Spin

Spin
In classical mechanics, a rigid object admits kwo kinds of angular momentum: orbital $(L=r \times p)$, associated with the motion of the center of mass, and $\operatorname{spin}(S=I w)$ associated with motion about the center of mass.

Also in quantum mechanics, in addition to orbital angular momentum, associated with the motion of the electron around the nucleus (for the H atom), the electron also carries another form of angular momentum.

But, it has nothing to do with motion in space: elementary particles carry intrinsic angular momentum (S) in addition to their "extrinsic" angular momentum (L).

Spin operators

The algebraic theory of spin is is identical to the theory of orbital angular momentum, including commutator rules:

$$
\left[S_{x}, S_{y}\right]=i \hbar S_{z}, \quad\left[S_{y}, S_{z}\right]=i \hbar S_{x}, \quad\left[S_{z}, S_{x}\right]=i \hbar S_{y}
$$

We can represent the magnitude squared of the spin angular momentum vector by the operator:

$$
S^{2}=S_{x}^{2}+S_{y}^{2}+S_{z}^{2}
$$

It is not surprising that:

$$
\left[S^{2}, S_{x}\right]=\left[S^{2}, S_{y}\right]=\left[S^{2}, S_{z}\right]=0
$$

Spin operators
By analogy with Orbital a.m., spin operators satisfy:

$$
\begin{aligned}
& S_{z}|s, m\rangle=\hbar m|s, m\rangle \\
& s^{2}|s, m\rangle=\hbar^{2} s(s+1)|s, m\rangle
\end{aligned}
$$

Spin operators

SDEGLI STUD
B COCO A
But here the eigenvectors are not spherical harmonics, and there is no a prior reason to exclude the half-integer values of s and m :

$$
S=0, \frac{1}{2}, 1, \frac{3}{2} \cdots ; \quad m=-s,-s+1, \ldots, s-1, s
$$

Every elementary particle has a specific and immutable value of s, which we call the spin of that particular species: pi mesons have spin O; electrons have spin 1/2; photons have spin 1; deltas have spin $3 / 2$; gravitons have spin 2; and so on...

Spin 1/2
By far the most important case is $s=1 / 2$, for this is the spin of the particles that make up ordinary matter such as protons, neutrons, and electrons.
There are just two eigenstates:

Spin up (\uparrow)

$$
\left|\frac{1}{2}, \frac{1}{2}\right\rangle
$$

Spin flown (\downarrow) $\left|\frac{1}{2},-\frac{1}{2}\right\rangle$

A general state of a particle with spin $\frac{1}{2}$, called spinor is:

$$
\begin{array}{ll}
X=\binom{a}{b}=a x_{+}+b x_{-} & \\
& \text {with } x_{+}=\binom{1}{0}
\end{array} \quad x_{-}=\binom{0}{1}
$$

Spin 1/2
We can derive the spin operator by investigating their effects on the eigen-spinor:
sine $\quad S^{2}|s, m\rangle=\hbar^{2} s(s+1)|s, m\rangle$

$$
\Rightarrow s^{2} x_{+}=\frac{3}{4} t^{2} x_{+} \quad \text { and } \quad s^{2} x_{-}=\frac{3}{4} \pi^{2} x_{-}
$$

Let's write $S^{2}=\left(\begin{array}{ll}e & d \\ e & f\end{array}\right)$
then from $S^{2} X_{+}$

$$
\left(\begin{array}{ll}
c & d \\
e & f
\end{array}\right)\binom{1}{0}=\frac{3}{4} t^{2}\binom{1}{0} \Rightarrow\binom{e}{e}=\binom{3 / 4 \hbar^{2}}{0} \Rightarrow c=\frac{3}{4} t^{2}
$$

Spin 1/2
We can derive the spin operator by investigating their effects on the eigen-spinor:
and fum $S^{2} x_{-}=\frac{3}{4} t^{2} x_{-}$

$$
\begin{aligned}
& \left(\begin{array}{ll}
S^{2} x_{-}=\frac{3}{4} \pi \\
e & d
\end{array}\right)\binom{0}{1}=\frac{3}{4} t^{2}\binom{0}{1} \Rightarrow\binom{d}{f}=\binom{0}{3 / 4 t^{2}} \Rightarrow \begin{array}{l}
d=0 \\
f=\frac{3}{4} \pi^{2}
\end{array} \\
& T \text { hus: } \quad S^{2}=\frac{3}{4} \hbar^{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

Spin 1/2
Similarly for Ss:

$$
S_{z} x_{t}=\frac{\hbar}{2} x_{+} \quad S_{2} x_{-}=-\frac{\hbar}{2} x_{-}
$$

One can derive:

$$
S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

And exploiting $S_{x} \pm i S_{y}=t \sqrt{s(S+1)-m(m \pm 1)}|S(m \pm 1)\rangle$

$$
S_{x}=\frac{t}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad S_{y}=\frac{t}{2}\left(\begin{array}{ll}
0 & -i \\
i & 0
\end{array}\right)
$$

Spin 1/2

$$
S_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad S_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Because they all have $\hbar / 2$ factor, it's convenient to write:

$$
\begin{array}{ll}
S=\frac{1}{2} k \sigma & \text { and } \\
& \sigma_{x} \equiv\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \sigma_{y} \equiv\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z} \equiv\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{array}
$$

These are the famous Pauli spin matrices

Spin 1/2
Thus, we have the eigenspinor of Sz :

$$
X_{+}=\binom{1}{0} \text { with eigenvalue } \frac{1}{2} t \quad X_{-}=\binom{0}{1} \text { with eigenvalue }-\frac{1}{2} t
$$

Because of:

$$
x=\binom{a}{b}=e_{1} x_{+}+e_{2} x_{-} \Rightarrow \begin{array}{ll}
e_{1}=a & e_{2}=b \\
p_{1}=|a|^{2} & p_{2}=|b|^{2}
\end{array}
$$

If you measure S_{z} on a particle in the general state X you could get +k $/ 2$, with probability $|a|^{2}$, or $-\lambda / 2$, with probability $|b|^{2}$.

Spin 1/2
One can show that the eigenvalue of $5 x$ are still $1 / 2 t$ and $-1 / 2$ to with eigenvectors:

$$
X_{+}^{x}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}} \text { poor } \frac{1}{2} t \quad X_{-}^{x}=\binom{1 / \sqrt{2}}{-1 / \sqrt{2}} \quad \text { for }-\frac{1}{2} t
$$

Thus $\quad X=\binom{\frac{c_{1}+c_{2}}{\sqrt{2}}}{\frac{e_{1}-c_{2}}{\sqrt{2}}}=\binom{a}{b} \Rightarrow \begin{cases}c_{1}+c_{2}=a \sqrt{2} \Rightarrow & a \sqrt{2}=c_{1}+c_{1}-b \sqrt{2} \\ c_{1}-c_{2}=b \sqrt{2} & b_{0} \\ e_{1}=\frac{a+b}{\sqrt{2}}\end{cases}$
and we have $\frac{1}{2}|a+b|^{2}$ probability to aet $+\frac{1}{2} \hbar$ and $\frac{1}{2}|a-b|^{2}$ for $-\frac{1}{2} t$

Spin 1/2
One can show that the eigenvalue of sy are still $1 / 2 \pi$ and $-1 / 2$ to with eigenvectors:

$$
X_{+}^{y}=\binom{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}} \text { for } \frac{1}{2} t \quad X_{-}^{y}=\binom{\frac{1}{\sqrt{2}}}{-\frac{i}{\sqrt{2}}} \text { for }-\frac{1}{2} t
$$

Thus
and we have ... probability to get $+\frac{1}{2} \hbar$ and \ldots for $-\frac{1}{2} t$

Spin magnetic moment
According lo classical physics, a small current loop possesses a magnetic moment of magnitude:

$$
|\vec{\mu}|=\underset{ }{i} \begin{aligned}
& i S^{b} \\
& \text { current } \text { Surface area }
\end{aligned}
$$

In a magnetic field B there, the magnetic dipole moment will experience a torque $\mu \times B$, which tends to line up the dipole to the field The energy associated to this torque is:

$$
\underset{\substack{\hat{A} \\ E_{\text {wergy }}}}{E}=-\vec{\mu} \cdot \vec{B}
$$

Spin magnetic moment
According to classical physics, a small current loop possesses a magnetic moment of magnitude:

$$
|\vec{\mu}|=\underset{\substack{i \\ \text { current } \\ \\ \\ \\ \text { cos pace area }}}{ }
$$

In a semi-classic picture the electron orbiting in the atom can be considered as a current Loop:

$$
\begin{aligned}
& T=\frac{e_{i z c u m f}^{V_{e} l_{0}+y}}{}=\frac{2 \pi r}{V} \quad i=\frac{-e}{t}=\frac{-e v}{2 \pi r} \\
& \text { but }|\vec{\mu}|=i S_{s}=-\frac{e v}{2 \pi r} \quad \pi r^{2}=-\frac{e v r}{2}
\end{aligned}
$$

Spin magnetic moment
In a semi-classic picture the electron orbiting in the atom can be considered as a current loop:

$$
\begin{aligned}
&|\vec{\mu}|= i S \\
& \begin{array}{c}
\frac{b}{\text { current }} \text { Surface area }
\end{array} \\
&|\vec{\mu}|=i S=-\frac{e v}{2 \pi r} \pi r^{2}=-\frac{e v \pi}{2}
\end{aligned}
$$

but

$$
L=I \omega=m r^{2} \frac{v}{r}=m r v
$$

Thus

$$
\left|{\overrightarrow{\mu_{L}}}^{*}\right|=\frac{-e L}{2 m_{e}} \quad \text { and } \quad \vec{\mu}_{c}=\frac{-e \vec{L}}{2 m_{e}}
$$

Spin magnetic moment
In a semi-classic picture the electron orbiting in the atom can be considered as a current loop:

$$
\overrightarrow{\mu_{c}}=\frac{-e L}{2 m_{e}} \frac{\text { quantum }}{\text { physics }} \widehat{\mu}_{\underline{\mu}}=-\frac{e \hat{L}}{2 m_{e}}
$$

If a magnetic field B is present, I can calculate the energy linked to this magnetic moment:

$$
\underset{E_{\text {verge }}^{\hat{i}}}{E}=-\vec{\mu} \cdot \vec{B} \quad \hat{H}=\frac{e}{2 m_{e}} \hat{L}_{z} B \quad \rightarrow \begin{gathered}
\text { we wile see } \\
\text { that }
\end{gathered}=\frac{e}{2 m_{e}} t m
$$

Spin magnetic moment
In a semi-classic picture the electron orbiting in the atom can be considered as a current Loop:

$$
\vec{\mu}_{c}=\frac{-e L}{2 m_{c}} \frac{\text { quantum }}{\text { physics }} \widehat{\mu}_{2}=\frac{-e \hat{L}}{2 m_{c}}
$$

The analogy between spin and orbital angular momentum suggests that there may be a similar relationship between magnetic moment and spin angular momentum. We can write:

Spin magnetic moment

Spin magnetic moment

$$
\mu_{s}=-\frac{g_{s} e \vec{S}}{2 m_{e}}
$$

where g is called the g-factor. Classically, we would expect $g=1$ but for reasons that could be explained by relativistic theory, here

$$
\mathrm{g}_{\mathrm{s}}=2.0023192
$$

We can also write:

$$
\mu_{s}=\gamma, S
$$

Spin magnetic moment

$$
\mu_{s}=\gamma S
$$

Also in this case we can find the energy associated to the dipole in presence of the magnetic field B :

$$
\hat{H}=\frac{g_{s} e}{2 m_{e}} \vec{S}_{z} \cdot \vec{B}=-\gamma \vec{S}_{z} \cdot \vec{B}
$$

Spin magnetic moment
Also in this case we can find the energy associated to the dipole in presence of
the magnetic field B : the magnetic field B :

$$
\hat{H}=\frac{g s e}{2 m_{e}} \vec{S}_{z} \cdot \vec{B}=-\gamma \vec{S}_{z} \cdot \vec{B}
$$

Imagine a particle of spin $1 / 2$ at rest in a uniform magnetic field, which points in the z-direction:

$$
\begin{aligned}
B=B_{0} \hat{z} \Rightarrow H & =-\gamma B_{0} S_{z}= \\
& =\frac{-\gamma B_{0} \hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

Spin magnetic moment

$$
H=\frac{-\gamma B_{0} \hbar}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

The eigenstates are the same of $S z$, and the eigenvalues will have just an extra multiplicative term $\gamma \mathrm{B}_{0}$

$$
\begin{aligned}
& X_{+} \sim \frac{\ln e r g s}{\sim} \frac{-\gamma \beta_{0} \hbar}{2} \\
& X_{-} \sim \text { energies } \\
& \frac{+\gamma \beta_{0} \hbar}{2}
\end{aligned}
$$

Spin magnetic moment
The general solutions must satisfy the t.d.S.E.:

$$
i t \frac{d x}{d t}=H x
$$

And can be written in term of linear combination of stationary stakes:

$$
x(t)=a \quad x_{+} e^{-i E+t / t}+b x_{-} e^{-i \hat{E}-t / t}
$$

Which can be written in the Poulis notation as:

$$
\chi(t)=\left(\begin{array}{ll}
a & e^{i \gamma \beta_{0} t / 2} \\
b & e^{-i \gamma \beta_{0} t / 2}
\end{array}\right)
$$

Spin magnetic moment

$$
X(t)=\left(\begin{array}{ll}
a & e^{i \gamma \beta_{0} t / 2} \\
b & e^{-i \gamma B_{0} t / 2}
\end{array}\right) \quad \text { for } t=0 \quad X(t)=\binom{a}{b}
$$

Thus $|a|^{2}+\mid b^{2}=1$ for the normalization conolition of X
so I could waste

$$
\begin{aligned}
& a=\cos (\alpha / 2) \\
& b=\sin (\alpha / 2)
\end{aligned} \quad \Rightarrow X(t)=\binom{\cos (\alpha / 2) e^{i \gamma \beta_{1} t / 2}}{\sin (\alpha / 2) e^{i \gamma \beta_{0}+2}}
$$

Spin magnetic moment

$$
X(t)=\binom{\cos (\alpha / 2) e^{i \gamma \beta_{0} t / 2}}{\sin (\alpha / 2) e^{-i \gamma \beta_{1} t / 2}}
$$

Let's calculate the expectation solve of spin

$$
\begin{aligned}
c S_{x}> & =x(t)^{*} S_{x} x(t)=\left(\begin{array}{ll}
\left.c_{t}^{*}, c_{-}^{*}\right) & \frac{t}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{c_{+}}{c_{-}}= \\
& =\frac{t}{2}\left(c_{+}^{*}, c_{*}^{*}\right)\binom{c_{-}}{c_{+}}=\frac{t}{2}\left(c_{+}^{*} c_{-}+c_{-}^{*} c_{+}\right)
\end{array},\right.
\end{aligned}
$$

Spin magnetic moment
Let's calculate the expectation value of Spin

$$
\begin{aligned}
&\left.c S_{x}\right\rangle=\frac{t}{2}\left(C_{+}^{*} c_{-}+C_{-}^{*} C_{+}\right)=\frac{\pi}{2}\left(\cos (\alpha / 2) e^{-i \gamma \beta_{0} t / 2} \sin (\alpha / 2) e^{-i \gamma \beta_{0} t / 2}+\right. \\
&\left.+\sin (\alpha / 2) e^{i \gamma \beta_{0} t / 2} \cos (\alpha / 2) e^{i \gamma \beta_{0} t / 2}\right) \\
& \Rightarrow\left\langle S_{x}\right\rangle= \frac{t}{2} \sin (\alpha / 2) \cos (\alpha / 2) \quad\left(e^{-i \gamma \beta_{0} t}+e^{i \gamma \beta_{0} t}\right) \\
&=\frac{t}{2} \quad \frac{1}{2} \sin (\alpha) \quad\left[\cos \left(\gamma \beta_{0} t\right)-i \sin \left(\gamma \beta_{0} t\right)+\cos \left(\gamma \beta_{0} t\right)+i \sin \left(\gamma B_{0} t\right)\right]
\end{aligned}
$$

Spin magnetic moment

$$
\begin{aligned}
\left\langle S_{x}\right\rangle & =\frac{t}{2} \sin (\alpha / 2) \cos (\alpha / 2) \quad\left(e^{-i \gamma \beta_{0} t}+e^{i \gamma \beta_{0} t}\right) \\
& =\frac{t}{2} \quad\left[\cos \left(\gamma B_{0} t\right)-i \sin \left(\gamma B_{0} t\right)+\cos \left(\gamma B_{0} t\right)+i \sin \left(\gamma B_{0} t\right)\right] \\
& =\frac{t}{2} \sin (\alpha) \cos \left(\gamma B_{0} t\right)
\end{aligned}
$$

Similarly:

$$
\begin{aligned}
& \left\langle S_{y}\right\rangle=-\frac{t}{2} \sin (\alpha) \sin \left(\gamma B_{0} t\right) \\
& \left\langle S_{z}\right\rangle=\frac{\hbar}{2} \cos (\alpha)
\end{aligned}
$$

note that $\left\langle S_{z}\right\rangle$ is time indipendent

Spin precession

$$
\left\langle S_{x}\right\rangle=\frac{\hbar}{2} \sin (\alpha) \cos \left(\gamma B_{0} t\right)
$$

$\langle S y\rangle=-\frac{t}{2} \sin (\alpha) \sin \left(\gamma B_{0} t\right)$

$$
\left\langle S_{z}\right\rangle=\frac{A}{2} \cos (\alpha)
$$

The expectation value of the spin angular momentum vector subtends a constant angle α with the z-axis, and precesses about this axis at the frequency

$$
\omega=\gamma \beta_{0} \simeq \frac{e \beta_{0}}{m_{e}}
$$

Spin precession

$$
\begin{array}{r}
\left\langle S_{x}\right\rangle=\frac{\hbar}{2} \sin (\alpha) \cos \left(\gamma B_{0} t\right) \\
\left\langle S_{y}\right\rangle=-\frac{\hbar}{2} \sin (\alpha) \sin \left(\gamma B_{0} t\right) \\
\left\langle S_{z}\right\rangle=\frac{h}{2} \cos (\alpha) \\
\omega=\gamma \beta_{0} .
\end{array}
$$

This result is what one would expect classically, but with the expectation value of S instead of the classical momentum vector.

- The Stern-Gerlach experiment (1922):

$$
\begin{aligned}
& \text { Beam of } \\
& \text { Silver atoms: } \\
& \mathrm{Ag}:\left[k_{2}\right] 4 d^{10} 5 \mathrm{~s}^{1} \\
& \text { All inner } \\
& \text { electrons } \\
& \text { are paired } \\
& \text { Like lease } \\
& \text { in term } \\
& \text { of }
\end{aligned}
$$

In homogeneous magnetic field in z-direction:

$$
E=-\mu_{t} B-\frac{\delta E}{\delta z}=F_{z}=0
$$

- The Stern-Gerlach experiment (1922):

Inhomogeneous
magnetic field
In inhomogeneous magnetic field

$$
E=-\mu_{i} B \quad-\frac{\delta E}{\delta z}=F_{z} \neq 0 \quad \text { with } B=-\frac{-B_{z} \times \hat{x}}{{ }^{\prime} \|_{z} B_{I}}+\left(B_{0}+B_{I} z\right) \hat{z}
$$

$$
\begin{aligned}
& \text { Beam of } \\
& \text { Silver atoms: } \\
& \left.\mathrm{Ag}: \mathrm{Ck}_{2}\right] 4 d^{10} 5 \mathrm{~S}^{\prime} \\
& \begin{array}{l}
\text { Alimur lib lease } \\
\text { electrons }
\end{array} \\
& \text { electrons } \\
& \text { are prized } \\
& \text { in term } \\
& \text { of } \\
& \text { Land } 5 \\
& \text { their } \hat{S} \\
& \text { and } L \\
& \text { cancel }
\end{aligned}
$$

The Stern Gerlach experiment
In inhomoofreous magnetic field

$$
\begin{aligned}
& E=-\mu_{i} B-\frac{\delta E}{\delta z}=F_{z} \neq 0 \\
& \text { with } B=-B_{\varepsilon} \times \hat{x}+\left(B_{0}+B_{i} z\right) \hat{z} \\
& \mu_{L}=-\frac{e}{2 m} L_{z} B \\
& \Downarrow \\
& F_{z}=-\frac{e}{2 m} L_{z} B_{i} \rightarrow \text { Classically, because } L \text { of atoms in the Furnace is oriented } \\
& \text { randomly, I would expect any volume for } L z \text { and } \\
& \text { thus } F_{z} \text { can have any volume }
\end{aligned}
$$

The Stern Gerlach experiment
In inhomogeneous magnetic field

$$
\begin{aligned}
& E=-\mu_{i} B-\frac{\delta E}{\delta z}=F_{z} \neq 0 \\
&{ }_{\mu_{z}} B_{i}
\end{aligned}
$$

$山$
$F_{z}=-\frac{e}{2 m_{e}} L_{z} B_{i} \rightarrow$ Even considering quantization of L_{z},

$$
\begin{aligned}
\hat{H}=\frac{e}{2 m_{e}} \hat{L}_{z}\left(B_{0}+B_{i} z\right) \Rightarrow E & =\frac{e}{2 m_{e}} \star m\left(B_{0}+B_{i} z\right) \\
F_{z} & =-\frac{e}{2 m_{e}} t m B_{i}
\end{aligned}
$$

The Stern Gerlach experiment
In inhomogeneous magnetic field

$$
F_{z}=-\frac{e}{2 m_{e}} L_{z} B_{i}
$$

Even considering quantization of L_{z},

$$
\begin{aligned}
\widehat{H} & =\frac{e}{2 m_{e}} \hat{L}_{z}\left(B_{0}+B_{i} z\right) \\
\Rightarrow E & =\frac{e}{2 m_{e}} \hbar m\left(B_{0}+B_{i} z\right) \\
& F_{z}=-\frac{e}{2 m_{e}} \star m B_{i}
\end{aligned}
$$

for $m=0$

- The Stern-Gerlach experiment (1922):

for $m=0, \pm 1 \quad 3$ spot
$2 n+1$ spot

The Stern Gerlach experiment
In inhomogeneous magnetic field

Considering the net spin of the atoms, that of the outer shell electron $\left(55^{\prime}\right)$

$$
\begin{aligned}
& s=\frac{1}{2} \quad m_{s}=-\frac{1}{2},+\frac{1}{2} \\
& E_{ \pm}=\mp \gamma\left(B_{0}+B_{i} z\right) \frac{\pi}{2}
\end{aligned}
$$

U

$$
\begin{gathered}
F_{z}=\gamma B_{i} S_{z} \xrightarrow{\frac{b}{2} \text { BEAMS }} \begin{array}{r}
\text { expected } \\
\text { e }
\end{array}
\end{gathered}
$$

- The Stern-Gerlach experiment (1922):
\square Silver atoms

Spin-Orbit

The three components of the orbital angular momentum operator, $L x, L y$, and $L z$, obey the commutation relations that we have seen previously, which can be written in the convenient vector form:

$$
L \times L=i k L
$$

Similarly for spin angular momentum operators:

$$
S x S=i \hbar S
$$

One can also see that:

$$
\left[L_{i}, S_{j}\right]=0 \quad \text { with } i, j=1,2,3 \rightarrow x, y, z
$$

N.B. the two types of "motion" represented by the angular momentum operators are unrelated, thus it is reasonable to suppose that the two sets of operators commute with one another...

Spin-Orbit
Let us now consider the electron's total angular momentum vector:

$$
J=L+S
$$

One can show that:

$$
J \times J=i \hbar J
$$

It is thus evident that the three components of the total angular momentum operator obey analogous commutation relations to the corresponding orbital and spin angular momentum operators...it is obvious that the total angular momentum has similar properties to the orbital and spin angular momenta. Thus, it is only possible to simultaneously measure the magnitude squared of the total angular momentum vector, and only one of its single components:

$$
\left[J_{1}^{2} J_{z}\right]=0 \quad J^{2}=J_{x}^{2}+J_{y}^{2}+J_{z}^{2}
$$

Spin-Orbit
Simultaneous eigenstates of $J z$ and J^{2} satisfy:

$$
\begin{aligned}
& J_{z} \psi_{j, m_{j}}=m_{j} \notin \psi_{j, m_{j}} \\
& J^{2} \psi_{j, m_{j}}=j(j+1) \hbar^{2} \psi_{j, m_{j}}
\end{aligned}
$$

identical to the spin operators

$$
\begin{array}{llll}
L_{b} \text { an } & \underset{b}{S} & \rightarrow & J \\
l & s & & b \\
l & m_{s} & & m_{j} \\
l
\end{array}
$$

Spin-Orbit
We can also write:

$$
J^{2}=[L+S] \cdot[L+S]=L^{2}+S^{2}+2 L \cdot S
$$

And one can show that:

We can measure simulta neouly
$J_{1}^{2} S^{2}, L^{2}$ and $J_{z} \quad 02 \quad L_{1}^{2}, S^{2}, L_{z}, S_{z}, J_{z}$

Spin-Orbit
We can measure simultaneously:

$$
L^{2}, S^{2}, L_{z}, S_{z}, J_{z}
$$

degenerancy b
Thus J_{z} has simultaneous eigenstate with $L^{2} S^{2} L_{z}$ and S_{z} :

$$
\begin{aligned}
& L^{2} \psi_{n, l, m, m_{s}}=l(l+1) \hbar^{2} \psi_{m, l, m, m_{s}} \\
& s^{2} \psi_{n, l, m, m_{s}}=s(s+1) \hbar \psi_{n, l, m, m_{s}} \\
& L_{z} \psi_{n, l_{1} m, m_{s}}=m \text { t } \psi_{n_{1} l_{1} m_{1} m_{s}} \\
& S_{z} \psi_{n, l_{1} m, m}=m_{s} \hbar \quad \psi_{n, l_{1}, m, m_{s}}
\end{aligned}
$$

Thus: $J_{z} \psi_{n_{1} l_{1} m_{1} m_{s}}=\left(L_{z}+S_{z}\right) \psi_{n_{1} l_{1} m_{1} m_{s}}=\left(m+m_{s}\right) t \psi_{n_{1} l_{1} m_{1} m_{s}}=m_{j} t \psi_{m, l_{m}, m, m}$

Spin-Orbit
Thus

$$
m_{j}=m+m_{s}
$$

But $J z$ has simultaneous eigenstate with $L^{2} S^{2}$ and J^{2} :

$$
\begin{aligned}
& L^{2} \psi_{n, l, j, m_{i}}=l(l+1) \hbar^{2} \psi_{m, l, j, m_{i}} \\
& s^{2} \psi_{n_{1} l_{1 j}, m_{j}}=s(s+1) \hbar \psi_{n, l_{1 j}, m_{j}} \\
& J^{2} \psi_{n, l_{1}}, m_{j}=j(j+1) \hbar \quad \psi_{n} l_{1} ; m_{j} \\
& J_{z} \psi_{n, l_{1 j}, m_{i}}=m_{j} \hbar \quad \psi_{n, l_{1}, 1, m_{j}}
\end{aligned}
$$

Thus $\Psi_{n, l} l_{1}, m_{j}$ are simult. eigenstate for $L_{1}^{2} S_{1}^{2} J_{1}^{2} J_{z}$

Spin-Orbit Hydrogen atom
Simultaneous eigenstate for $L^{2} S^{2} S z$ and $L z$ in separable form:

$$
\begin{aligned}
& \psi_{m, l, m, \frac{1}{2}}=R_{m, l}(\imath) Y_{l, m}\left(\theta_{l} \varphi\right) X_{+} \\
& \Psi_{m, l, m,-\frac{1}{2}}=R_{m, l}(2) Y_{l, m}\left(\theta_{l} \varphi\right) X_{-}
\end{aligned}
$$

we can express the eigenstates $\psi_{n, 1,1 / 2, i, j, m j}$ as linear combinations of them (let me omit the Radial Part and index n, which are common to all these states)

$$
\psi_{l, j, m+\frac{1}{2}}^{\substack{2}} m_{i}=\alpha \psi_{l, m, \frac{1}{2}}+\beta \psi_{l, m,-\frac{1}{2}} \quad \begin{aligned}
& \text { with } \alpha^{2}+\beta^{2}=1
\end{aligned}
$$

Spin-Orbit Hydrogen atom

Finally I obtain:

Spin-Orbit Hydrogen atom
But why I introduced J, total angular momentum operator?
...let's see the effect of a magnetic field on the H atom:
The effect on the Hamiltonian will be?

$$
H_{z}=\left(e B_{0} / 2 m_{e}\right)\left(\hat{L}_{z}+g_{s} \hat{S}_{z}\right)
$$

The new H will be

$$
H^{\prime}=H+H_{z} \quad \text { but still } \quad H^{\prime}\left|m, l, m, m_{s}\right\rangle=E_{n}\left|m_{1} l, m_{1} m_{s}\right\rangle
$$

My old eigenfuctions are still good!

Spin-Orbit Hydrogen atom
But why I introduced J, total angular momentum operator?
..let's see the effect of a magnetic field on the H atom:
The effect on the Hamiltonian will be?

$$
\begin{aligned}
& H^{\prime}\left|m, l, m_{1}, m_{s}\right\rangle=E_{n}\left|m_{1} l, m_{1} m_{s}\right\rangle \\
& \left(H+H_{z}\right)\left|m_{1} l_{1} m_{1}, m_{0}\right\rangle=E_{m}\left|m_{1} l, m_{1}, m_{s}\right\rangle+\left(e B_{0} / 2 m_{e}\right)\left(l_{z}+q_{5} S_{z}\right)\left|m_{1} l_{1} m_{1}, m_{0}\right\rangle \\
& =E_{m}\left\langle n_{1} l_{1} m_{1} m_{s}\right\rangle+\left(e B_{0} \neq l 2 m_{e}\right)\left(m+g_{s} m_{0}\right)\left|m_{1} l_{1} m_{1} m_{s}\right\rangle \\
& =\left[E_{m}+\mu_{B} B_{0}\left(m+g_{s} m_{s}\right)\right]\left|m, l, m, m_{s}\right\rangle
\end{aligned}
$$

Spin-Orbit Hydrogen atom
But why I introduced J, total angular momentum operator?
...let's see the effect of a magnetic field on the H atom:
The effect on the Hamiltonian will be?

$$
\begin{aligned}
& \quad \begin{array}{l}
H^{\prime}\left|m, l, m, m_{s}\right\rangle
\end{array}=E_{n}\left|m, l, m_{1} m_{s}\right\rangle \\
&(H+H z)\left|m_{1} l, m_{1}, m_{3}\right\rangle=\left[E_{m}+\mu_{B} B_{0}\left(m+g_{s}, m_{s}\right)\right] \mid m, l, m, m_{s} \\
& \mu_{B}=\frac{e \hbar}{2 m e} \rightarrow \text { Bohr magneton }
\end{aligned}
$$

Spin-Orbit Hydrogen atom

...let's see the effect of a magnetic field on the H atom: The effect on the Energy will be?

...but what does it mean strong?

Spin-Orbit Hydrogen atom
...but what does it mean strong magnetic field?
From the "point of view" of the electron, it looks like the proton is orbiting around the electron.

According to the Biot-Savart Law, the magnetic field Due to the current (charge motion) is:

$$
\begin{aligned}
& B=\frac{\mu_{0} i}{2 r}=\frac{\mu_{0} e}{2 r T_{*}}=\frac{\mu_{0} e L}{4 \pi r^{3} m} \\
& \text { but } e^{2}=\frac{1}{\mu_{0} \varepsilon_{0}} \Rightarrow \vec{B}=\frac{e L^{D}}{4 \pi \varepsilon_{0} r^{3} m_{c} c^{2}}
\end{aligned}
$$

*T is identical to the period of electron revolution $L=m q v$

$$
T=\frac{2 \pi \Omega}{V}
$$

Spin-Orbit Hydrogen atom
...but what does it mean strong magnetic field?
From the "point of view" of the electron, it looks like the proton is orbiting around the electron.

According to the Biot-Savart Law, the magnetic field Due to the current (charge motion) is:

$$
\begin{aligned}
& B=\frac{\mu_{0} i}{2 \pi}=\frac{\mu_{0} e}{2 r T_{*}}=\frac{\mu_{0} e L}{4 \pi r^{3} m} \quad \text { Stronguth } \\
& \text { but } C^{2}=\frac{1}{\mu_{1} \varepsilon_{0}} \Rightarrow \vec{B}=\frac{e L^{-0}}{4 \pi \varepsilon_{0} r^{3} m_{e} c^{2}}
\end{aligned}
$$

*T is identical to the period of electron revolution

Spin-Orbit Hydrogen atom
...Thus
Even without any external magnetic field, the electron of the H atom will experiences the "internal" magnetic field due to its motion around the positive charge of nucleus. This internal field will be coupled to the spin angular momentum:

$$
\begin{aligned}
\vec{B} & =\frac{e \vec{l}^{0}}{4 \pi \varepsilon_{0} r^{3} m_{e} c^{2}} \\
& H_{s_{0}}=\frac{e}{m_{e}} \vec{S} \cdot \vec{B}=\frac{e^{2}}{4 \hbar \varepsilon_{0}} \frac{1}{m_{e}^{2} e^{2} l^{3}} \vec{S} \cdot \vec{l}=f(r) \vec{S} \cdot \vec{L} \\
& \text { spim-orbit interaction }
\end{aligned}
$$

Spin-Orbit Hydrogen atom
The total Hamiltonian will be:

$$
\begin{aligned}
& H=H_{0}+H_{s 0} \\
& b \\
& \tan w e
\end{aligned}
$$

have seen without
${ }^{5}$ pin comsioleration

And what about the new energy values?

$$
\begin{aligned}
H_{s o}=f(2) \vec{S} \cdot \vec{L}, & \vec{S} \cdot \vec{L}=S_{x} L_{x}+S y L_{y}+S_{z} L_{z} \\
\Rightarrow \text { while }\left[H_{0}, L_{z}\right]=0 & {\left[H, L_{z}\right] \neq 0 } \\
& {\left[H_{0}, S_{z}\right]=0 }
\end{aligned} \quad\left[H, S_{z}\right] \neq 0, ~ l
$$

with S.o. interaction
$\Rightarrow M_{1} M_{s}$ are not "good" quantum members!

Spin-Orbit Hydrogen atom
The total Hamiltonian will be:

have ven without
5 pin consioleration

$$
\begin{gathered}
H s_{0}=f(x) \vec{L} \cdot \vec{S} \\
\vec{S} \cdot \vec{L}=S_{x} L_{x}+S_{y} L_{y}+S_{z} L_{z} \\
{\left[H_{0}, L_{z}\right]=0 \quad\left[H, L_{z}\right] \neq 0} \\
{\left[H_{0}, S_{z}\right]=0 \quad\left[H, S_{z}\right] \neq 0}
\end{gathered}
$$

wite S.o. interaction
$\Rightarrow M_{1} M_{s}$ are not "good" quantum numbers!

And what about the new energy values?
I would need for good quantum slates of H...
One can easily check that

$$
\left[J_{z} H_{s 0}\right]=0 \quad\left[J^{2}, H_{S 0}\right]=0
$$

$j, m j$ are "osgood" quantum numbers!

Spin-Orbit
More in general we can write a new basis set for J, as:

$$
\left|l, \frac{1}{2}, j, m_{j}\right\rangle=\sum_{m_{j} m_{s}=m+m_{s}} C_{m_{1} m_{s}, m_{j}}^{l_{1}}\left|\ell, m_{1} \frac{1}{2}, m_{s}\right\rangle
$$

ligenstate \vec{J} eigenstate L, S
note that $m_{j}=m+m_{s}$ and $-j \leq m_{j} \leq j$ but $m \in[-l,+l] \Rightarrow m_{i n}\left[m_{j}\right]=-j=-l+\frac{1}{2} \quad$ or $-l-\frac{1}{2}$

$$
\max \left[m_{j}\right]=j=l+\frac{1}{2} \quad l-\frac{1}{2}
$$

Spin-Orbit
More in general:

$$
\left|l_{1} \frac{1}{2}, j, m_{j}\right\rangle=\sum_{\substack{m_{m}, m_{s} \\ m_{i}=m+m_{s}}} C_{m_{1} m_{0}, m_{i}}^{l_{1} j}\left|l_{1} m_{1}, \frac{1}{2}, m_{s}\right\rangle
$$

Thus

$$
\begin{aligned}
& j \in\left[-1-\frac{1}{2}, l+\frac{1}{2}\right] \\
& m_{j} \in[-j, j]
\end{aligned}
$$

Sum of angular momenta

Let's generalize even more, and suppose that we have two angular momenta operators:

$$
\hat{J}_{1} \text { and } \hat{J}_{2}
$$

And let's build a new operator, being the total angular momentum operator:

$$
\begin{aligned}
& \hat{J}=\hat{J}_{1}+\hat{J}_{2} \\
& \begin{array}{lllll}
j \\
j & \downarrow & \neq & \\
m_{1} & j_{2} \rightarrow \text { eigenvalues } & J_{1}^{2}, J_{2}^{2} \\
m_{1} & m_{2} \rightarrow & 4 & J_{z_{1}}, J_{z_{2}}
\end{array}
\end{aligned}
$$

Sum of angular momenta
Let's generalize even more, and suppose that we have two angular momenta operators:

$$
\begin{aligned}
& \hat{J}=\hat{J}_{1}+\hat{J}_{2} \quad \text { Clebsch-Gordon coefficients } \\
& \left|j_{1}, j_{2}, j_{1}, m_{j}\right\rangle=\sum_{\substack{m_{1}, m_{2} \\
m_{i}=m_{1}+m_{2}}} C_{m_{1}, m_{2}, m_{j}}^{j_{1}, j_{2}, i}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle \\
& \left.\begin{array}{ll}
\text { With } & J_{1}=L \\
J_{2}=5
\end{array}\right\} \text { wee have same as before }
\end{aligned}
$$

Sum of angular momenta

Clebsch-Gordon coefficients, how to read the table:
Table 4.7: Clebsch-Gordan coefficients. (A square root sign is understood for

Sum of angular momenta
Suppose that the two operators $J 1$ and $J 2$ are spin operators with $s=1 / 2$:

$$
\begin{aligned}
& m_{j}=m_{s 1}+m_{s 2} \Rightarrow \max \left[m_{j}\right]=\frac{1}{2}+\frac{1}{2}=1 \rightarrow-j<m_{j}<j \\
& \min \left[m_{i}\right]=-1 \rightarrow \max [j]^{\| i}=1 \\
& j \in[0,1] \quad m_{j} \in[j ; j, 1, \ldots j]
\end{aligned}
$$

Sum of angular momenta
Suppose that the two operators $J 1$ and $J 2$ are spin operators with $s=1 / 2$:

$$
\begin{aligned}
& \left|\frac{1}{2}, \frac{1}{2}, j, m_{j}\right\rangle=\sum_{\substack{m_{s}, m_{s} \\
m_{j}=m_{s i} \\
m_{s_{s}}, m_{s_{2}}}}^{j} m_{m_{s_{2}}, m_{j}}\left|\frac{1}{2}, m_{s_{1}}, \frac{1}{2}, m_{s_{2}}\right\rangle \\
& j \in[0,1] \quad m_{j} \in[j, j-1, \ldots i]
\end{aligned}
$$

Case 1: $J=1 \quad m_{j}=1$

$$
\left|\frac{1}{2}, \frac{1}{2}, 1,1\right\rangle=? \quad\left|\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle \quad \equiv \uparrow 4
$$

Sum of angular momenta

Suppose that the two operators 71 and 72 are spin operators with $s=1 / 2$:

	J	J	\cdots
M	M	\cdots	
m_{1}	m_{2}		
m_{1}	m_{2}	Coefficients	
\vdots	\vdots		

Sum of angular momenta

Suppose that the two operators 71 and 72 are spin operators with $s=1 / 2$:

Notation:	$\begin{array}{ccc}J & J & \cdots \\ M & M & \ldots\end{array}$
$m_{1} m^{\prime}$	
$m_{1} \quad m_{2}$	Coefficients
$\because \quad:$	

Sum of angular momenta

Suppose that the two operators $J 1$ and $J 2$ are spin operators with $s=1 / 2$:

Notation:	$\begin{array}{lll}J & J & \ldots \\ M & M & \ldots\end{array}$
$m_{1} m_{2}$	
$m_{1} \quad m_{2}$	Coefficients
\because :	

Sum of angular momenta

Suppose that the two operators 71 and 72 are spin operators with $s=1 / 2$:

m_{1} m_{2} m_{1} m_{2} M J M	Coefficients	
\vdots	\vdots	

Sum of angular momenta

Suppose that the two operators 71 and 72 are spin operators with $s=1 / 2$:

m_{1}	m_{2}	J
M	\cdots	
m_{1}	m_{2}	Coefficients
\vdots	\vdots	

$$
\frac{i-i}{i 1,1\rangle}=\uparrow \uparrow
$$

个
that I'm summing
two angular momentum
both with value $j_{1}=j_{2}=\frac{1}{2}$

$$
\begin{aligned}
& \left|\frac{1}{2}, \frac{1}{2}, 1,1,1\right\rangle=\text { (1) }\left|\frac{1}{\frac{1}{2}}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right\rangle \\
& \left|j_{1}, j_{2}, j_{1} m_{j}\right\rangle=\sum_{\substack{m_{1}, m_{2} \\
m_{1}=m_{1}+m_{2}}} \int_{m_{11} m_{2}, m_{j}}^{j_{1}, j_{2}, i}\left|j_{1}, m_{1}, j_{2}, m_{2}\right\rangle
\end{aligned}
$$

Sum of angular momenta
Suppose that the two operators $J 1$ and $J 2$ are spin operators with $s=1 / 2$:

$$
\left|\frac{1}{2}, \frac{1}{2}, j, m_{j}\right\rangle=\sum_{\substack{m_{3}, m_{2} \\ m_{j}, m_{s i} i m_{2}}} C_{m_{2}, 2}^{j} m_{s_{2}, m_{j}}\left|\frac{1}{2}, m_{s_{1}}, \frac{1}{2}, m_{s_{2}}\right\rangle
$$

$$
j \in[0,1]
$$

$$
m_{j} \in[j, j-1,
$$

Case 2: $J=1 \quad m_{j}=-1$

$$
\begin{aligned}
& \left|\frac{1}{2}, \frac{1}{2}, 1,-1\right\rangle=\text { ? } \quad\left|\frac{1}{2},-\frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle \\
& \Rightarrow|1-1\rangle=\downarrow \downarrow \\
& \equiv \downarrow \downarrow
\end{aligned}
$$

Sum of angular momenta
Suppose that the two operators $J 1$ and $J 2$ are spin operators with $s=1 / 2$:

$$
\begin{aligned}
& \left|\frac{1}{2}, \frac{1}{2}, j, m_{j}\right\rangle=\sum_{\substack{m_{s, 2}, m_{2} \\
m_{j}=m_{s i 1}, m_{s_{2}}}} e_{m_{s_{1}}, m_{s_{2}}, m_{j}}^{j}\left|\frac{1}{2}, m_{s_{1}}, \frac{1}{2}, m_{s_{2}}\right\rangle \\
& j \in[0,1] \\
& \text { Case 3: } J=1 \quad m_{j}=0 \\
& \begin{array}{r|r|rr|r|}
1 / 2 \times 1 / 2 & 1 & & \\
\begin{array}{|r|r|rr|}
+1 / 2+1 / 2 & 1 & 0 & 0
\end{array} \\
\hline \begin{array}{rrrr|}
\hline+1 / 2 & -1 / 2 & 1 / 2 & 1 / 2
\end{array} & 1 \\
-1 / 2+1 / 2 & 1 / 2-1 / 2 & -1 \\
\hline & -1 / 2-1 / 2 & 1 \\
\hline
\end{array} \\
& \left|\frac{1}{2}, \frac{1}{2}, 1,0\right\rangle=\text { ? } \quad\left|\frac{1}{2}, \pm \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle \\
& \left|\frac{1}{2}, \frac{1}{2}, 1,0\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle+\frac{1}{\sqrt{2}}\left|\frac{1}{2}-\frac{1}{2} \frac{1}{2}, \frac{1}{2}\right| \\
& \equiv \downarrow \uparrow \text { or } \uparrow \downarrow \quad \Rightarrow \quad|1,0\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+\downarrow \uparrow)
\end{aligned}
$$

Sum of angular momenta
Suppose that the two operators $J 1$ and $J 2$ are spin operators with $s=1 / 2$:

$$
\left|\frac{1}{2}, \frac{1}{2}, j, m_{j}\right\rangle=\sum_{m_{3}, m_{2}} C_{m_{m_{1}}, m_{s_{2}, m_{j}}}^{j}\left|\frac{1}{2}, m_{s_{1}}, \frac{1}{2}, m_{s_{2}}\right\rangle
$$

$$
j \in[0,1]
$$

$\operatorname{Case} 4: \quad J=0 \quad m_{j}=0$

$$
\left|\frac{1}{2}, \frac{1}{2}, 0,0\right\rangle=? \quad\left|\frac{1}{2}+ \pm \frac{1}{2}, \frac{1}{2}, i \frac{1}{2}\right\rangle
$$

$$
\rightarrow\left|\frac{1}{2}, \frac{1}{2}, 0,0\right\rangle=\frac{1}{\sqrt{2}}\left|\frac{1}{2}, \frac{1}{2}, \frac{1}{2},-\frac{1}{2}\right\rangle-\frac{1}{\sqrt{2}}\left|\frac{1}{2}-\frac{1}{2} \frac{1}{2}, \frac{1}{2}\right|
$$

$$
\equiv \downarrow \uparrow \text { or } \uparrow b \quad \Rightarrow \quad|0,0\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-\downarrow \uparrow)
$$

Sum of angular momenta
Suppose that the two operators $J 1$ and $J 2$ are spin operators with $s=1 / 2$:
Thus, if $J=S=1$

$$
\left.\begin{array}{ll}
m_{j}=1 & |11\rangle=\uparrow \uparrow \\
m_{j}=0 & |10\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow+b \uparrow) \\
m_{j}=-1 & |1-1\rangle=b b
\end{array}\right\} \text { triplet state }
$$

if $J=S=0$
$\left.m_{j=0} \quad|0,0\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow-1 \uparrow)\right\}$ Singlet state

