
CAAL Tutorial
Jacob Karsten Wortmann, Jesper Riemer Andersen,

Nicklas Andersen, Mathias Munk Hansen,
Simon Reedtz Olesen, Søren Enevoldsen

June 9, 2015

This tutorial gives an informal introduction to the main features of Caal
and how to use them. Caal supports the process algebras Calculus of Com-
municating Systems (CCS) and Timed CCS (TCCS), and both equivalence and
model checking analysis of processes through verification and games. Caal
consists of four different modules; an editor module for modelling processes,
a module for visualization of processes, a module for equivalence and model
checking, and a game module. Caal is available at:

http://caal.cs.aau.dk.

1 The Language CCS
CCS is a process algebra used to model concurrent systems. We shall now
informally introduce CCS.

The most basic process of all is the 0 (or nil) process. It cannot perform
any action whatsoever and thus stops all computation. The most basic process
constructor in CCS is action prefixing. The formation rule for action prefixing
is as follows:

If P is a process and a is a label, then a.P is a process.

Using the formation rule for action prefixing and the 0 process we can build two
example processes:

shake.0 shake.walk.0 .

The first process can only perform the shake action and then dies (becomes
the 0 process). The second process is a more complex process, which after
performing the shake action, can also perform the walk action. Names can also
be assigned to processes. For example, we can give the second process a name:

Boy = shake.walk.0 . (1)

Naming processes allows us to introduce recursive definitions of process be-
haviors. For example, we can define a recursive process specification as follows:

Tree = shake.′apple.Tree .

1

http://caal.cs.aau.dk

This tree can be shaken which causes it to deliver an apple and afterwards
returns to its initial state where it can be shaken again. Note the bar over
′apple (the apostrophe denotes a bar in Caal), which indicates that it is an
output action. This tree only allows one type of apple. In order for the tree to
support multiple colors of apples, we use the choice operator. Now the tree can
be defined as:

ColorTree = shake.(′greenapple.ColorTree + ′redapple.ColorTree) . (2)

The idea is that after the tree has been shaken, it can deliver either a green
or a red apple. In general, the formation rule for choice is:

If P and Q are processes, then P +Q is also a process.

The process P +Q is able to do either P or Q, but not both. As soon as P
is performed any further execution of Q is preempted and vice versa.

Another operator is the parallel composition operation. Composition de-
scribes two or more processes running in parallel and possibly interacting with
each other. For example, if we continue the example from Equation 1, we can
shake the tree in order to receive an apple and then walk to the next tree after
an apple has fallen to the ground. This can be described by the CCS process:

Girl = ′shake.apple.′walk.Girl . (3)

The CCS expression Tree | Girl describes a system consisting of two pro-
cesses; the tree and the girl. These two processes can communicate through
their shared communication channels; shake and apple.

However, neither the girl nor tree are required to communicate with each
other. They could communicate over their channels with any other processes
they have been composed with, or simply perform the shake, apple, or walk
actions directly without communication.

P and Q may proceed independently or they may communicate through
shared channels.

When two processes communicate through the same input and output action
the resulting action is called a τ -action. It might be best if only one had access
to the apples that fall from the tree. CCS allows this through an operation called
restriction. This allows us to hide certain channels from the environment. If
we continue from Equation 3 and expand the example to accept red or green
apples:

Man = ′shake.(Man1 + Man2) , (4)
Man1 = redapple.′walk.Man ,

Man2 = greenapple.′throw.Man .

Now we can define the Orchard using the ColorTree from Equation 2 and the
refined Man from Equation 4:

Orchard = (ColorTree | Man) \ {shake, redapple, greenapple} . (5)

2

The restricted channels shake, redapple, and greenapple may only be used
for communication between the tree and the man. Their scope is restricted
to the process Orchard. In general, the formation rule for restriction can be
described as follows:

If P is a process and L is set of channel names, then P \ L is a process.

In P \ L the channel names in L can only be used to communicate within
P . It might be beneficial for the orchard to have access to other sorts of fruit.
This can be done by defining a generic orchard that can be shaken, then drop
its fruit and reset:

GenericOrchard = shake.′fruit.GenericOrchard .

Through appropriate renaming of the GenericOrchard it is possible to obtain
a more specific Orchard. For example:

PearOrchard = GenericOrchard [pear/fruit] .

PearOrchard is a process that behaves like GenericOrchard but outputs pears
instead of a generic fruit. The renaming operation can be described as:

If P is a process and f is a function from labels to labels, then P [f] is a
process.

2 The Language TCCS
TCCS is an extension of CCS with time, which means that we still have all
the syntactical elements of CCS but with a new syntactic element, the delay
prefixing operator. With this operator we can model processes like

5.a.0 ,

which means that after delaying for 5 time units the a-action becomes available.
We extend the Orchard example and add time to it. We add a time constraint

to the tree specifying that if the falling apple has not been caught within 3 time
units then it falls to the ground. Extending the ColorTree from Equation 2 we
get:

ColorTree = shake.ColorTree1 ,

ColorTree1 = ′greenapple.ColorTree + ′redapple.ColorTree + 3.tau.ColorTree .

The ColorTree has the choice of dropping either a green or a red apple. If
the tree drops a particular apple then it commits to that choice, but simply
delaying will not commit to any choice. For example, after delaying for 2 time
units the tree can still drop green or red apples.

However, after 3 time units the τ -action becomes available which prevents
any further delays. An action must be performed immediately when a τ -action
is available. If no one is ready to catch the apple within 3 time units the apple
falls to the ground.

3

Let us say that after the man has shaken the tree he needs to rest for 2 time
units before he is ready to catch an apple. Extending the Man from Equation 4
we get:

Man = ′shake.2.(Man1 + Man2) .

It is not possible for the man to rest for more than 2 time units because a
handshake is available between the Man and the ColorTree (i.e. a τ -action
becomes available). We can also define an unfit man who requires a longer
break after shaking the tree:

SlowMan = ′shake.5.(Man1 + Man2) .

If we define the orchard as

Orchard = (ColorTree | SlowMan) \ {shake, redapple, greenapple} .

then the slow man will never be able to catch an apple since his required break
makes him unable to catch the apples before they fall to the ground.

3 Editor
The editor is used to input CCS and TCCS programs. The editor has full
support for CCS and TCCS syntax, and features live syntax checking to assist
the user if syntactical errors occur. The “Parse”-button will notify the user of
any contextual errors, such as referencing an undefined process. Furthermore,
Caal supports saving of the project to both a local file and the browser cache,
as well as an autosave feature that allows the user to restore unsaved work if
an unexpected error should occur. Using the editor we can input the examples
from Equation 2 and Equation 4 as shown in Figure 1.

Figure 1: Editor.

4

4 Verification
After having defined a process in the editor we may want to verify its correctness.
We introduce the several forms of verification that Caal supports.

4.1 Equivalence Checking
Caal supports the following equivalences and preorders:

• simulation,

• simulation equivalence,

• bisimulation,

• trace inclusion, and

• trace equivalence.

This section focuses on bisimulation. Strong bisimulation is a notion relating
two processes such that whenever one of the processes can perform an α-action
the other process must also be able to perform an α-action. The resulting pair
must again be related by strong bisimulation.

We also have the notion of weak bisimulation. We use the term “weak” to
indicate that we abstract away from τ -actions. Whenever one of the processes
can perform an α-action the other process also must be able to perform a match-
ing α-action, where it is allowed to perform zero or more τ -actions before and
after performing the α-action. The resulting pair must again be related by weak
bisimulation.

Example 1
We have the CCS processes:

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} ,
Spec = walk.Spec ,

We want to check if the processes Orchard and Spec are strongly or weakly
bisimilar. Figure 2 shows the result of the verification. The processes Orchard
and Spec are not strongly bisimilar, but they are weakly bisimilar, as indicated
by the red cross and the green check mark, respectively.

5

Figure 2: Verification of bisimulation.

4.2 Model Checking
Caal supports model checking through use of recursive Hennessy-Milner Logic
(HML) formulas. HML formulas are used to check if a given process satisfies
certain properties. For instance we might want to check if our man:

• is always able to walk after receiving an apple,

• is able to shake the tree right now,

• is able to get hold of a red apple.

Caal has support for the full syntax and semantics of recursive HML, and
also supports formulas with multiple nested variables, with the restriction that
variables are not allowed to be mutually recursive.

X min= <a>X or Y (6)
Y max= [b]Y

Equation 6 is an example of a supported HML formula.

X min= <a>X or Y (7)
Y max= [b]Y and X

Equation 7 is an example of an HML formula that is not allowed because Y
refers back to X.

Example 2
We have the CCS processes

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} .

We want to check if it is possible to reach a state from the Orchard where the
Man will never be able to perform a walk-transition again. We can express this
as the recursively defined property

X min= [[walk]]ff or <->X,

6

where - is the set of all actions. Figure 3 shows the result of the verification.
As we can see, this property is not satisfied, as indicated by the red cross.

Figure 3: Verification of a recursive HML formula.

4.3 Timed Equivalence and Model Checking
When verifying TCCS we support the same equivalences and preorders as men-
tioned earlier, as well as an extended version of HML with time called Timed
HML (THML). Strong timed bisimulation is almost the same as regular strong
bisimulation. Whenever a process can make a move by some action α, the other
process must be able to match the move by the same action α. Whenever a
process can make a delay, the other process must be able to match the delay.
The resulting pairs must again be related by strong timed bisimulation.

Just like it can be useful to abstract away from τ in CCS, it can be useful
to abstract away from time in TCCS, which is called “untimed”.

Example 3
We have the TCCS processes:

Man = ′shake.2.(redapple.walk.Man + greenapple.walk.Man) ,
Tree = shake.(′greenapple.Tree + ′redapple.Tree + 3.tau.Tree) ,

Orchard = (Tree | Man) \ {shake, redapple, greenapple} ,
Spec = walk.Spec ,

We want to check if the Orchard is weakly timed or weakly untimed bisimilar to
Spec. The Orchard is not weakly timed bisimilar to Spec, but they are weakly
untimed bisimilar shown in Figure 4.

7

Figure 4: Verification of bisimulation with time.

As seen in Example 2, HML allows us to verify that the system satisfies
certain properties, but it is often interesting to verify that the system does so
with respect to time.

Example 4
We want to verify that the Man from Example 3 can never receive a red apple
if he waits for less than 2 time units after shaking the tree. We can express this
property as the recursively defined THML formula:

X max= [’shake]<0,1>[redapple]ff and X;

As seen in Figure 5 the property is satisfied.

Figure 5: Verification of a recursive THML formula.

5 Debugging Options
Verifying properties for CCS processes might not always yield the expected
result. This might mean a bug is present in the CCS processes. We introduce
the tools available for debugging in Caal.

5.1 Explorer
The explorer makes it possible to graphically explore the Labelled Transition
System (LTS) generated by a process. To begin, the desired process is selected

8

from the drop-down menu at the top left. The outgoing transitions from the
selected process are then displayed. The explorer is shown in Figure 6.

Figure 6: Explorer.

The states in the LTS can be selected by clicking them. The currently
selected state is colored red and the outgoing transitions from that state will be
displayed in the table below the LTS.

A number of different options are available in the explorer:

Zoom The slider at the top left will zoom in on the currently selected state.
Sometimes the LTS becomes too large to tell the different states and tran-
sitions apart, which is when zooming helps. When zoomed in, the LTS
will automatically be centered on the currently selected state whenever it
is changed.

Expand Depth The number at the top right is the number of states to
expand the LTS with. For example, if we have a depth of five, then all
states which are up to five transitions away from the currently selected
state will be displayed.

Lock The padlock at the top right will lock/unlock the LTS. The states in
the LTS are automatically positioned, but may sometimes become clut-
tered if there are too many states or transitions. Locking the LTS makes
it possible to manually rearrange the states in the LTS.

Export The download button at the top right will download an image of the
currently displayed LTS.

9

Transitions The LTS can be displayed using either strong or weak transi-
tions. By default the LTS displayed is using strong transitions. In the
case of TCCS, there are also options for timed and untimed transitions.

Collapse The LTS can be collapsed using either strong or weak bisimula-
tion collapse. Strong bisimulation collapse means that all states which are
strongly bisimilar are collapsed into a single state. Figure 7 shows the Or-
chard with strong bisimulation collapse, and Figure 8 shows the Orchard
with weak bisimulation collapse. In cases where the LTS becomes very
large the zoom option might not be sufficient. In such cases all unwanted
actions can be relabelled to τ and removed using weak bisimulation col-
lapse.

Figure 7: Orchard with strong bisimulation collapse.

Figure 8: Orchard with weak bisimulation collapse.

5.2 Games for Equivalences and Preorders
Caal supports games for the following equivalences and preorders:

• strong/weak bisimulation,

• strong/weak simulation, and

• strong/weak simulation equivalence.

Furthermore, Caal also has games for the timed and untimed variations of
the above equivalences and preorders. In this section we will focus on the game
for strong bisimulation. The games for the other equivalences and preorders are
similar, but with different rules.

The strong bisimulation game consists of an “attacker”, a “defender”, and
two processes s and t to play on. The goal of the attacker is to show that the

10

processes are not strongly bisimilar, and the goal of the defender is to show
that they are. The game is played over a number of rounds, where each round
starts in a pair of states called the current configuration. Initially, the current
configuration will be (s, t). Each round is played according to the following
rules:

1. The attacker performs a transition under some action α from s to s′ or
from t to t′. If the attacker cannot perform any transition the defender
wins.

2. The defender must now respond with a transition.

• If the attacker played s to s′, then the defender must perform a
transition t to t′ under the same action α. If the defender cannot
perform any transitions, then the attacker wins.
• If the attacker played t to t′, then the defender must perform a tran-
sition s to s′ under the same action α. If the defender cannot perform
any transitions, then the attacker wins.

3. The game continues for another round with the pair (s′, t′) as the current
configuration.

If a cycle is detected in the game, i.e. if we reach a configuration (s′, t′) which
has previously been the current configuration the defender wins the game.

If the attacker has a universal winning strategy, then s and t are not strongly
bisimilar. If the defender has a universal winning strategy, then s and t are
strongly bisimilar. If a player has a universal strategy, then that player will
always be able to win regardless of what the other player does.

We show an example of a strong bisimulation game. Instead of showing the
simple game between the Orchard and Spec processes, we will define a pear tree
to play against the apple tree. We can define the pear tree as a relabelling of
the ColorTree from Equation 2:

PearTree = ColorTree [pear/greenapple, pear/redapple] .

Figure 9 shows a strong bisimulation game where the player is playing as
attacker against the computer in the defender role.

11

Figure 9: Screenshot of the strong bisimulation game.

The game settings in the top specifies that it is a strong bisimulation game
between the processes PearTree and ColorTree where the player is playing as at-
tacker. We also have the option to restart the game to the (PearTree,ColorTree)
configuration.

The LTSs generated by the processes PearTree and ColorTree are shown in
Figure 10, where the current configuration of the game is highlighted in red.
The two LTSs have the same options (e.g. lock, zoom, etc.) as in the explorer.

Figure 10: Game LTSs.

Figure 11 shows the different transitions available to the player. It consists
of three columns:

Source The source state of the transition. Can be either the current state
in the left LTS or the current state in the right LTS.

Action The label of the transition.

Target The destination state of the transition.

12

Figure 11: Available transitions.

Figure 12 shows the different steps of a full game in the game log. The initial
state of the game log is shown in Figure 12a, where the role of the player and
whether or not the player has a universal winning strategy is shown. The player
then knows if a loss was due to a bad move. The game log then prompts the
player to pick a transition.

Figure 12b shows the game log after the player has made the attack

PearTree shake−−−→ 4

on the left LTS, where 4 is the identifier of the target state.
Figure 12c shows the response of the defender

ColorTree shake−−−→ 6

on the right. The next round of the game starts and the game log shows the
current configuration of the game (4, 6). The player can now attack again on
the left or right.

Figure 12d shows the player attacking with the transition

4 pear−−−→ 5

on the left. The defender cannot match the pear transition on the right. The
player wins the game which means that the processes PearTree and ColorTree
are not strongly bisimilar.

13

(a) Game log with introduction. (b) Game log after an attack.

(c) Game log after a defend. (d) Game log with a winner.

Figure 12: The game log.

5.3 HML Game
An HML game consists of an “attacker”, a “defender”, a process s, and a formula
F . A play of a game starting from the start state s is a maximal sequence of con-
figurations formed by the players according to the following rules. Each round
either the attacker or the defender picks a successor configuration if possible.

• The attacker picks a configuration when the formula is of the form (s, F1∧
F2), or when the choices are either (s, [α]F) or (s, [[α]]F).

• The defender picks a configuration when the formula is of the form (s, F1∨
F2), or when the choices are (s, 〈α〉F) or (s, 〈〈α〉〉F).

The winner depends on which configuration the game ends in, or alternatively
the context of an infinite play.

• The attacker is the winner in every play ending in a configuration of the
form (s,ff) or in play in which the defender gets stuck.

• The defender is the winner in every play ending in configuration of the
form (s, tt) or in a play in which the attacker gets stuck.

• The attacker is the winner in every infinite play in context X provided
that X is a defined as a minimum fixed-point: X min= F . The defender is
the winner in every infinite play provided that X is defined as a maximum
fixed-point: X max= F .

14

Figure 13 shows an HML game where the user is playing as defender against
the computer.

Figure 13: HML Game.

The game consists of a few different elements:

• the process and formula at the top left,

• the LTS in the middle,

• game log at the bottom left, and

• subformula and transition table at the bottom right.

Using Example 2 we now want to play an HML game to verify that the result
is correct and that the formula is indeed not satisfied. We have the Orchard
process given by

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
AppleTree = shake.(′greenapple.AppleTree + ′redapple.AppleTree) ,

Orchard = (AppleTree | Man) \ {shake, redapple, greenapple} ,

and the formula
X min= [[walk]]ff or <->X .

The initial game log can be seen in Figure 14a. As it can be seen, we are
playing as defender and we are going to lose, matching the claim from Figure 3
that the formula is not satisfied.

As defender we have to choose which of the disjunctions we want to continue
from. We can pick between two subformulas:

15

1. [[walk]]ff and

2. <->X .

Taking case 1 will result in a loss in the next round because the attacker
picks a transition so we reach a false formula as shown in Figure 14b. Instead
the defender picks case 2 and picks a transition, resulting in X being unfolded as
it can be seen on Figure 14c. The game continues with the defender picking one
of the two cases, each time unfolding X and having to pick a transition as seen on
Figure 14d. Figure 15 shows the transition table for the defender. Eventually
the game will detect a cycle as it can be seen in Figure 14e, which means the
defender loses because we played in a minimum fix-point game.

(a) Game log with introduction. (b) Reaching false formula.

(c) Unfold X. (d) Select a transition.

16

(e) Game log with a winner.

Figure 14: Game log for HML Game.

Figure 15: Transition table.

5.4 Distinguishing Formula
HML formulas can also be used to check if two processes are strongly bisimilar.
Two processes are strongly bisimilar if and only if they satisfy the same formulas.
This also implies that if two processes are not strongly bisimilar, then there must
exist a formula that distinguishes them.

Example 5
We have the processes

Man = ′shake.(redapple.walk.Man + greenapple.walk.Man) ,
FastMan = ′shake.(redapple.(walk.FastMan + FastMan) +

greenapple.(walk.FastMan + FastMan) .

Caal is able to generate a distinguishing formula for two processes. Fig-
ure 16 shows a generated distinguishing formula for the two processes Man and
FastMan which are not strongly bisimilar. This is done by clicking the three
vertical dots on the right-hand side and clicking on ‘Distinguishing formula’.

17

Figure 16: Distinguishing formula.

5.5 Distinguishing Trace
Much like the distinguishing formula, Caal can also generate a trace that dis-
tinguishes two processes. When checking whether two processes are trace equiv-
alent or if one process is a trace inclusion of the other, Caal will output the
distinguishing trace if this is not the case. Figure 17 shows a distinguishing
trace for the processes Man and FastMan from Example 5.

Figure 17: Distinguishing trace.

As we can see, the FastMan affords the trace

’shake.greenapple.’shake ,

which the Man does not. The distinguishing trace is given as an HML formula
so that the HML game can be loaded.

6 Closing Remarks
Caal is an open source project developed at Aalborg University by Jacob
Karstensen Wortmann, Jesper Riemer Andersen, Nicklas Andersen, Mathias
Munk Hansen, Simon Reedtz Olesen, and Søren Enevoldsen under the supervi-
sion of Jiří Srba and Kim Guldstrand Larsen.

The source code can be found on GitHub at https://github.com/caal/
caal. We welcome suggestions and bug reports either through the issue tracker
on GitHub, or via e-mail at caal@cs.aau.dk.

18

https://github.com/caal/caal
https://github.com/caal/caal
mailto:caal@cs.aau.dk

	The Language CCS
	The Language TCCS
	Editor
	Verification
	Equivalence Checking
	Model Checking
	Timed Equivalence and Model Checking

	Debugging Options
	Explorer
	Games for Equivalences and Preorders
	HML Game
	Distinguishing Formula
	Distinguishing Trace

	Closing Remarks

