SBDD: kinase inhibitors

Example of SBDD: Imatinib

- Imatinib: inhibitor of Bcr-Abl kinase.
- Was developed by SBDD in the late 1990s by biochemist Nicholas Lydon, a former researcher for Novartis, and oncologist Brian Druker of Oregon Health and Science University (OHSU).

Inibitori di chinasi

Inhibiting kinases: the selectivity problem

ATP binding site: conserved in all kinases

Static representation of the ATP binding pocket, all kinases have a non-conserved hydrophobic pocket

From HIT to LEAD: adding interactions with kinase Bcr-Abl binding pocket (SBDD)

Ligand-protein (drug-target) complexes

Imatinib in ABL kinase binding site

- The remarkable success of the targeted cancer drug STI-571, also known as imatinib, Gleevec[™] or Glivec[™], is due to its ability specifically to inhibit disease-causing protein kinases.
- The remarkable clinical success of the Novartis drug STI-571 is seen as a spectacular proof-of-concept for the development of targeted cancer therapies, but in conventional kinase activity screening assays it is a rather unremarkable micromolar inhibitor.

la forma attiva delle chinasi

Consists of the smaller N-lobe (top) and the larger C-lobe (bottom). Key structural elements are shown, including the hinge connecting the two lobes, the C-helix, the phosphate-binding P-loop, the kinase activating A-loop, and the β-sheet interaction of the A-loop with the C-lobe that stabilizes the extended A-loop conformation. Also shown as ball-and-stick models are the positions of the bound ADP in the kinase active site, as well as the phosphotyrosine residues of the substrate peptide.

• The active c-Kit structure demonstrates how a number of interconnected structural elements must function together to perform the phosphoryl transfer reaction.

 The C-helix needs to be properly positioned to form the conserved Glu- Lys pair that orients the ATP phosphate groups la forma inattiva delle chinasi (Autoinhibited c-Kit kinase structure)

- Autoinhibited c-Kit kinase structure.
- The entire juxtamembrane region is visible in this struc- ture and inserts between the kinase N- and C-lobes, shifting the C-helix, and blocking the A-loop from attaining its active conformation by forming a similar βsheet with the C-lobe. The autoinhibited A-loop is folded back over the kinase C-lobe rather than in an extended conformation.

- La forma AUTOINIBITA DELLE CHINASI
- the P-loop must also pack with the phosphates and seal the reaction site from solvent.

FIGURE 10.6 The c-Kit DFG motif structural switch. (a) Autoinhibited c-Kit kinase. The DFG motif is in the "Phe-Out" conformation, with the inserted TRP residue of the JM region blocking the Phe from its active position. (b) Active c-Kit Kinase. The DFG motif is in the "Phe-In" orientation within the activation loop in an extended conformation.

- The ATP molecule must also be able to access the hydrophobic pocket and interact with the hinge region, and this binding is dictated by the conformation of the DFG motif.
- In the active "Phe-In" conformation, the DFG motif induces the A-loop to assume an extended conformation that is compatible with substrate binding.

FIGURE 10.6 The c-Kit DFG motif structural switch. (a) Autoinhibited c-Kit kinase. The DFG motif is in the "Phe-

Il binding con ATP e substrato

Stabilizing secondary structure elements in active and inactive c-Kit kinase.
 Cα ribbon drawings of active (top) and autoinhibited inactive (bottom) c-Kit kinase viewed from the side looking into the interdomain cleft.

Imatinib stabilizes the inactive form of Abl kinase

Triazole analogues

(5)

The activity of 1,2,3-triazole analogs ^{a,b,c}					
Compound	Parent compound	Biological target	lsostere activity evaluation	Parent compound activity evaluation	
Amide isoste	eres				
1	Linezolid	Staphylococcus aureus	0.5–1 µg/ml"	0.5–2 µ.g/ml ⁱⁱ	
2	Merck compound	BACE1	2.0 μM ^{iv}	16.3 μM ^{iv}	
3	RN-18	H9 cells (HIV-1 Vif)	0.001 μM ^{iv}	<mark>6 μM</mark> ^{iv}	
4	Amprenavir	HIV-1Pr wt	$6\pm0.5~\mathrm{nM^{iv}}$	-	
		HIV-1Pr _{6X}	15.7 nM ⁱ ∕	-	
5	Imatinib	K562 (Bcr-Abl)	$\begin{array}{c} 0.89 \pm 0.003 \ \mu\text{M}^{\text{iv}} \\ 0.03 \ \mu\text{M}^{\text{iv}} \end{array}$	0.37 ± 0.09 μM ^{iv} 0.38 μM ^{iv}	

inibitori di chinasi

- Tipo I: agiscono sulla forma attiva (Phe-in) e competono con il substrato o il cofattore (ATP) per il binding con il sito attivo
- Esempi: gefitininb, erlotinib
- Tipo II: si legano alla conformazione inattiva (Phe-out) e la stabilizzano.
- Esempi: Imatininb, lapatinib, sorafenib.

Inibitori tipo I

Gefitinib

Iressa (EGFR inib.) (Astra-Zeneca)

Registrato per tumore NSCL (Non-small cell lung cancer) Erlotinib

in Fase III Per diversi tipi di tumori fra cui tumore NSCL e tumore pancreatico

(OSI Pharmaceuticals)

Inibitori tipo II

Lapatinib

Abrocitinib (Cibinqo[®])

A selective JAK1 inhibitor developed by Pfizer for the treatment of moderate-to-severe Atopic Dermatitis

Atopic Dermatitis

Atopic Dermatitis

Atopic Dermatitis

JAK/STAT pathway

Target: JAK family

JAK1: major role in the signaling of proinflammatory cytokines JAK2: interaction with receptors for hematopoietic growth factors JAK3: primary role in mediating immune function TYK2: regulation of antiviral and inflammation response

Introduction

Tofacitinib

PK issues ↓ polar features to decrease lipophilicity (logP≤2)

Tofacitinib CP-690550 JAK3 IC50 = 1nM

First in class

Tofacitinib

PK issues ↓ polar features to decrease lipophilicity (logP≤2)

Tofacitinib CP-690550 JAK3 IC50 = 1nM

Tofacitinib: PAN-JAK inhibitor

- Reduction of hemoglobin observed in patients
- IC50 (JAK1)=3,2 nM
 IC50 (JAK2)=4,1 nM
 IC50 (JAK3)=1,6 nM
 IC50 (TYK2)=34,0 nM

Interference with Erythropoietin receptor and Thrombopoietin receptor

Tofacitinib: PAN-JAK inhibitor

- Reduction of hemoglobin observed in patients
- IC50 (JAK1)=3,2 nM
 IC50 (JAK2)=4,1 nM
 IC50 (JAK3)=1,6 nM
 IC50 (TYK2)=34,0 nM

Interference with Erythropoietin receptor and Thrombopoietin receptor

SBDD optimization for Abrocitinib

Sulfones Sulfonamides and 'Reverse Sulfonamides' Sulfamides نۍ. بېړ نى ، Ĥ 19 9 11 C ŝ لىمى CN NH н Н 15 20 23

Abrocitinib

Results:

- Selectivity generally improved as the side chains grew larger
- Sulfamide subset is of lower interest (poorest JAK1 potency)
- Sulfonamides achieve the best selectivity for JAK1
- Enhanced metabolic stability when log D_{7.4}<2.0

IC50(JAK1)= 29 nM IC50(JAK2)= 803 nM IC50(JAK3)= >10,000 nM IC50(TYK2)= 1250 nM logD=1.9

PF-04965842

Abrocitinib

Results:

- Selectivity generally improved as the side chains grew larger
- Sulfamide subset is of lower interest (poorest JAK1 potency)
- Sulfonamides achieve the best selectivity for JAK1
- Enhanced metabolic stability when log D_{7.4}<2.0

Abrocitinib

Understanding JAK1/JAK2 selectivity

The residue differences (within 5 Å radius from the ligand) are located in the hinge region, phosphate-binding region, (i.e., P-loop) and in the solvent exposed regions toward the periphery of the binding site.

location in the	kinase domain	JAK1	JAK2
hing	ge	Phe958	Tyr931
hing	ge	Ser961	Tyr934
hing	ge	Lys965	Arg938
hing	ge	Glu966	Asp939
P-lc	оор	Glu883	Lys857
P-lc	оор	His885	Asn859
P-lc	юр	Lys888	Ser862

Understanding JAK1/JAK2 selectivity

Although the JAK1 kinase domain shares only 53% overall sequence identity with JAK2, most of the residues in the ATP-binding site are conserved between the two enzymes.

Understanding JAK1/JAK2 selectivity

Although the JAK1 kinase domain shares only 53% overall sequence identity with JAK2, most of the residues in the ATP-binding site are conserved between the two enzymes.

Phase I

• 79 Healthy subjects, adults, randomized in a 3:1 ratio of Abrocitinib:placebo

Most frequent treatment-emergent adverse events:

- Headache (n=13)
- Diarrhoea (n=11)
- Nausea (*n*=11)

Phase I

• 79 Healthy subjects, adults, randomized in a 3:1 ratio of Abrocitinib:placebo

Most frequent treatment-emergent adverse events:

- Headache (n=13)
- Diarrhoea (*n*=11)
- Nausea (*n*=11)

Abrocitinib

Phase II

 267 partecipants (adults) randomly assigned 1:1:1:1:1 to receive Abrocitinib (200 mg, 100 mg, 30 mg, or 10 mg) or placebo for 12 weeks

Phase II

Abrocitinib

Phase III

 391 partecipants (adolescents ≥12 and adults) randomly assigned 2:2:1 to receive once-daily Abrocitinib in 200mg or 100mg doses or placebo

Toxicity and metabolism

- No deaths, no serious adverse events \rightarrow Nonclinical toxicology
- CYP450-family mediated metabolism:

Conclusions

- JAK1 inhibitor with 28-fold selectivity over JAK2, >340-fold over JAK3, 43-fold over TYK2 as well as the broader kinome
- 30-40% of patients treated with Abrocitinib show desired improvement in key-index for Atopic Dermatitis
- Focus on the long-term efficacy and safety

Bibliography

Doi:10.3390/microorganisms8111743 https://doi.org/10.1038/s41392-021-00791-1 http://dx.doi.org/doi:10.1016/j.phrs.2015.10.021 Doi: 10.1021/jm1004286 http://dx.doi.org/10.1021/acs.jmedchem.7b01598 Doi:10.1111/bcp.13612 Doi:10.1001/jamadermatol.2019.2855 Doi:10.1001/jamadermatol.2020.1406

Journal of Medicinal Chemistry

pubs.acs.org/jmc

Discovery of (*R*,*E*)-*N*-(7-Chloro-1-(1-[4-(dimethylamino)but-2enoyl]azepan-3-yl)-1*H*-benzo[*d*]imidazol-2-yl)-2-methylisonicotinamide (EGF816), a Novel, Potent, and WT Sparing Covalent Inhibitor of Oncogenic (L858R, ex19del) and Resistant (T790M) EGFR Mutants for the Treatment of EGFR Mutant Non-Small-Cell Lung Cancers

Gérald Lelais,^{*,†} Robert Epple,[†] Thomas H. Marsilje,[†] Yun O. Long,[†] Matthew McNeill,[†] Bei Chen,[†] Wenshuo Lu,[†] Jaganmohan Anumolu,[‡] Sangamesh Badiger,[§] Badry Bursulaya,[†] Michael DiDonato,[†] Rina Fong,^{†,||} Jose Juarez,[†] Jie Li,[†] Mari Manuia,[†] Daniel E. Mason,[†] Perry Gordon,[†] Todd Groessl,[†] Kevin Johnson,[†] Yong Jia,[†] Shailaja Kasibhatla,[†] Chun Li,[†] John Isbell,[†] Glen Spraggon,[†] Steven Bender,[†] and Pierre-Yves Michellys[†]

A.A. 2022/23

Lorenzo Taglietti

Non-Small-Cell Lung Cancer (NSCLC)

NSCLC causes abnormal cells growth in the lungs to reproduce rapidly and out of control

NSCLC – EGFR: structure and function

NSCLC – EGFR: pathology outlines

NSCLC – EGFR: T790M mutation

Substitution of Threonine 790 with Methionine

Design of EGF816 – HTS hit

Design of EGF816 – From hit to lead

Benzimidazole core

Design of EGF816 – From hit to lead

Linker optimization

> After 90 min of incubation 32g showed $IC_{50} < 0.002 \mu M$

Design of EGF816 – Lead selectivity and properties

Design of EGF816 – Lead ADME optimization

Nazartinib – Binding T790M EGFR receptor

Nazartinib – In vivo preclinical characterization

Nazartinib – In vivo preclinical characterization

- ➢ IHC staining of WT EGFR in mice
- Even at 100 mg/kg dose EGF816 showed no significant effect on WT EGFR phosphorylation
- Erlotinib showed significant and dose dependent inhibition of WT EGFR

- In vivo efficacy in EGF816-resistant HCC827 mouse xenograft model
- Tumour can adapt other escape mechansims to develop drug resistance
- Combination therapies can overcome resistance

Nazartinib – Clinical trials and future perspectives

NCT02108964 **2016 – Safety**

Manageable safety profile

Phase

- Maculopapular rash is an adverse effect characteristic of nazartinib \succ
- > No ECG QT prolongation events, against 10% of patients in the osimertinib clinical trial

Phase	2016 –	NCT02108964			
▶ 69% of patents there are not showed disease control					
\blacktriangleright Median DOR = 25 months, PFS = 18 months and OS = 56 % at 33 months (life expectancy with no					
treatme	ent is 7 months)				
		a still the last has been	\sim (ONO as summarized in a fractional second is stick)		

 \succ Clinically meaningful antitumor activity in the brain (CNS recurrence is a frequent complication)

Phase	2018 –	NCT03529084				
This is	a phasenp, ar jennabel,	randomized contr	olled multi-center	global study o	designed to eva	aluate
the sa	fety and efficacy of sin	igle agent nazartii	nib (EGF816) cor	npared with i	investigator's c	hoice
(erlotin	ib or gefitinib) in patient	s with locally adva	nced or metastation	NSCLC who	are treatment	naïve
and w	hose tumors harbor E	GFR activating m	nutations (L858R	or ex19del)	\rightarrow estimated	study
comple	etion date 2024					

References

- Abdullah, M.N., Ali, Y. and Abd Hamid, S. (2021) "Insights into the structure and drug design of benzimidazole derivatives targeting the epidermal growth factor receptor (EGFR)," *Chemical Biology & Drug Design*, 100(6), pp. 921–934. Available at: https://doi.org/10.1111/cbdd.13974.
- Das, D., Wang, J. and Hong, J. (2021) "Next-generation kinase inhibitors targeting specific biomarkers in non-small cell lung cancer (NSCLC): A recent overview," *ChemMedChem*, 16(16), pp. 2459–2479. Available at: https://doi.org/10.1002/cmdc.202100166.
- Hennessey, K. M., Smith, T. R., Xu, J. W., Alas, G. C., Ojo, K. K., Merritt, E. A., & Paredez, A. R. (2016). Identification and validation of small-gatekeeper kinases as drug targets in Giardia Lamblia. *PLOS Neglected Tropical Diseases, 10*(11). doi:10.1371/journal.pntd.0005107
- Hsu, P., Jablons, D. M., Yang, C., & You, L. (2019). Epidermal growth factor receptor (EGFR) pathway, yes-associated protein (YAP) and the regulation of programmed death-ligand 1 (PD-L1) in non-small cell lung cancer (NSCLC). International Journal of Molecular Sciences, 20(15), 3821. doi:10.3390/ijms20153821
- Jia, Y. et al. (2016) "EGF816 exerts anticancer effects in non-small cell lung cancer by irreversibly and selectively targeting primary and acquired activating mutations in the EGF receptor," *Cancer Research*, 76(6), pp. 1591–1602. Available at: https://doi.org/10.1158/0008-5472.can-15-2581.
- Lelais, G. et al. (2016) "Discovery of (r,e)-n-(7-chloro-1-(1-[4-(dimethylamino)but-2-enoyl]azepan-3-yl)-1h-benzo[d]imidazol-2-yl)-2-methylisonicotinamide (EGF816), a novel, potent, and WT sparing covalent inhibitor of oncogenic (L858R, ex19del) and resistant (T790M) EGFR mutants for the treatment of EGFR mutant non-small-cell lung cancers," *Journal of Medicinal Chemistry*, 59(14), pp. 6671–6689. Available at: https://doi.org/10.1021/acs.jmedchem.5b01985.
- Lemmon, M.A., Schlessinger, J. and Ferguson, K.M. (2014) "The EGFR family: Not so prototypical receptor tyrosine kinases," Cold Spring Harbor Perspectives in Biology, 6(4). Available at: https://doi.org/10.1101/cshperspect.a020768.
- Tan, D.S.-W. et al. (2020) "Safety and efficacy of Nazartinib (EGF816) in adults with EGFR-mutant non-small-cell lung carcinoma: A multicentre, open-label, phase 1 study," *The Lancet Respiratory Medicine*, 8(6), pp. 561–572. Available at: https://doi.org/10.1016/s2213-2600(19)30267-x.
- Tan, D.S.W. *et al.* (2022) "Nazartinib for treatment-naive EGFR-mutant non-small cell lung cancer: Results of a phase 2, singlearm, open-label study," *European Journal of Cancer*, 172, pp. 276–286. Available at: https://doi.org/10.1016/j.ejca.2022.05.023.
- Yun, C.-H. et al. (2008) "The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP," Proceedings of the National Academy of Sciences, 105(6), pp. 2070–2075. Available at: https://doi.org/10.1073/pnas.0709662105.