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Approximation 
Methods
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Time Independent Perturbation Theory

u We have already seen, in the spin-orbit case, that in 
some instances it is necessary to consider a perturbation 
of the system…

u In particular, let’s consider a system described by the 
Hamiltonian H0 and assume that we have solved the S.E. 
for that system, finding eigenvectors and eigenvalues 
(indeed, this was the case of the Hydrogen atom 
involved in the spin-orbit analysis, for instance)
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Time Independent Perturbation Theory

In particular, let’s consider a system described by the 
Hamiltonian H0 and assume that we have solved the S.E. for 
that system, finding eigenvectors and eigenvalues

u If we consider now a weak perturbation, we can write 
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Time Independent Perturbation Theory

In general, this equation will not have exact analytic 
solutions, but we can find approximate solutions by the so 
called “perturbation theory”.
But what does it mean “weak perturbation”?
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Time Independent Perturbation Theory

But what does it mean “weak perturbation”?
Classically, it would mean that the variation in energy of the system, due to 
the perturbation, is small.
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Time Independent Perturbation Theory

But what does it mean “weak perturbation”?
In quantum mechanics, it is more meaningful to state that the expectation 
values of H’ must be much smaller than that of H0
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Time Independent Perturbation Theory

If we have a weak perturbation, I can write:
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Time Independent Perturbation Theory

If we have a weak perturbation, I can write:

I can expand En and Ψn by power series in λ, and when λ->0 their values will 
be the unperturbed ones.
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Time Independent Perturbation Theory

By collecting like powers of    , I can write:
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Time Independent Perturbation Theory

This is satisfied if all terms with same power order are equal:
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Time Independent Perturbation Theory
First order in 
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Time Independent Perturbation Theory
First order in 
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Time Independent Perturbation Theory
First order correction:

One can also calculate the correction to the eigenstate:

Notice that j are the states different than the perturbed one, thus in case of 

perturbation, the wavefunction is affected also by  the unperturbed states 

close to n.
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Time Independent Perturbation Theory
First order correction:

One can also calculate the correction to the eigenstate:

Notice also that in case of degeneracy, different states have the same 

eigenvalue, thus the denominator in the summation makes no sense, in such 

a case!  We would need the degenerate perturbation theory…
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Time Independent Perturbation Theory
First order correction:

One can also calculate the correction to the eigenstate:

One can also calculate the second order correction:
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Time Independent Perturbation Theory
Let’s apply the perturbation theory to find the s.o. correction to the energy 
levels of Hydrogen:
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Time Independent Perturbation Theory
Let’s apply the perturbation theory to find the s.o. correction to the energy 
levels of Hydrogen:
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Time Independent Perturbation Theory

E! = − "! #"

$ %&'# $ ℏ$ = − #$

)&'# *
= −13.6 eV
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Time Independent Perturbation Theory

Together with the relativistic correction (not seen here) I obtain the new 
energy levels for H:
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Time Independent Perturbation Theory 20

Without the term of the 
fine structure, the energy 
was higher!
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The Variational Principle 21

Theorem:
If H is a Hamiltonian operator, and Eg (the ground state energy) is its 
minimum eigenvalue, then:

This is not obvious, because the wavefunction here is not an eigenstate of 
the operator, but a general vector of the Hilbert vector space.
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The Variational Principle 22

Theorem:
If H is a Hamiltonian operator, and Eg (the ground state energy) is its 
minimum eigenvalue, then:

Demonstration:
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The Variational Principle 23
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The Variational Principle 24

Theorem:
If H is a Hamiltonian operator, and Eg (the ground state energy) is its 
minimum eigenvalue, then:

The variational principle is very useful in many applications where the exact 
solutions of the S.E. cannot be found analytically. But, if we have hypotheses 
for a general formulation of the solutions (e.g. it is an exponential 
function, or it is a gaussian function, or it is …), then we can optimize the 
parameters of the “trial” solution, by minimizing the expectation value of the 
Hamiltonian.
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Multiple particle systems 25

The Hamiltonian of a multi-particle system can be written in general as:

𝐻 𝑥!, 𝑥$, … , 𝑥+, 𝑡 = -
,-!,+

𝑝,$

2𝑚,
+ 𝑉 𝑥!, 𝑥$, … , 𝑥+, 𝑡

Suppose that the particles do not interact with one another. This implies that 
each particle moves in a common potential:
𝑉 𝑥!, 𝑥$, … , 𝑥+, 𝑡 = ∑,-!,+𝑉 𝑥,, 𝑡 and hence     𝐻 𝑥!, 𝑥$, … , 𝑥+, 𝑡 = ∑,-!,+𝐻, 𝑥,, 𝑡

In other words, for the case of non-interacting particles, the multi-particle 
Hamiltonian of the system can be written as the sum of 𝑁 independent 
single-particle Hamiltonians. Then, the multi-particle wavefunction can be 
written as the product of N independent single-particle wavefunctions:

ψ 𝑥!, 𝑥$, … , 𝑥+, 𝑡 = ψ! 𝑥!, 𝑡 ψ$ 𝑥$, 𝑡 …ψ+ 𝑥+, 𝑡
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Helium atom 26

u A helium atom consists of a nucleus of charge +2𝑒 surrounded by two 
electrons. 

u The Hamiltonian of the system thus takes the form:

H = −
ℏ$

2m#
∇!$ + ∇$$ −

e$

4π ϵ/
2
r!
+
2
r$
−

1
r$ − r!

The five terms in the Hamiltonian represent, respectively, the kinetic 
energies of electrons 1 and 2, the nuclear attractions of electrons 1 and 2, 
and the repulsive interaction between the two electrons. It is this last 
contribution which prevents an exact solution of the Schrödinger equation.
In seeking an approximation to the ground state, we might first work out 
the solution in the absence of this last term…
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Helium atom 27

In seeking an approximation to the ground state, we might first work out 
the solution in the absence of this last term…
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Helium atom 28

In seeking an approximation to the ground state, we might first work out 
the solution in the absence of this last term…
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Helium atom 29

In seeking an approximation to the ground state, we might first work out 
the solution in the absence of this last term…

A significantly improved result can be obtained by keeping the same 
functional form, but replacing 2 by an adjustable parameter Z
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Helium atom 30

A significantly improved result can be obtained by keeping the same 
functional form, but replacing 2 by an adjustable parameter Z

And by exploiting the variational principle:

H = −
ℏ !

2m"
∇#! + ∇!! −

e!

4π ϵ$
Z
r#
+
𝑍
r!

+
e!

4π ϵ$
𝑍 − 2
r#

+
𝑍 − 2
r!

−
1

r! − r#



M
a

te
ria

ls 
Sc

ie
nc

e

Helium atom 31

H = −
ℏ !

2m"
∇#! + ∇!! −

e!

4π ϵ$
𝑍
r#
+
𝑍
r!

+
e!

4π ϵ$
𝑍 − 2
r#

+
𝑍 − 2
r!

−
1

r! − r#
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Helium atom 32

H = −
ℏ !

2m"
∇#! + ∇!! −

e!

4π ϵ$
𝑍
r#
+
𝑍
r!

+
e!

4π ϵ$
𝑍 − 2
r#

+
𝑍 − 2
r!

−
1

r! − r#
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Helium atom 33

H = −
ℏ !

2m"
∇#! + ∇!! −

e!

4π ϵ$
𝑍
r#
+
𝑍
r!

+
e!

4π ϵ$
𝑍 − 2
r#

+
𝑍 − 2
r!

−
1

r! − r#
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Helium atom 34

H = −
ℏ !

2m"
∇#! + ∇!! −

e!

4π ϵ$
𝑍
r#
+
𝑍
r!

+
e!

4π ϵ$
𝑍 − 2
r#

+
𝑍 − 2
r!

−
1

r! − r#

Physical interpretation: Z in the approximate wavefunction represents an effective 
nuclear charge. Each electron partially shields the other electron from the positively 
charged nucleus ...

Now the expected energy value is: 


