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Time-Dependent Perturbation Theory(introd.) 2

Everything we have done so far assumed the potential energy is a time 
independent function:
𝑉 𝐫, 𝑡 = 𝑉(𝒓)

and we have seen that in that case the T.D.S.E.:   𝑖ℏ )*
)+
= 𝐻 𝜓

can be solved by separation of variables:

ψ 𝒓, 𝑡 = ψ 𝒓 e ,i- +/ℏ

With ψ 𝒓 solution of the T.I.S.E:     𝐻 𝜓 = 𝐸 𝜓
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We know also that a general state of the system at t=0 can be written with 
some linear superposition of the eigenstates:

ψ 0 =2
!

𝑐! ψ!

Thus, the evolution of the system is written as:

ψ 𝑡 =$
!

𝑐! e "i#! $/ℏ ψ!

Now, the probability of finding the system in state 𝑛 at time 𝑡 is

P' t = ψ' ψ ( = c' exp −iE' t/ℏ ( = c' ( = P' 0

the probability of finding the system in state  𝜓𝑛 at time 𝑡 is exactly the same
as the probability of finding the system in this state at the initial time  𝑡=0

Time-Dependent Perturbation Theory(introd.)
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Now, the probability of finding the system in state 𝑛 at time 𝑡 is

P' t = ψ' ψ ( = c' exp −iE' t/ℏ ( = c' ( = P' 0

the probability of finding the system in state  𝜓𝑛 at time 𝑡 is exactly the same
as the probability of finding the system in this state at the initial time.

Because the time dependence of ψ is carried by the exponential factor 
(e "i#! $/ℏ ), which cancels out in ψ ', all probabilities and expectation values 
are constant in time. 

In fact, we know that if the system is in one of his eigenstates then, in the 
absence of an external perturbation, it remains in this state for ever. 

Time-Dependent Perturbation Theory(introd.)
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In fact, We know that if the system is in one of his eigenstates then, in the 
absence of an external perturbation, it remains in this state for ever. 

However, the presence of a small time-dependent perturbation can, in 
principle, give rise to a finite probability that if the system is initially in 
some eigenstate 𝜓𝑛 of the unperturbed Hamiltonian then it is found in some 
other eigenstate at a subsequent time. 

In this case, these states can be written as:

ψ 𝑡 =2
!

𝑐! 𝑡 exp −i𝐸! 𝑡/ℏ ψ!

Where now the coefficient 𝑐! 𝑡 are time dependent.

They depends on the time-dependent perturbation that we have turned on 
H’(t)

Time-Dependent Perturbation Theory(introd.)
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ψ 𝑡 =2
!

𝑐! 𝑡 exp −i𝐸! 𝑡/ℏ ψ!

Where now the coefficient 𝑐! 𝑡 are time dependent.

They depends on the time-dependent perturbation that we have turned on 
H’(t) with :

H t = H( + H) t

And hence also the probability to find the system in a certain state is time-
dependent:

P* t = c* t '

Time-Dependent Perturbation Theory(introd.)
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ψ 𝑡 =2
!

𝑐! 𝑡 exp −i𝐸! 𝑡/ℏ ψ!

Where now the coefficient 𝑐! 𝑡 are time dependent.

They depends on the time-dependent perturbation that we have turned on 
H’(t) with :

H t = H( + H) t

We can re-write the T.D.S.E. as:

iℏ
𝜕ψ 𝑡
𝜕𝑡

= 𝐻 𝑡 ψ 𝑡 = 𝐻( + 𝐻′ 𝑡 ψ 𝑡

Time-Dependent Perturbation Theory(introd.)
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ψ 𝑡 =2
!

𝑐! 𝑡 exp −i𝐸! 𝑡/ℏ ψ!

We can re-write the T.D.S.E. as:

iℏ
𝜕ψ 𝑡
𝜕𝑡

= 𝐻 𝑡 ψ 𝑡 = 𝐻( + 𝐻′ 𝑡 ψ 𝑡

𝐻( + 𝐻) ψ =2
!

𝑐!(𝑡) ex p −i𝐸! 𝑡/ℏ 𝐸! + 𝐻) ψ!

And also:

iℏ
𝜕ψ
𝜕𝑡

=2
!

iℏ
𝑑𝑐!
𝑑𝑡

+ 𝑐! 𝐸! exp −i𝐸! 𝑡/ℏ ψ!

Time-Dependent Perturbation Theory(introd.)
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T.D.S.E. iℏ +, $
+$ = 𝐻( + 𝐻′ 𝑡 ψ 𝑡

With 𝐻( + 𝐻) ψ = ∑! 𝑐!(𝑡) ex p −i𝐸! 𝑡/ℏ 𝐸! + 𝐻) ψ!

And iℏ +,
+$ = ∑! iℏ -.!

-$ + 𝑐! 𝐸! exp −i𝐸! 𝑡/ℏ ψ!

Thus: ∑! i ℏ -.!
-$ exp −i𝐸! 𝑡/ℏ ψ! = ∑! 𝑐!(𝑡) exp −i𝐸! 𝑡/ℏ 𝐻′ψ!

To simplify this equation, let’s focus on a two-state system where we have:
𝐻)ψ* = 𝐸*ψ*
𝐻)ψ( = 𝐸(ψ(

And:
ψ 𝑡 = 𝑐* 𝑡 exp −i𝐸* 𝑡/ℏ ψ* + 𝑐( 𝑡 exp −i𝐸( 𝑡/ℏ ψ(

Time-Dependent Perturbation Theory(introd.)



M
a

te
ria

ls 
Sc

ie
nc

e

10

2
!

i ℏ
𝑑𝑐!
𝑑𝑡

exp −i𝐸! 𝑡/ℏ ψ! =2
!

𝑐!(𝑡) exp −i𝐸! 𝑡/ℏ 𝐻′ψ!

To simplify this equation, let’s focus on a two-state system where we have:
ψ 𝑡 = 𝑐* 𝑡 exp −i𝐸* 𝑡/ℏ ψ* + 𝑐( 𝑡 exp −i𝐸( 𝑡/ℏ ψ(

Then:

iℏ
𝑑𝑐*
𝑑𝑡 exp −i𝐸* 𝑡/ℏ ψ* + iℏ

𝑑𝑐(
𝑑𝑡 exp −i𝐸( 𝑡/ℏ ψ(

= 𝑐* 𝑡 exp −i𝐸* 𝑡/ℏ 𝐻+ψ* + 𝑐( 𝑡 exp −i𝐸( 𝑡/ℏ 𝐻′ψ(

Or in a more compact form :

iℏ ̇𝑐* 𝑒 "i#" $/ℏ ψ* + ̇𝑐(𝑒 "i## $/ℏ ψ( = 𝑐* 𝑡 𝑒 "i#" $/ℏ 𝐻+ψ* + 𝑐( 𝑡 𝑒 "i## $/ℏ 𝐻′ψ(

Two-state system
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iℏ ̇𝑐* 𝑒 "i#" $/ℏ ψ* + ̇𝑐(𝑒 "i## $/ℏ ψ( = 𝑐* 𝑡 𝑒 "i#" $/ℏ 𝐻+ψ* + 𝑐( 𝑡 𝑒 "i## $/ℏ 𝐻′ψ(
Let’s apply the internal product with ψ*:

iℏ⟨ |ψ* ̇𝑐* 𝑒 "i#" $/ℏ ψ* + ̇𝑐(𝑒 "i## $/ℏ ψ(
= ⟨ |ψ* 𝑐* 𝑡 𝑒 "i#" $/ℏ 𝐻+ψ* + 𝑐( 𝑡 𝑒 "i## $/ℏ 𝐻′ψ(

Then:
iℏ ̇𝑐* 𝑒 "i#" $/ℏ = 𝑐* 𝑡 𝑒 "i#" $/ℏ ψ* 𝐻+ ψ* + 𝑐( 𝑡 𝑒 "i## $/ℏ ψ* 𝐻+ ψ(

Or in a more compact form :

̇𝑐* = − i
ℏ 𝑐* 𝑡 𝐻**+ + 𝑐( 𝑡 𝑒"i ##"#" $/ℏ𝐻*(+

Two-state system
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Thus:

̇𝑐* = − i
ℏ 𝑐* 𝑡 𝐻**+ + 𝑐( 𝑡 𝑒"i ##"#" $/ℏ𝐻*(+

and

̇𝑐( = − i
ℏ 𝑐( 𝑡 𝐻((+ + 𝑐* 𝑡 𝑒i ##"#" $/ℏ𝐻(*+

And in general for n-states:
𝑑𝑐/ 𝑡
𝑑𝑡

= −
i
ℏ
2
!

𝐻′/! 𝑡 exp iω/! 𝑡 𝑐! 𝑡

With ω,! = #$"#!
ℏ and 𝐻′,! 𝑡 = 𝑛 𝐻′ 𝑡 𝑚

n-states system
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And in general for n-states:
𝑑𝑐/ 𝑡
𝑑𝑡

= −
i
ℏ
2
!

𝐻′/! 𝑡 exp iω/! 𝑡 𝑐! 𝑡

u According to this equation, the time dependence of the set 
of 𝑁 coefficients 𝑐𝑛, which specifies the probabilities of 
finding the system in these eigenstates at time 𝑡, is 
determined by 𝑁 coupled first-order differential equations. 

u If we would be able to find exact solution to this system of 
ODE we needed no approximations at all.

u Unfortunately, we cannot generally find exact solutions  and 
we have to obtain approximate solutions. 

n-states system
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Going back to the 2-state system:

̇𝑐* = − i
ℏ 𝑐* 𝑡 𝐻**+ + 𝑐( 𝑡 𝑒"i ##"#" $/ℏ𝐻*(+

and

̇𝑐( = − i
ℏ 𝑐( 𝑡 𝐻((+ + 𝑐* 𝑡 𝑒i ##"#" $/ℏ𝐻(*+

If 𝐻′** 𝑡 = 𝐻′(( 𝑡 = 0 (this is typical)
Then:

̇𝑐* = − i
ℏ 𝑐(𝑒

"i-%$𝐻*(+ and ̇𝑐( = − i
ℏ 𝑐*𝑒

i-%$𝐻(*+

With ω) =
##"#"
ℏ

Two-state system
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Suppose that the particle starts out in the lower state: 
𝑐* 0 = 1 and 𝑐( 0 = 0

u Zeroth order approximation (no perturbation at all):

𝑐*
()) 𝑡 = 1 and  𝑐(

()) 𝑡 = 0 (they would stay this way forever)

u First order:
If we now put this 𝑐'

(() 𝑡 into ̇𝑐* = − i
ℏ 𝑐(𝑒

"i-%$𝐻*(+

01"
0$ ∝ 𝑐( = 0 ⇒ 𝑐*

(*) 𝑡 = 1

And 𝑐*
()) 𝑡 in ̇𝑐( = − i

ℏ 𝑐*𝑒
i-%$𝐻(*+

𝑑𝑐(
𝑑𝑡 = −

i
ℏ 𝑒

i-%$𝐻(*+ ⇒ 𝑐(
* 𝑡 = −

i
ℏA)

$
𝐻(*+ 𝑡+ 𝑒i-%$𝑑𝑡′

Two-state system



M
a

te
ria

ls 
Sc

ie
nc

e

16

u Zeroth order approximation (no perturbation at all):

𝑐*
()) 𝑡 = 1 and  𝑐(

()) 𝑡 = 0 (they would stay this way forever)

u First order:
𝑐*
(*) 𝑡 = 1

𝑐(
(*) 𝑡 = −

i
ℏA)

$
𝐻(*+ 𝑡+ 𝑒i-%$𝑑𝑡′

Putting them back in the initial equations…

u Second order:
01"
0$ = − i

ℏ 𝑒
"i-%$𝐻*(+ − i

ℏ ∫)
$𝐻(*+ 𝑡+ 𝑒i-%$𝑑𝑡′

𝑐*
(() 𝑡 = −

1
ℏ(A)

$
𝐻*(+ 𝑡+ 𝑒−i-%$" A

)

$"

𝐻(*+ 𝑡+′ 𝑒i-%$""𝑑𝑡′′ 𝑑𝑡′

Two-state system
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u Zeroth order approximation (no perturbation at all):

𝑐*
()) 𝑡 = 1 and  𝑐(

()) 𝑡 = 0 (they would stay this way forever)

u First order:

𝑐*
(*) 𝑡 = 1 𝑎𝑛𝑑 𝑐(

(*) 𝑡 = −
i
ℏA)

$
𝐻(*+ 𝑡+ 𝑒i-%$+𝑑𝑡′

Putting them back in the initial equations…

u Second order:

𝑐*
(() 𝑡 = −

1
ℏ(A)

$
𝐻*(+ 𝑡+ 𝑒−i-%$" A

)

$"

𝐻(*+ 𝑡+′ 𝑒i-%$""𝑑𝑡′′ 𝑑𝑡′

While: 𝑐(
(() 𝑡 = 𝑐(

(*) 𝑡

Two-state system
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Suppose that the perturbation has a sinusoidal time dependence:

The first order will give:

𝑐(
(*) 𝑡 = −

i
ℏ𝑉21A)

$
𝑐𝑜𝑠 ω𝑡+ 𝑒i-%$&𝑑𝑡′ =

= −
i
2ℏ𝑉21A)

$
𝑒i (-%2-)$&+ 𝑒i (-%"-)$& 𝑑𝑡+

= −
𝑉21
2ℏ

𝑒i (-%2-)$−1
(ω)+ω)

+
𝑒i (-%"-)$−1
(ω)−ω)

Sinusoidal perturbations
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Suppose that the perturbation has a sinusoidal time dependence:

The first order will give:

𝑐(
(*) 𝑡 = −

𝑉21
2ℏ

𝑒i (-%2-)$−1
(ω)+ω)

+
𝑒i (-%"-)$−1
(ω)−ω)

If we restrict our attention to ω) that are very close to ω
the second term in the square brackets dominates:

Sinusoidal perturbations
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Suppose that the perturbation has a sinusoidal time dependence:

The first order will give (for ω) that are very close to ω ):

𝑐(
(*) 𝑡 = −

𝑉21
2ℏ

𝑒i (-%"-)$−1
(ω)−ω)

That can be also written as:

𝑐(
(*) 𝑡 = −i

𝑉21
ℏ

𝑠𝑖𝑛 (ω)−ω)𝑡/2
(ω)−ω)

𝑒i (-%"-)$/(

Sinusoidal perturbations
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𝑐(
(*) 𝑡 = −i

𝑉21
ℏ

𝑠𝑖𝑛 (ω)−ω)𝑡/2
(ω)−ω)

𝑒i (-%"-)$/(

The transition probability, the probability that a particle which 
started out in the state ψ* will be found, at time t, in the state 
ψ( is:

𝑃2→' 𝑡 =
𝑉21 2

ℏ2
𝑠𝑖𝑛( (ω)−ω)𝑡/2

(ω)−ω)2

Sinusoidal perturbations
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The transition probability, the probability that a particle which 
started out in the state ψ* will be found, at time t, in the state 
ψ( is:

𝑃2→' 𝑡 =
𝑉21 2

ℏ2
𝑠𝑖𝑛( (ω)−ω)𝑡/2

(ω)−ω)2

The most remarkable feature of this result is that, as a function 
of time, the transition probability oscillates sinusoidally. 

Sinusoidal perturbations
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𝑐(
(*) 𝑡 = −i

𝑉21
ℏ

𝑠𝑖𝑛 (ω)−ω)𝑡/2
(ω)−ω)

𝑒i (-%"-)$/(

The transition probability, the probability that a particle which 
started out in the state ψ* will be found, at time t, in the state 
ψ( is:

𝑃2→' 𝑡 =
𝑉21 2

ℏ2
𝑠𝑖𝑛( (ω)−ω)𝑡/2

(ω)−ω)2

Sinusoidal perturbations
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If you want to maximize your chances of provoking a 
transition, you should not keep the perturbation on for a long 
period: You do better to turn it off' after a time 3

(-%"-)
, and 

hope to "catch" the system in the upper state.

𝑃2→' 𝑡 =
𝑉21 2

ℏ2
𝑠𝑖𝑛( (ω)−ω)𝑡/2

(ω)−ω)2

Sinusoidal perturbations
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An electromagnetic wave (such as light) consists of oscillating electric and 
magnetic fields. An atom, in the presence of a passing light wave, responds 
primarily to the electric component, a sinusoidally oscillating electric field:

If the wavelength is long (compared to the size of the atom), we
can ignore the spatial variation in the field:

Electric dipole approximation
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If the wavelength is long (compared to the size of the atom), we
can ignore the spatial variation in the field:

Electric dipole approximation
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An electromagnetic wave (such as light) consists of oscillating electric and 
magnetic fields. An atom, in the presence of a passing light wave, responds 
primarily to the electric component, a sinusoidally oscillating electric field:

The associated energy (providing the perturbing Hamiltonian) is:

Emission and absorption of radiation
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An electromagnetic wave (such as light) consists of oscillating electric and 
magnetic fields. An atom, in the presence of a passing light wave, responds 
primarily to the electric component, a sinusoidally oscillating electric field:

The associated energy (providing the perturbing Hamiltonian) is:

With the perturbation potential:

Emission and absorption of radiation
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If an atom starts out in the "lower" state ψ2, and you shine a polarized 
monochromatic beam of light on it, the probability of a transition to the 
"upper" state ψ' is given by:

𝑃*→( 𝑡 =
𝑝𝐸0
ℏ

( 𝑠𝑖𝑛( (ω)−ω)𝑡/2
(ω)−ω)2

In this process, the atom absorbs a photon or in a more precise 
formalism, the atom absorbs an energy 𝐸2− 𝐸1 = ℏω)

Emission and absorption of radiation
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But, if an atom starts out in the ”higher" state ψ', the probability of a 
transition to the ”lower" state ψ2 is given by:

𝑃(→* 𝑡 =
𝑝𝐸0
ℏ

( 𝑠𝑖𝑛( (ω)−ω)𝑡/2
(ω)−ω)2

Emission and absorption of radiation



M
a

te
ria

ls 
Sc

ie
nc

e

31

If the particle is in the upper state, and you shine light on it, it 
can make a transition to the lower state, and in fact the 
probability of such a transition is exactly the same as for a 
transition upward from the lower state.
This process, which was first discovered by Einstein, is called 
stimulated emission.
In the case of stimulated emission, the electromagnetic field 
gains energy ℏω) from the atom: one photon went in and two 
photons came out!

Emission and absorption of radiation
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There is a third mechanism by which radiation interacts with matter; it is 
called spontaneous emission. Here an atom in the excited state makes a 
transition downward, with the release of a photon but without any applied 
electromagnetic field to initiate the process.

This is the mechanism that accounts for the normal decay of an atomic 
excited state. There is no external perturbation, but the “zero-point” 
radiation serves to activate the spontaneous emission.

Emission and absorption of radiation


