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Identical Particles
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Multiple particle systems 2

The Hamiltonian of a multi-particle system can be written in general as:

𝐻 𝑥!, 𝑥", … , 𝑥#, 𝑡 = '
$%!,#

𝑝$"

2𝑚$
+ 𝑉 𝑥!, 𝑥", … , 𝑥#, 𝑡

Suppose that the particles do not interact with one another. This implies that 
each particle moves in a common potential:
𝑉 𝑥!, 𝑥", … , 𝑥#, 𝑡 = ∑$%!,#𝑉 𝑥$, 𝑡 and hence     𝐻 𝑥!, 𝑥", … , 𝑥#, 𝑡 = ∑$%!,#𝐻$ 𝑥$, 𝑡

In other words, for the case of non-interacting particles, the multi-particle 
Hamiltonian of the system can be written as the sum of N independent 
single-particle Hamiltonians. Then, the multi-particle wavefunction can be 
written as the product of N independent single-particle wavefunctions:

ψ 𝑥!, 𝑥", … , 𝑥#, 𝑡 = ψ! 𝑥!, 𝑡 ψ" 𝑥", 𝑡 …ψ# 𝑥#, 𝑡
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Two particles system 3

u Statistical interpretation:

Is the probability density of finding particle 1 in volume d3r1 and particle 2 
in d3r2
Thus:

If the potential 𝑉 r!, r" is time–independent, we can obtain the t.d. solutions 
by separation of variables: 
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Two particles system 4

u Where:

Satisfies the t.i.S.E.:

−
ℏ"

2m!
∇!"Ψ−

ℏ"

2m"
∇""Ψ+ 𝑉 r!, r" Ψ = 𝐸Ψ

For instance, for the Helium atom

𝑉 r!, r" = −
e"

4π ϵ'
2
r!
+
2
r"
−

1
r" − r!
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Two particles system 5

u Suppose particle 1 is in the (one-particle) state 𝜓𝑎(r), and particle 2 is in 
the state 𝜓𝑏(r), If the two particles are distinguishable and non 
interacting, than the wf. Can be written as a simple product:

u But in quantum mechanics we have identical particles, such as electrons, 
that cannot be distinguished each other, but they are utterly identical. 
There is nothing (any of their properties) that can be used to distinguish 
the electrons, and if one imagine to have a way to do it, this will not 
work because when we try to observe the electrons, we alter them and we 
cannot be sure if for instance they switched places. 
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Indistinguishable particles 6

u To mathematically describe this indistinguishable principle, there are two 
ways to build the wf.:

𝜓± 𝑟1, 𝑟2 = 𝐴[𝜓𝑎 𝑟1 𝜓𝑏 𝑟2 ± 𝜓𝑏 𝑟1 𝜓𝑎 𝑟2 ]

The ± makes a distinction between two kinds of identical particle:

u Bosons, with plus sign  (e.g. photons and phonons)
u Fermions, with minus sign (e.g. electrons and protons)

All particles with integer spin are bosons, and
all particles with half-integer spin are fermions.
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Pauli exclusion principle 7

u To describe mathematically the indistinguishable principle, there are two 
ways to build the wf.:

𝜓" 𝑟1, 𝑟2 = #
$ [𝜓𝑎 𝑟1 𝜓𝑏 𝑟2 − 𝜓𝑏 𝑟1 𝜓𝑎 𝑟2 ]

Fermions, with minus sign (e.g. electrons and protons)

u Two identical fermions cannot occupy the same state. 
For 𝜓𝑎 = 𝜓𝑏, then:

𝜓( 𝑟1, 𝑟2 = !
" [𝜓𝑎 𝑟1 𝜓𝑎 𝑟2 − 𝜓𝑎 𝑟1 𝜓𝑎 𝑟2 ] = 0

This is the famous Pauli exclusion principle
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Pauli exclusion principle 8

u More in general and formally we can define the exchange operator:

𝑃 𝑓 𝑟1, 𝑟2 = 𝑓(𝑟2, 𝑟1)

The eigenvalue of P are ±1 and P and H are compatible: [P, H]=0
They have a common set of eigenstates.

This means that the solutions of the S.E. are symmetric (eigenvalue +1) or 
antisymmetric (eigenvalue -1) under exchange of particles:

𝜓 𝑟1, 𝑟2 = ± 𝜓 𝑟2, 𝑟1 (the + refers to bosons, - to fermions)

THIS MEANS THAT ACCORDING TO THE KIND OF PARTICLES (BOSONS OR 
FERMIONS), I’LL HAVE A SYMMETRIZATION REQUIREMENT FOR THEIR WFs. 
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Pauli exclusion principle 9

u The anti-symmetry requirement for the WF of fermions can be extended 
to N fermions systems. For a system containing 𝑁 identical and non-
interacting fermions, the anti-symmetric stationary wavefunction of the 
system is written as:

This expression is known as the Slater determinant, and automatically 
satisfies the symmetry requirements on the wavefunction.
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Exchange Force 10

u Suppose one particle is in state 𝜓𝑎 𝑥 , and the other is in state 𝜓𝑏 𝑥 , and 
these two states are orthogonal and normalized. If the two particles are 
indistinguishable, then the combined wave function is :

𝜓± 𝑥1, 𝑥2 = #
$ [𝜓𝑎 𝑥1 𝜓𝑏 𝑥2 ± 𝜓𝑏 𝑥1 𝜓𝑎 𝑥2 ]

If you calculate the expectation value of the square of the distance between 
the two particles:

The last term is what differentiates it from the case of distinguishable 
particles
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Exchange Force 11

If you calculate the expectation value of the square of the distance between 
the two particles:

The last term is what differentiates it from the case of distinguishable 
particles:
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Exchange Force 12

u Identical bosons (the upper signs) tend to be somewhat closer together
u Identical fermions (the lower signs) somewhat farther apart
as compared to distinguishable particles in the same two states. 
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Exchange Force 13

Notice that <X>ab vanishes unless the two wave functions actually
Overlap, in fact:
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Exchange Force 14

u If two electrons are very far each other (and their wf do not overlap), 
then it’s not going to make any difference whether the wfs are 
antisymmetrized or not…
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Exchange Force 15

u When there is some overlap of the wave functions,
the system behaves as though there were a "force of attraction" between 
identical bosons, pulling them closer together, 

u and a "force of repulsion" between identical fermions, pushing them 
apart. 

We call this an exchange force, although it's not really a force at all, 
because no physical agency is pushing on the particles; but it is a purely 
geometrical consequence of the symmetrization requirement. 
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Exchange Force 16

We call this an exchange force, although it's not really a force at all, 
because no physical agency is pushing on the particles; but it is a purely 
geometrical consequence of the symmetrization requirement. 

Still, this “force” has important consequences. For instance, consider he H2
molecule.
At a first approximation, we have two electrons centered at two different 
nucleus in their ground state.
If we consider symmetric wf for these electrons, the “exchange force” will 
push the electrons each other and the accumulation of negative charge will 
attract protons inward, explaining the covalent bond
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Exchange Force 17

For instance, consider he H2 molecule.
At a first approximation, we have two electrons centered at two different 
nucleus in their ground state.
If we consider symmetric wf for these electrons, the “exchange force” will 
push the electrons each other and the accumulation of negative charge will 
attract protons inward, explaining the covalent bond

But electrons are Fermions and have antisymmetric wf. 
What is wrong with that? …we miss spin!
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Exchange Force 18

The complete state of the electron includes not only its position wave 
function, but also a spinor, describing the orientation of its spin:

When we put together the two-electron state, it is the whole works, not just 
the spatial part, that has to be antisymmetric with respect to exchange. 

Let’s go back to singlet and triplet combinations…
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Sum of angular momenta
19

Suppose that the two operators J1 and J2 are spin operators with s=½ :
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Exchange Force 20

The complete state of the electron includes not only its position wave 
function, but also a spinor, describing the orientation of its spin:

When we put together the two-electron state, it is the whole works, not just 
the spatial part, that has to be antisymmetric with respect to exchange. 

Let’s go back to singlet and triplet combinations…

u the singlet combination is antisymmetric and hence would 
have to be joined with a symmetric spatial function

u the three triplet states are all symmetric and would require 
an antisymmetric spatial function.
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Exchange Force 21

For instance, consider he H2 molecule.
At a first approximation, we have two electrons centered at two different 
nucleus in their ground state.
If we consider symmetric wf for these electrons, the “exchange force” will 
push the electrons each other and the accumulation of negative charge will 
attract protons inward, explaining the covalent bond

The electrons are Fermions and have antisymmetric wf.:
Antisymmetric spinor (singlet) but symmetric spatial wf.
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Exchange Force 22

With a similar approach you can think at an exchange energy, which is a 
term in the total energy due to the symmetric constrain of the wf. and 
differentiating the energy of two-particle systems that are distinguishable or 
undistinguishable…

Now lets’ consider again the Helium atom
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Helium atom 23

In seeking an approximation to the ground state, we might first work out 
the solution in the absence of this last term…

u Thus, the G.S. WF is symmetric (inverting r1 and r2, its sign is unchanged)
u Thus, the G.S. of Helium is a singlet configuration.
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Helium atom 24

In seeking an approximation to the ground state, we might first work out 
the solution in the absence of this last term…

u What about the excited states? They consist of one electron in the 
hydrogenic G.S. and another in the excited state:



M
a

te
ria

ls 
Sc

ie
nc

e

Helium atom 25

u What about the excited states? They consist of one electron in the 
hydrogenic G.S. and another in the excited state:

We can construct both symmetric and antisymmetric combinations:
u the former go with the antisymmetric spin configuration (the singlet), and 

they are called parahelium
u the latter require a symmetric spin configuration (the triplet), and they 

are known as orthohelium
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Helium atom 26

u What about the excited states? They consist of one electron in the 
hydrogenic G.S. and another in the excited state:

The ground state is necessarily parahelium; the excited states come in both 
forms. 
Because the symmetric spatial state brings the electrons closer together, we 
expect a higher energy than their orthohelium counterparts.
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The periodic table 27
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The periodic table 28
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Quantum statistic

The	behaviour	of	systems	consisting	of	many	identical	particles		is	studied	by	a	special	field	of	
physics	called	quantum	statistics.	

The	issue	in	question	is	the	structure	of	the	ground	state	and	its	energy	for	the	system	on	N	≫
1	non-interacting	free	electrons	(an	ideal	electron	gas)	confined	within	a	box	of	volume	V.	


