 mmHg); this haemodynamic condition may be described by the term 'unclassified PH' (see text for further details).

#### **PH: clinical classification**





UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

#### Table6Clinicalclassificationofpulmonaryhypertension

| GROUP 1 Pulmonary arterial hypertension (PAH)                                        |
|--------------------------------------------------------------------------------------|
| 1.1 Idiopathic                                                                       |
| 1.1.1 Non-responders at vasoreactivity testing                                       |
| 1.1.2 Acute responders at vasoreactivity testing                                     |
| 1.2 Heritable <sup>a</sup>                                                           |
| 1.3 Associated with drugs and toxins <sup>a</sup>                                    |
| 1.4 Associated with:                                                                 |
| 1.4.1 Connective tissue disease                                                      |
| 1.4.2 HIV infection                                                                  |
| 1.4.3 Portal hypertension                                                            |
| 1.4.4 Congenital heart disease                                                       |
| 1.4.5 Schistosomiasis                                                                |
| <ol> <li>1.5 PAH with features of venous/capillary (PVOD/PCH) involvement</li> </ol> |
| 1.6 Persistent PH of the newborn                                                     |
| GROUP 2 PH associated with left heart disease                                        |
| 2.1 Heart failure:                                                                   |
| 2.1.1 with preserved ejection fraction                                               |
| 2.1.2 with reduced or mildly reduced ejection fraction <sup>b</sup>                  |
| 2.2 Valvular heart disease                                                           |
| <ol><li>Congenital/acquired cardiovascular conditions leading to</li></ol>           |
| post-capillary PH                                                                    |
| GROUP 3 PH associated with lung diseases and/or hypoxia                              |
| 3.1 Obstructive lung disease or emphysema                                            |
| 3.2 Restrictive lung disease                                                         |
| 3.3 Lung disease with mixed restrictive/obstructive pattern                          |
| 3.4 Hypoventilation syndromes                                                        |
| <ol><li>3.5 Hypoxia without lung disease (e.g. high altitude)</li></ol>              |
| 3.6 Developmental lung disorders                                                     |
| GROUP 4 PH associated with pulmonary artery obstructions                             |
| 4.1 Chronic thrombo-embolic PH                                                       |
| 4.2 Other pulmonary artery obstructions <sup>c</sup>                                 |
| GROUP 5 PH with unclear and/or multifactorial mechanisms                             |
| 5.1 Haematological disorders <sup>a</sup>                                            |
| 5.2 Systemic disorderse                                                              |
| 5.3 Metabolic disorders'                                                             |
| 5.4 Chronic renal failure with or without haemodialysis                              |
| 5.5 Pulmonary tumour thrombotic microangiopathy                                      |
| 5.6 Fibrosing mediastinitis                                                          |

#### **PH: clinical classification**



#### Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV) → understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Clinical manifestations and findings
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)



#### **Clinical manifestations and findings**

Clinical manifestations and findings depend upon:

- the degree of RV dysfunction
- the presence of conditions associated with PH development



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

#### **PH: symptoms**

Symptoms of PH are mainly **linked to right ventricle (RV) dysfunction**, and typically associated with exercise in the earlier course of the disease

Additional symptoms may be linked to an underlying disease associated with PH

#### Symptoms

- Dyspnoea on exertion (WHO-FC)
- Fatigue and rapid exhaustion
- Dyspnoea when bending forward (bendopnoea)
- Palpitations
- Haemoptysis
- Exercise-induced abdominal distension and nausea
- Weight gain due to fluid retention
- Syncope (during or shortly after physical exertion)

#### Rare symptoms due to pulmonary artery dilation<sup>a</sup>

- Exertional chest pain: dynamic compression of the left main coronary artery
- Hoarseness (dysphonia): compression of the left laryngeal recurrent nerve (cardiovocal or Ortner's syndrome)
- Shortness of breath, wheezing, cough, lower respiratory tract infection, atelectasis: compression of the bronchi



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione



Late

Early

#### **PH: signs**





UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO DI BERGAMO **Figure 3** Clinical signs in patients with pulmonary hypertension. CHD, congenital heart disease; CTEPH, chronic thrombo-embolic pulmonary hypertension; DVT, deep venous thrombosis; GORD, gastro-oesophageal reflux disease; HHT, hereditary haemorrhagic telangiectasia; PDA, patent ductus arteriosus; PH, pulmonary hypertension; PVOD, pulmonary veno-occlusive disease; RV, right ventricle; SSc, systemic sclerosis.

#### Electrocardiogram

## Table 8Electrocardiogram abnormalities in patientswith pulmonary hypertension



- P pulmonale (P >0.25 mV in lead II)
- Right or sagittal axis deviation (QRS axis >90° or indeterminable)
- + RV hypertrophy (R/S >1, with R >0.5 mV in V1; R in V1 + S in lead V5 >1 mV)
- Right bundle branch block—complete or incomplete (qR or rSR patterns in V1)
- RV strain pattern<sup>a</sup> (ST depression/T-wave inversion in the right pre-cordial V1–4 and inferior II, III, aVF leads)
- Prolonged QTc interval (unspecific)<sup>b</sup>

ECG, electrocardiogram; PH, pulmonary hypertension; QTc, corrected QT interval; RV, right ventricular.

<sup>a</sup>Present in advanced PH.

<sup>b</sup>Patients with pulmonary arterial hypertension can present with a prolonged QTc interval (although non-specific), which may reflect RV dysfunction and delayed myocardial repolarization, and is an independent predictor of mortality.<sup>67</sup>





#### **Chest X-ray**

Table 9Radiographic signs of pulmonary hyperten-sion and concomitant abnormalities

| Signs of PH and<br>concomitant<br>abnormalities                          | Signs of left heartSigns of lungdisease/diseasepulmonarycongestion                          |                                                          |                |
|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------|
| Right heart<br>enlargement                                               | Central air space opacification                                                             | Flattening of<br>diaphragm (COPD/<br>emphysema)          |                |
| PA enlargement<br>(including aneurysmal<br>dilatation)<br>Pruning of the | Interlobular septal<br>thickening 'Kerley B'<br>lines<br>Pleural effusions                  | Hyperlucency<br>(COPD/<br>emphysema)<br>Lung volume loss |                |
| peripheral vessels                                                       |                                                                                             | (fibrotic lung<br>disease)                               |                |
| 'Water-bottle' shape<br>of cardiac silhouette <sup>a</sup>               | Left atrial<br>enlargement<br>(including splayed<br>carina)<br>Left ventricular<br>dilation | Reticular<br>opacification<br>(fibrotic lung<br>disease) | © ESC/ERS 2022 |

COPD, chronic obstructive pulmonary disease; PA, pulmonary artery; PH, pulmonary hypertension.

<sup>a</sup>May be present in patients with PH with advanced right ventricular failure and moderate pericardial effusion.





#### Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV) → understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Clinical manifestations and findings
- Diagnostic approach
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)



#### **PH: diagnostic approach**

The diagnostic approach to PH is mainly focused on two tasks.

The primary goal is to raise early suspicion of PH and ensure fast-track referral to PH centres in patients with a high likelihood of PAH, CTEPH, or other forms of severe PH.

**The second objective** is to **identify underlying diseases**, especially LHD (group 2 PH) and lung disease (group 3 PH), as well as comorbidities, to ensure proper classification, risk assessment, and treatment.



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione



#### Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV) → understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)



#### **Pulmonary vascular diseases: PAH and CTEPH**





# **Pulmonary Arterial Hypertension (PAH)**



DEGLI STUDI DI BERGAMO di Ingegneria Gestionale, dell'Informazione e della Produzione

# Pulmonary arterial hypertension (PAH) Epidemiology

In Europe, PAH prevalence and incidence are in the range of 15–60 subjects per million population and 5–10 cases per million per year, respectively

Mean age at diagnosis between 50 and 65 years in current registries.

Female predominance is quite variable among registries and may not be present in elderly patients



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

## Pulmonary Arterial Hypertension (PAH) Clinical classification

GROUP 1 Pulmonary arterial hypertension (PAH)

1.1 Idiopathic

IPAH: 50-60% of PAH

- 1.1.1 Non-responders at vasoreactivity testing
- 1.1.2 Acute responders at vasoreactivity testing

1.2 Heritable<sup>a</sup>

- 1.3 Associated with drugs and toxins<sup>a</sup>
- 1.4 Associated with:
  - 1.4.1 Connective tissue disease
  - 1.4.2 HIV infection
  - 1.4.3 Portal hypertension
  - 1.4.4 Congenital heart disease
  - 1.4.5 Schistosomiasis
- 1.5 PAH with features of venous/capillary (PVOD/PCH) involvement
- 1.6 Persistent PH of the newborn



| Gene     | Pulmonary hypertension<br>phenotypic association                                                                                                                                                     | Putative<br>molecular<br>mechanism     | In heritance<br>pattern | Potential distinguishing<br>clinical and examination<br>features                       | Investigations                                                                                                                                   | Populations                            | Reference |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|
| BMPR2    | Heritable and idiopathic PAH                                                                                                                                                                         | Haploinsufficiency                     | Autosomal<br>dominant   | No spedific or diagnostic clinical<br>features described                               | No discriminative investigations described                                                                                                       | Paedatric and adult                    | 152       |
| ATPI 3A3 |                                                                                                                                                                                                      | Unknown                                | Autosomal<br>dominant   |                                                                                        |                                                                                                                                                  | Adult                                  | 149       |
| AQP1     |                                                                                                                                                                                                      | Unknown                                | Autosomal<br>dominant   |                                                                                        |                                                                                                                                                  | Adult                                  | 149       |
| ABCC8    |                                                                                                                                                                                                      | Haploinsufficiency                     | Autosomal<br>dominant   |                                                                                        |                                                                                                                                                  | Adult                                  | 153       |
| KONKS    |                                                                                                                                                                                                      | Haploinsufficiency                     | Autosomal<br>dominant   |                                                                                        |                                                                                                                                                  | Adult                                  | 194       |
| SMAD9    |                                                                                                                                                                                                      | Haploinsufficiency                     | Autosomal<br>dominant   |                                                                                        |                                                                                                                                                  | Adult                                  | 155       |
| Sax17    | Heritable and idiopathic PAH<br>Congenital heart disease                                                                                                                                             | Unknown                                | Autosomal<br>dominant   |                                                                                        |                                                                                                                                                  | Paediatric and adult                   | 149       |
| CAVI     | Heritable and idiopathic PAH<br>Lipodystrophy                                                                                                                                                        | Gain of function;<br>dominant negative | Autosomal<br>dominant   | Defidency of subcutaneous<br>adipose tissue                                            | Fasting triglyceride and leptin levels                                                                                                           | Paediatric and adult                   | 156       |
| TBX4     | Heritable and idiopathic PAH<br>Small patella syndrome<br>(schiopatellar dysplasia)<br>Parenchymal lung disease<br>Bronchopulmonary dysplasia<br>Persistent pulmonary<br>hypertension of the neonate | Unknown                                | Autosomai<br>dominant   | Patellar aplasia<br>Skeletal abnormalities,<br>particularly pelvis, knees, and<br>feet | Steletal X-rays: pelvis, knees, and feet<br>CT chest: diffuse paren drymal lung disease                                                          | Paedatric and (less<br>commonly) adult | 1 49,157  |
| EIF2AK4  | Pulmonary veno-occlusive<br>disease/pulmonary capillary<br>haemangiomatosis                                                                                                                          | Loss of function                       | Autosomal<br>recessive  | Distal phalangeal clubbing                                                             | Reduced DLCO<br>CT chest: interiobular septal thickening and<br>mediastinal lymphadenopathy, and<br>centrilobular ground-glass nodular opacities | Adult                                  | 150       |
| KDR      | Heritable and idiopathic PAH                                                                                                                                                                         | Loss of function                       | Autosomal<br>dominant   | No spedific or diagnostic clinical<br>features described                               | Possible reduced DLCO                                                                                                                            | Older-onset adult                      | 159       |
| ENG      | Heritable and idiopathic PAH<br>Hereditary haemorrhagic                                                                                                                                              | Unknown                                | Autosomal<br>dominant   | Telanglectasia<br>Abnormal blood vessel                                                | Iron-deficiency anaemia<br>Presence on imaging of pulmonary, hepatic,                                                                            | Adult and paediatric                   | 160       |
| ACVRL1   | telangioctasia                                                                                                                                                                                       | Haploinsufficiency                     | Autosomal<br>dominant   | formation<br>Visceral arteriovenous                                                    | cerebral, or spinal arteriovenous<br>malformations                                                                                               | Adult and paediatric                   | 160       |
| GDF2     |                                                                                                                                                                                                      | Haploinsufficiency                     | Autosomal<br>dominant   | malformations<br>Bleeding diathesis                                                    | Invasive endoscopic assesment of<br>gastrointestinal telangiectasia                                                                              | Adult and paediatric                   | 149       |

#### Table 13 Phenotypic features associated with pulmonary arterial hypertension mutations



#### **Drugs and toxins associated with PAH**

| Definite<br>Issociation | Possible association                             |        |
|-------------------------|--------------------------------------------------|--------|
| Aminorex                | Alkylating agents (cyclophosphamide,             |        |
| Benfluorex              | mitomycin C) <sup>a</sup>                        |        |
| Dasatinib               | Amphetamines                                     |        |
| Dexfenfluramine         | Bosutinib                                        |        |
| enfluramine             | Cocaine                                          |        |
| 1ethamphetamines        | Diazoxide                                        |        |
| Toxic rapeseed oil      | Direct-acting antiviral agents against hepatitis |        |
|                         | C virus (sofosbuvir)                             |        |
|                         | Indirubin (Chinese herb Qing-Dai)                |        |
|                         | Interferon alpha and beta                        |        |
|                         | Leflunomide                                      |        |
|                         | L-tryptophan                                     |        |
|                         | Phenylpropanolamine                              |        |
|                         | Ponatinib                                        | 2022   |
|                         | Selective proteasome inhibitors (carfilzomib)    | RS     |
|                         | Solvents (trichloroethylene) <sup>a</sup>        | SC/B   |
|                         | St John's Wort                                   | С<br>Ш |



#### **Medical conditions associated with PAH**

| GROUP 1 Pulmonary arterial hypertension (PAH)                                 |                         |
|-------------------------------------------------------------------------------|-------------------------|
| 1.1 Idiopathic                                                                |                         |
| 1.1.1 Non-responders at vasoreactivity testing                                |                         |
| 1.1.2 Acute responders at vasoreactivity testing                              |                         |
| 1.2 Heritable <sup>a</sup>                                                    |                         |
| 1.3 Associated with drugs and toxins <sup>a</sup>                             |                         |
| 1.4 Associated with:                                                          |                         |
| 1.4.1 Connective tissue disease Annual incidence: 0,7-1,5%; prevalence: 5-19% | $\rightarrow$ SCREENING |
| 1.4.2 HIV infection Prevalence: 0,5%                                          |                         |
| 1.4.3 Portal hypertension Prevalence: 1-2%                                    |                         |
| 1.4.4 Congenital heart disease                                                |                         |
| 1.4.5 Schistosomiasis                                                         |                         |
| 1.5 PAH with features of venous/capillary (PVOD/PCH) involvement              |                         |

1.6 Persistent PH of the newborn



#### **Medical conditions associated with PAH**

2022

ESC/ERS

Ο

#### Table 21Clinical classification of pulmonary arterialhypertension associated with congenital heart disease

(1) Eisenmenger syndrome

Includes all large intra- and extracardiac defects that begin as systemic-to-pulmonary shunts and progress to severely elevated PVR and to reverse (pulmonary-to-systemic) or bidirectional shunting. Cyanosis, secondary erythrocytosis, and multiple organ involvement are usually present. Closing the defects is contraindicated.

- $(2) \ \ \mathsf{PAH} \ associated \ with \ prevalent \ systemic-to-pulmonary \ shunts$ 
  - Correctable<sup>a</sup>
  - Non-correctable

Include moderate-to-large defects. PVR is mildly to moderately increased and systemic-to-pulmonary shunting is still prevalent, whereas cyanosis at rest is not a feature.

(3) PAH with small/coincidental<sup>b</sup> defects

Markedly elevated PVR in the presence of cardiac defects considered haemodynamically non-significant (usually ventricular septal defects <1 cm and atrial septal defects <2 cm of effective diameter assessed by echocardiography), which themselves do not account for the development of elevated PVR. The clinical picture is very similar to IPAH. Closing the defects is contraindicated.

(4) PAH after defect correction

Congenital heart disease is repaired, but PAH either persists immediately after correction or recurs/develops months or years after correction in the absence of significant, post-operative, haemodynamic lesions.

IPAH, idiopathic pulmonary arterial hypertension; PAH, pulmonary arterial hypertension; PVR, pulmonary vascular resistance.

Pulmonary arterial hypertension associated with adult CHD is included in group 1 of the PH clinical classification and represents a heterogeneous patient population.

Post-capillary PH in adult CHD should be excluded to determine further management.



Clinical history Oxygen requirement for hypoxemia Chest radiograph Pulmonary function test and arterial blood gas analysis Echocardiography Lung scintigraphy Chest CT Cardiopulmonary exercise testing Right heart catheterization



Clinical history

Oxygen requirement for hypoxemia

Chest radiograph

Pulmonary function test and arterial blood gas analysis

Echocardiography

Lung scintigraphy

Chest CT

Cardiopulmonary exercise testing

Right heart catheterization



Clinical history Oxygen requirement for hypoxemia Chest radiograph Pulmonary function test and arterial blood gas analysis Echocardiography Lung scintigraphy Chest CT Cardiopulmonary exercise testing **Right heart catheterization** 



# **Vasoreactivity testing**

#### Candidates:

Pre-capillary PH (suspicion of idiopathic/heritable PAH or PAH associated to drugs or toxins)

Which molecule(s): Inhaled nitric oxide 10-20 ppm (IV Epoprostenol 2–12 ng/kg/min)

#### Responder to vasoreactivity testing:

mPAP reduction ≥ 10 mmHg, with a mPAP ≤ 40 mmHg and increased/stable cardiac output





UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione GROUP 1 Pulmonary arterial hypertension (PAH)

1.1 Idiopathic

1.1.1 Non-responders at vasoreactivity testing

1.1.2 Acute responders at vasoreactivity testing

Clinical history Oxygen requirement for hypoxemia Chest radiograph Pulmonary function test and arterial blood gas analysis Echocardiography Lung scintigraphy Chest CT Cardiopulmonary exercise testing Right heart catheterization



#### Multiparametric risk stratification in PAH at diagnosis

|                                | Determinants of prognosis (estimated<br>1-year mortality) | Low risk<br>(<5%)                                                                                                                               | Intermediate risk<br>(5–20%)                                                                               | High risk<br>(>20%)                                                                                               |  |  |
|--------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
|                                | Clinical observations and modifiable variables            |                                                                                                                                                 |                                                                                                            |                                                                                                                   |  |  |
|                                | Signs of right HF                                         | Absent                                                                                                                                          | Absent                                                                                                     | Present                                                                                                           |  |  |
| nical                          | Progression of symptoms and clinical manifestations       | No                                                                                                                                              | Slow                                                                                                       | Rapid                                                                                                             |  |  |
| clir                           | Syncope                                                   | No                                                                                                                                              | Occasional syncope <sup>a</sup>                                                                            | Repeated syncope <sup>b</sup>                                                                                     |  |  |
| •                              | WHO-FC                                                    | ( <b>(, 1)</b>                                                                                                                                  | III                                                                                                        | IV                                                                                                                |  |  |
|                                | 6MWD <sup>c</sup>                                         | >440 m                                                                                                                                          | 165–440 m                                                                                                  | <165 m                                                                                                            |  |  |
| functional                     | CPET                                                      | Peak VO <sub>2</sub> >15 mL/min/kg<br>(>65% pred.)<br>VE/VCO <sub>2</sub> slope <36                                                             | Peak VO <sub>2</sub> 11–15 mL/min/kg<br>(35–65% pred.)<br>VE/VCO <sub>2</sub> slope 36–44                  | Peak VO <sub>2</sub> <11 mL/min/kg<br>(<35% pred.)<br>VE/VCO <sub>2</sub> slope >44                               |  |  |
| lab                            | Biomarkers: BNP or NT-proBNP <sup>d</sup>                 | BNP <50 ng/L<br>NT-proBNP <300 ng/L                                                                                                             | BNP 50-800 ng/L<br>NT-proBNP 300-1100 ng/L                                                                 | BNP >800 ng/L<br>NT-proBNP >1100 ng/L                                                                             |  |  |
| ging                           | Echocardiography                                          | RA area <18 cm <sup>2</sup><br>TAPSE/sPAP >0.32 mm/mmHg<br>No pericardial effusion                                                              | RA area 18–26 cm <sup>2</sup><br>TAPSE/sPAP 0.19–0.32 mm/<br>mmHg<br>Minimal pericardial effusion          | RA area >26 cm <sup>2</sup><br>TAPSE/sPAP <0.19 mm/mmHg<br>Moderate or large pericardial<br>effusion              |  |  |
| ima                            | cMRI <sup>e</sup>                                         | RVEF >54%<br>SVI >40 mL/m <sup>2</sup><br>RVESVI <42 mL/m <sup>2</sup>                                                                          | RVEF 37–54%<br>SVI 26–40 mL/m <sup>2</sup><br>RVESVI<br>42–54 mL/m <sup>2</sup>                            | RVEF <37%<br>SVI <26 mL/m <sup>2</sup><br>RVESVI >54 mL/m <sup>2</sup>                                            |  |  |
| UNIVER<br>DEGLI SI<br>DI BERG4 | Haemodynamics                                             | $\label{eq:RAP} \begin{array}{l} RAP < \!\!8 \; mmHg \\ CI \geq \!\!2.5 \; L/min/m^2 \\ SVI > \!\!38 \; mL/m^2 \\ SvO_2 > \!\!65\% \end{array}$ | RAP 8–14 mmHg<br>CI 2.0–2.4 L/min/m <sup>2</sup><br>SVI 31–38 mL/m <sup>2</sup><br>SvO <sub>2</sub> 60–65% | RAP >14 mmHg $\odot$ CI <2.0 L/min/m <sup>2</sup> $\odot$ SVI <31 mL/m <sup>2</sup> $\odot$ SvO <sub>2</sub> <60% |  |  |





Complementary parameters reflecting right heart failure RV-PA uncoupling «Failure of the heart to pump blood commensurate with end-organ needs, or to do so at the expense of high filling pressure» (at rest or during exercise)

Galiè N et al. Eur Heart J 2015 Braunwald E et al. In: Braunwald E (ed). Heart Disease: A Textbook of Cardiovascular Medicine 1992 Naeije R et al. In: The Right Ventricle in Health and Disease. Springer Science 2015








di Ingegneria Gestionale, dell'Informazione e della Produzione

DOI: 10.12688/f1000research.9739.1

#### PAH: natural history of the disease (1980s)

The estimated median survival of these patients was 2.8 years (95% Cl, 1.9 to 3.7 years).

Estimated single-year survival rates were as follows:

at 1 year, 68% (Cl, 61% to 75%);

at 3 years, 48% (Cl, 41% to 55%);

at 5 years, 34% (Cl, 24% to 44%)



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

#### The role of triple PAH combination therapy







Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Boucly A et al. Am J Respir Crit Care Med 2021

### Multiparametric risk stratification in PAH at follow-up

| Determinants of prognosis    | Low risk             | Intermediate-low risk | Intermediate-high risk | High risk |      |
|------------------------------|----------------------|-----------------------|------------------------|-----------|------|
| Points assigned              | 1                    | 2                     | 3                      | 4         |      |
| WHO-FC                       | l or ll <sup>a</sup> | -                     | III                    | IV        |      |
| 6MWD, m                      | >440                 | 320-440               | 165–319                | <165      | 0    |
| BNP or                       | <50                  | 50–199                | 200–800                | >800      | SC   |
| NT-proBNP, <sup>a</sup> ng/L | <300                 | 300–649               | 650–1100               | >1100     | 2022 |



UNIVERSITÀ | Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione



If we are able to modify risk profile with PAH-specific treatments, **we can modify prognosis.** 

## These treatment goals are **not always realistic** and

- may not be achievable in patients with advanced disease, patients with severe co-morbidities, or very old patients
- should take into account expectations of properly informed patients



Galiè N et al. Eur Respir J 2019 Galiè N et al. Eur Heart J 2015

# High risk patients should be evaluated for lung transplant





UNIVERSITÀ Dipartimento DEGLI STUDI DI BERGAMO dell'Informazione e de

@ MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH. ALL RIGHTS RESERVED.

### **PVOD**

GROUP 1 Pulmonary arterial hypertension (PAH)

1.1 Idiopathic

1.1.1 Non-responders at vasoreactivity testing

1.1.2 Acute responders at vasoreactivity testing

1.2 Heritable<sup>a</sup>

1.3 Associated with drugs and toxins<sup>a</sup>

1.4 Associated with:

1.4.1 Connective tissue disease

1.4.2 HIV infection

- 1.4.3 Portal hypertension
- 1.4.4 Congenital heart disease

1.4.5 Schistosomiasis

1.5 PAH with features of venous/capillary (PVOD/PCH) involvement

1.6 Persistent PH of the newborn





### **PVOD**





UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

### **Comprehensive work-up**

Clinical history

Oxygen requirement for hypoxemia

Chest radiograph

Pulmonary function test (with **DLCO**) and arterial blood gas analysis

Echocardiography

Lung scintigraphy

#### **Chest CT**

Cardiopulmonary exercise testing

Right heart catheterization



 UNIVERSITÀ
 Dipartimento

 DEGLI STUDI
 di Ingegneria Gestionale,

 DI BERGAMO
 dell'Informazione e della Produzione

#### **PVOD**



Additional clinical features: Low pO2 Low DLCO

HRCT features of pulmonary veno-occlusive disease.

a, b) Presence of septal lines and centrilobular ground-glass opacities.

c, d) latero-aortic and subcarinal lymph node enlargement.



TÀ | Dipartimento
 IDI | di Ingegneria Gestionale,
 dell'Informazione e della Produzione

### Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV)  $\rightarrow$  understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)



#### **Acute PE vs CTEPH**









UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO



### Lung scintigraphy





### Lung scintigraphy

A ventilation/perfusion (V/Q) lung scan should be performed in patients with PH to look for CTEPH

The V/Q scan has been the screening method of choice for CTEPH because of its higher sensitivity compared with CT pulmonary angiogram (CTPA),

A normal- or low-probability V/Q scan effectively excludes CTEPH with a sensitivity of 90–100% and a specificity of 94–100%;



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

### **Chest CT**





UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

### **Comprehensive work-up**

Clinical history Oxygen requirement for hypoxemia Chest radiograph Pulmonary function test and arterial blood gas analysis Echocardiography Lung scintigraphy Chest CT Cardiopulmonary exercise testing **Right heart catheterization** 



 UNIVERSITÀ
 Dipartimento

 DEGLI STUDI
 di Ingegneria Gestionale,

 DI BERGAMO
 dell'Informazione e della Produzione



#### **CTEPH** treatment





UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO DI BERGAMO

Courtesy of Prof Andrea D'Armini





UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione

#### Courtesy of Prof Andrea D'Armini

### Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV) → understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)



### PH associated with Left Heart Disease (PH-LHD)

- 2.1 left ventricular systolic dysfunction
- 2.2 left ventricular diastolic dysfunction
- 2.3 valvular heart disease

•••

Prevalence of PH increases with worsening of functional class

Up to 60% of patients with LV systolic dysfunction and up to 70% of patients with LV diastolic dysfunction can present with PH

In the presence of mitral or aortic valve disease (left heart), prevalence of PH increases in parallel to the severity of the valvular disease and in association with symptoms



#### **PH-LHD: post-capillary PH**





 ITÀ
 Dipartimento

 'UDI
 di Ingegneria Gestionale,

 AMO
 dell'Informazione e della Produzione

Vachiéry JL et al. J Am Coll Cardiol 2013 Naeije R et al. Circ Heart Fail 2017 Vachiéry JL et al. Eur Respir J 2019





UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO

### Load-dependent RV remodeling and dysfunction in PH-HF



**Resistive afterload ( PVR)** ↑



**RV** dysfunction = ↑ proBNP,  $\downarrow$  exercise capacity,  $\downarrow$  survival



0.0

Ca (mL·mmHg<sup>-1</sup>

100

80

60

PAH CpcPH

• Interm

O IpcPH

a)

#### $\uparrow$ Pulsatile afterload ( $\downarrow$ PAC)

Time

Naeije et al CircHF 2018; Vonk-Noordegraaf et al JACC 2017; Guazzi et al JACC CVImaging 2017; Caravita et al PlosOne 2018



LAP, mm Hg

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO nformazione e della Produzione

### **Implications of PH in LHD**

#### **HFrEF**



Almost no diagnostic uncertainties in regards of PH etiology (low LVEF)

RHC indicated in advanced cases when evaluating indication for heart transplantation



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

#### HFpEF



RHC may be indicated to discriminate between PH-HFpEF and pulmonary vascular disease

#### Left-sided VHD



Almost no diagnostic uncertainties in regards of PH etiology (VHD)

RHC might be indicated in some cases before surgery / transcatheter intervention



#### What is HFpEF and where does it starts







UNIVERSITÀ: Colpetimento un li Heart Fail 2021 DEGLI STUDI di Ingegneria Gestionale, DI EERSAMO li dell'afformatione e de la Producione a SC Dis

|                                              | Low probability<br>of PH-HEpEE                                       | Intermediate probability<br>of PH-HEpEF      | High probability<br>of PH-HEpEF                                 |  |  |  |
|----------------------------------------------|----------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------|--|--|--|
| Required features                            |                                                                      |                                              |                                                                 |  |  |  |
| Age<br>Cardiovascular risk factors (obesity, | <60 years<br>None                                                    | 60-70 years<br>1-2 factors                   | >70 years<br>>2 factors                                         |  |  |  |
| glucose intolerance or diabetes<br>mellitus) |                                                                      |                                              |                                                                 |  |  |  |
| Previous cardiac intervention                | No                                                                   | No                                           | Yes                                                             |  |  |  |
| Atrial fibrillation                          | No                                                                   | Paroxysmal                                   | Persistent or permanent                                         |  |  |  |
| Structural LHD                               | No                                                                   | No                                           | Present                                                         |  |  |  |
| EKG                                          | Normal or sign of RV strain                                          | Mild LVH                                     | LBBB or LVH                                                     |  |  |  |
| Resting echocardiography                     | No LVH                                                               | Mild LVH                                     | • LVH                                                           |  |  |  |
|                                              | <ul><li>No mitral or aortic disease</li><li>No LA dilation</li></ul> | Mild left mitral or aortic     regurgitation | <ul> <li>Moderate mitral or aortic<br/>regurgitation</li> </ul> |  |  |  |
|                                              | No diastolic dysfunction                                             | No LA dilation                               | • any mitral or aortic stenosis                                 |  |  |  |
|                                              | • LA strain > 40%                                                    | • Diastolic dysfunction grade I              | LA dilation                                                     |  |  |  |
|                                              |                                                                      | • LA strain 20-30%                           | • Diastolic dysfunction grade ≥ 2                               |  |  |  |
|                                              |                                                                      |                                              | • LA strain < 20%                                               |  |  |  |
| Additional features                          |                                                                      |                                              |                                                                 |  |  |  |
| Cardiac MRI                                  | No left heart abnormalities                                          |                                              | • LVH                                                           |  |  |  |
|                                              |                                                                      |                                              | • LGE +                                                         |  |  |  |
|                                              |                                                                      |                                              | ● 个 LV ECV                                                      |  |  |  |
|                                              |                                                                      |                                              | LA dilation                                                     |  |  |  |
|                                              |                                                                      |                                              | Perfusion defects                                               |  |  |  |
| Exercise echocardiography                    | E/e' < 10                                                            | E/e' 10-14                                   | E/E' > 14                                                       |  |  |  |
| СРЕТ                                         | • Normal or high VE/VCO2 slope                                       | Elevated VE/VCO2 slope or EOV                | Mildly elevated VE/VCO2 slope                                   |  |  |  |
|                                              | No EOV                                                               |                                              | • EOV                                                           |  |  |  |

CPET=cardiopulmonary exercise test; EOV=exercise oscillatory ventilation; LA=left atrium; LBBB=left bundle branch block; LGE=late gadolinium enhancement; LHD=left heart disease; LV=left ventricle; MRI=magnetic resonance imaging; PH=pulmonary hypertension; VE =minute ventilation; VCO2=carbon dioxide production



Vachiéry JL, Caravita S. Encyclopedia of Respiratory Medicine, in press Vachiéry JL et al, Eur Respir J 2019





#### ≤ 12 mmHg 13-15 mmHg > 15 mmHg

**Pre-capillary** 

Post-capillary





Rare disease

Improvement with PAH specific therapy Frequent disease

Potential harm with PAH specific therapy

HFpEF: the elephant in the cath



Ageing Atrial fibrillation CV risk factors History of LHD SSc

...

#### **Provocative tests in the cath lab**

 $\approx$ 

#### **Fluid load**



500 mL or 7 mL/Kg in 5-10'



 ITA
 Dipartimento

 UDI
 di Ingegneria Gestionale,

 MO
 dell'Informazione e della Produzione

#### **Passive leg raise**



1' passive leg raise

Vachiéry JL et al. Eur Respir J, 2018 Humbert M et al. Eur Heart J 2022





UNIVERSITÀ Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione

Modified from van de Bovenkamp AA et al. Circ HF 2022

#### **Provocative tests in the cath lab**

 $\sim$ 

#### **Fluid load**



#### 500 mL or 7 mL/Kg in 5-10'



 ITA
 Dipartimento

 UDI
 di Ingegneria Gestionale,

 MO
 dell'Informazione e della Produzione

#### **Passive leg raise**



1' passive leg raise

Exercise



Step or ramp protocol up to exhaustion

Vachiéry JL et al. Eur Respir J, 2018 Humbert M et al. Eur Heart J 2022




À | Dipartimento
 Di di Ingegneria Gestionale,
 D dell'Informazione e della Produzione

Modified from van de Bovenkamp AA et al. Circ HF 2022

REST

#### 100 W



# **Post-capillary PH: implications**

Development of PH is frequent in LHD

It generally reflects severity of LHD (but be aware of the potential overlap with PH-LD, PAH and CTEPH!)

It is associated with worse prognosis, in particular when a pre-capillary component develops

There is **no specific treatment for PH associated with LHD**, except optimizing/intensifying treatment for LHD itself

Drugs targeting the pulmonary circulation may cause harm in patients with LHD!!!!!!



UNIVERSITÀ | Dipartimento DEGLI STUDI | di Ingegneria Gestionale, DI BERGAMO | dell'Informazione e della Produzione

# Agenda

- Physiology of the pulmonary circulation and of the right ventricle (RV) → understanding RV failure
- Measures and estimates of pulmonary hemodynamics in clinical practice
- Pulmonary Hypertension (PH): hemodynamic and clinical definition
- Importance of clinical history (risk factors), signs and symptoms
- Overview of instrumental findings in PH
- Diagnostic algorithms
- Frequent forms of PH, associated to cardiac and respiratory diseases:
  - PH associated with lung diseases and/or hypoxia
  - PH associated with left heart diseases
- «True» Pulmonary Vascular Diseases (PVDs):
  - Pulmonary Arterial Hypertension (PAH)
  - Chronic Thromboembolic Pulmonary Disease (CTED and CTEPH) vs acute Pulmonary Embolism (PE)





Photo courtesy of Prof Grzegorz Bilo

## Pulmonary hypertension Clinical classification



3. Pulmonary Hypertension due to Lung Disease and/or hypoxia (PH-LD)

- COPD

. . .

- Interstital lung disease
- Mixed obstructive and restrictive disorders

**Pre-capillary** 

#### **Clinical classification – group 3**



#### 3. Pulmonary Hypertension due to Lung Disease and/or hypoxia

Pre-capillary PH

- 3.1 Chronic obstructive pulmonary disease (obstructive disorder)
- 3.2 Interstital lung disease (restrictive disorder)
- 3.3 Mixed obstructive and restrictive lung diseases
- 3.4 Sleep disordered breathing
- 3.5 Alveolar hypoventilation
- 3.6 Chronic exposure to high altitude
- 3.7 Pulmonary development disorders

#### **Complication** of respiratory disease rather than a disease *per se*

PH due to lung disease is «severe» if: mPAP > 35 mmHg mPAP > 25 mmHg + Cardiac Index < 2.5 L/min/m<sup>2</sup>

## **Clinical classification – group 3**



- Chronic obstructive pulmonary disease (COPD)
  - 90% of advanced COPD (GOLD IV) have mPAP > 20 mmHg (20 35 mmHg)
  - Only 3-5% of patients has mPAP > 35 mmHg

#### Pulmonary fibrosis

- 8-15% of patients have mPAP > 25 mmHg
- Prevalence of PH increases in end-stage patients (30-60%)
- In end-stage patients, less than 10% has a mPAP > 40 mmHg

#### Combined fibrosis and emphysema

- Patients with paradoxically normal lung volumes at pulmonary function tests
- 30-50% of patients present with PH
- PH is severe in more than half of cases

# **Exclusion of lung disease**

Pulmonary function test (lung spirometry) + DLCO Computed tomography of the chest



. . .

UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale. DI BERGAMO dell'Informazione e della Produzione





# **Pulmonary function test**

**Flow Volume Loops** 



Measure of pulmonary volumes and lung physiology



UNIVERSITÀ

DEGLI STUDI

DI BERGAMO

Dipartimento di Ingegneria Gestionale, dell'Informazione e della Produzione





# Computed tomography (CT) of the chest



Visualization of lung parenchyma

# **PAH vs PH-LD**

|                                                 | PAH          | PH-LD                        |
|-------------------------------------------------|--------------|------------------------------|
| Pulmonary function tests                        |              |                              |
| FEV1 (% predicted), in obstructive diseases     | > 60         | < 60                         |
| FVC (% predicted), in restrictive diseases      | > 70         | < 70                         |
| HR CT of the chest                              |              |                              |
| Parenchimal and/or airway abnormalities         | = 个          | $\uparrow \uparrow \uparrow$ |
| Hemodynamic / cardiac profile                   |              |                              |
| RV dysfunction (echo, MRI, natriuretic peptide) | <u> </u>     | =个                           |
| Cardiac index                                   | $\checkmark$ | =                            |
| (Invasive) CPET                                 |              |                              |
| Respiratory reserve                             | =            | $\checkmark$                 |
| PaCO <sub>2</sub>                               | = 🗸          | $\uparrow$                   |
| Oxygen pulse                                    | $\checkmark$ | =                            |
| CO/VO <sub>2</sub> relationship                 | $\checkmark$ | =                            |
| SvO <sub>2</sub>                                | $\mathbf{h}$ | =                            |

Seeger W et al, J Am Coll Cardiol 2013; Galié N et al. Eur Heart J 2015; Nathan SD et al. Eur Respir J 2019



**DI BERGAMO** 



#### **CO reserve (cardiovascular limitation to exercise)**



 $VO_2 = CO * (a-v)O_2 diff$ 



UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale. DI BERGAMO dell'Informazione e della Produzione Sorajja P et al. Catheter Cardiovasc Interv 2017; 89:E223-47









UNIVERSITÀ DEGLI STUDI DI BERGAMO DI BERGAMO

#### **Standard CPET vs invasive CPET**





UNIVERSITÀ Dipartimento DEGLI STUDI di Ingegneria Gestionale, DI BERGAMO dell'Informazione e della Produzione Hōpital Erasme

ULB

#### **Gas-exchange parameters**



di Ingegneria Gestionale, **DI BERGAMO** nformazione e della Produzione Erasme

# Oxygen uptake (VO<sub>2</sub>), i.e.: how much my patient is limited

/min)

0



 $VO_2$  is a quite good noninvasive surrogate of CO response to exercise in HF and PAH.

Potential exceptions:

- Well trained or «hyper O<sub>2</sub> extractor» subjects (can compensate cardiac output deficit with superoptimal peripheral O<sub>2</sub> extraction)
- Respiratory diseases (\u03c4 aO<sub>2</sub> availability)



 VO2 (L/min)

 Guyton, Texbook of Medical Physiology

 Guazzi M et al. Circulation 2012;126:2261-74

 Guazzi M et al. J Am Coll Cardiol 2017

 Caravita S et al. J Heart Lung Transpl 2017;36:754-62

#### **VE/VCO2 slope** Control of ventilation during exercise



#### Exercise hyperventilation in PH IpcPH vs CpcPH vs PAH



## **VE/VCO2 slope: mind the comorbidities!**





A | Dipartimento
 DI | di Ingegneria Gestionale,
 0 | dell'Informazione e della Produzione

Neder JA et al. Eur Respir J 2015;45:377-87 Poon CS et al. Respir Physiol Neurobiol 2015;216:86-93

## **Exercise oscillatory breathing (EOB)**





 UNIVERSITÀ
 Dipartimento

 DEGLI STUDI
 di Ingegneria Gestionale,

 DI BERGAMO
 dell'Informazione e della Produzione



ULB

Caravita S et al. J Heart Lung Transpl 2017 Vicenzi M et al. Int J Cardiol 2016

# **Standard CPET in PVD**



**PROGNOSIS** 

|                     | PH-<br>HFpEF<br>IpcPH | PH-<br>HFpEF<br>CpcPH    | PAH                          | PH-LD                  |
|---------------------|-----------------------|--------------------------|------------------------------|------------------------|
| VO <sub>2</sub>     | $\downarrow$          | $\downarrow(\downarrow)$ | $\downarrow(\downarrow)$     | $\downarrow$           |
| VE/VCO <sub>2</sub> | 1                     | ↑↑                       | $\uparrow \uparrow \uparrow$ | ↑                      |
| EOV                 | $\uparrow\uparrow$    | ↑ (                      | -                            | I<br>I -               |
| Ventilatory reserve | 1                     | <b>↑</b>                 | =↓                           | $\downarrow\downarrow$ |
| SaO <sub>2</sub>    | =                     | =                        | =↓                           | $\downarrow$           |

|                                       | Low risk<br>1-year mortality <<br>5% | Intermediate<br>risk<br>1-year mortality 5-<br>10% | <b>High risk</b><br>1-year mortality ><br>10% |
|---------------------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------------------|
| Peak VO <sub>2</sub> (mL/Kg/min)      | > 15                                 | 11 - 15                                            | < 11                                          |
| Peak VO <sub>2</sub> (% of predicted) | > 65                                 | 35 - 65                                            | < 35                                          |
| VE/VCO <sub>2</sub> slope             | < 36                                 | 36 - 45                                            | > 45                                          |

Galiè N et al Eur Heart J 2016

