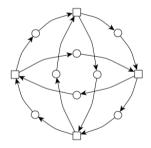
UNIVERSITA DEGLI STUDI DI MILANO—BICOCCA CORSO DI LAUREA MAGISTRALE IN INFORMATICA

MODELLI DELLA CONCORRENZA

LOGICHE TEMPORALI E MODEL-CHECKING



```
public class SaggioProdCons
                                                       public class Produttore extends Thread
  public static void main (String [] args)
                                                           private Piatto p; // Buffer
                                                           private int
                                                                           n:
    Piatto p = new Piatto():
    Produttore a = new Produttore (p, 1);
                                                           public Produttore (Piatto b, int i)
    Consumatore b = new Consumatore (p, 2);
    a.start():
                                                              p = b: n = i:
    b.start():
                                                           public void run ()
public class Piatto
                                                              for (int i = 1: i < 10: i++)
  private int valore;
                                                               try {
  private boolean pieno:
                                                                  sleep((long)(Math.random()*1000));}
                                                                catch (InterruptedException e) { }
  public synchronized int preleva () {
    while ( pieno == false ) {
                                                                p.deposita (i);
      try { wait(); }
                                                                System.out.println(n + " deposita " + i);
      catch (InterruptedException e) { }
    pieno = false;
                                                        }
    notifyAll ();
    return valore;
                                                       public class Consumatore extends Thread
  public synchronized void deposita (int v) {
                                                           public void run ()
```

Correttezza dei programmi concorrenti

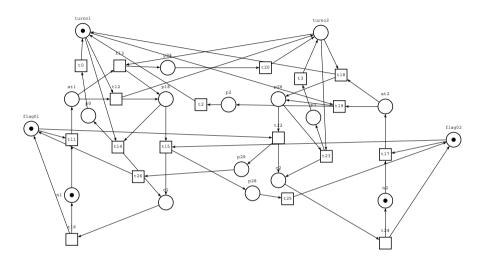
Ogni oggetto prodotto viene prima o poi consumato

Nessun oggetto viene consumato più di una volta

Il sistema non raggiunge mai uno stato di deadlock

. . .

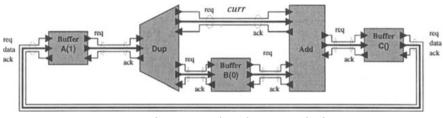
Reti di Petri



I due processi non si trovano mai contemporaneamente nella sezione critica (i posti c1 e c2 non sono mai marcati contemporaneamente)

Se un processo richiede l'accesso alla sezione critica, prima o poi avrà il permesso (se è marcato il posto $\alpha t1$, prima o poi sarà marcato il posto c1)

Circuiti



Micropipeline circuit for Fibonacci calculator

Tratta da H Barringer et al., Abstract Modelling of Asynchronous Micropipeline Systems using Rainbow.

Se un segnale è presente sulla linea req in uscita dal Buffer A(1), prima o poi un segnale sarà presente sulla linea ack in entrata al Buffer A(1)

. . .

Sistemi reattivi

Sistemi concorrenti, distribuiti, asincroni

Non obbediscono al paradigma input-computazione-output

Non si possono analizzare con gli strumenti della logica di Hoare

"Se un messaggio è stato spedito, prima o poi sarà consegnato al destinatario"

"La spia d'allarme resta accesa fino a quando il dispositivo viene spento"

"A partire da qualsiasi stato è possibile riportare il sistema allo stato iniziale"

"I due processi non si trovano mai contemporaneamente nella sezione critica"

Analisi di sistemi concorrenti

Problema stabilire se un sistema reattivo è "corretto"

Metodo

- 1. esprimiamo il criterio di correttezza come formula di un opportuno linguaggio logico;
- 2. rappresentiamo (modelliamo) il sistema nella forma di sistema di transizioni;
- 3. valutiamo se la formula è vera nel sistema di transizioni.

Strumenti sistemi di transizioni (modelli di Kripke), logiche temporali, algoritmi.

Sistemi di transizioni

Elementi di un sistema di transizioni: stati, transizioni di stato

$$A = (Q, T)$$

q: insieme degli stati

 $T \subseteq Q \times Q$: insieme delle transizioni di stato

Nozioni utili: cammino, cammino massimale

Cammino: $\pi = q_0 q_1 q_2 \cdots$, $(q_i, q_{i+1}) \in T$ per ogni i

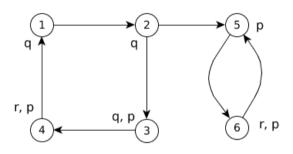
 $AP = \{z_1, z_2, \cdots\}$: insieme di *proposizioni atomiche*

Dato un sistema di transizioni A=(Q,T), associamo a ogni stato $q\in Q$ l'insieme delle proposizioni atomiche che sono vere in quello stato.

$$I: Q \longrightarrow 2^{AP}$$

Modello di Kripke

$$A = (Q, T, I)$$



$$AP = \{p, q, r\} \quad Q = \{1, 2, 3, 4, 5, 6\}$$

$$T = \{(1, 2), (2, 3), (2, 5), (5, 6), (6, 5), \cdots\}$$

$$I(4) = \{p, r\} \quad I(2) = \{q\} \quad \cdots$$

Logica temporale lineare

LINEAR TEMPORAL LOGIC (LTL)

Sintassi

Semantica

No apparato deduttivo (algoritmi)

Linear temporal logic (LTL) – sintassi

Proposizioni atomiche

$$AP = \{p_1, p_2, \cdots, p_i, \cdots\}$$

Esempi

- "la spia d'allarme è accesa"
- "il messaggio è stato spedito"
- "il processo P è nella sezione critica"
- "il buffer è pieno"

Linear temporal logic (LTL) – sintassi

Formule ben formate – FBF_{LTL}

- ogni proposizione atomica è una formula ben formata
- le costanti logiche TRUE e FALSE sono formule ben formate
- se α e β sono formule ben formate, allora $\neg \alpha$, $\alpha \lor \beta$, $\alpha \land \beta$,
- $\alpha \rightarrow \beta$ sono formule ben formate

Operatori temporali: se α e β sono formule ben formate, allora

- $X\alpha$ "nel prossimo stato α "
- F α "prima o poi α " (eventually)
- $G\alpha$ "sempre α "
- $\alpha U\beta$ " α fino a quando β "

sono formule ben formate

FG α α è invariante da un certo istante in poi

FG α α è invariante da un certo istante in poi

GF α α è vera in un numero infinito di stati

FG α α è invariante da un certo istante in poi

GF α α è vera in un numero infinito di stati

 $G \neg (cs_1 \land cs_2)$ Mutua esclusione

FG α α è invariante da un certo istante in poi

GF α α è vera in un numero infinito di stati

 $G \neg (cs_1 \land cs_2)$ Mutua esclusione

 $G (req \longrightarrow XF ack)$

 $G \, (req \longrightarrow (req \, U \, ack))$

FG α α è invariante da un certo istante in poi

GF α α è vera in un numero infinito di stati

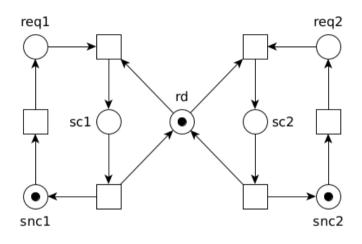
 $G \neg (cs_1 \land cs_2)$ Mutua esclusione

 $G (req \longrightarrow XF ack)$

 $G \, (req \longrightarrow (req \, U \, ack))$

 $G \, (req \longrightarrow ((req \, \triangle \, \neg ack) \, U \, (ack \, \triangle \, \neg req)))$

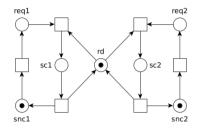
Esempio

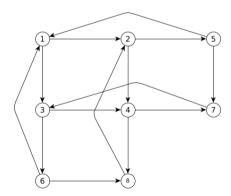


rd: risorsa disponibile snc: sezione non critica

sc: sezione critica req: richiesta pendente

Esempio





```
1: rd, snc1, snc2
```

2: rd, req1, snc2

3: rd, snc1, req2

4: rd, req1, req2

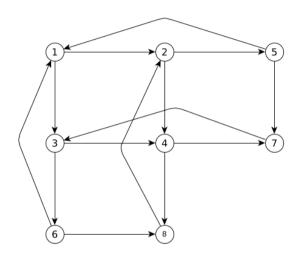
5: sc1, snc2

6: snc1, sc2

7: sc1, req2

8: req1, sc2

Esempio



```
1: rd, snc1, snc2
2: rd, req1, snc2
3: rd, snc1, req2
4: rd, req1, req2
5: sc1, snc2
6: snc1, sc2
7: sc1, req2
8: req1, sc2
```

$$G \neg (sc1 \land sc2)$$
 $G (req1 \longrightarrow Fsc1)$

 $AP = \{p, p_1, p_2, \cdots\}$: insieme di *proposizioni atomiche*

Dato un sistema di transizioni A=(Q,T), associamo a ogni stato $q\in Q$ l'insieme delle proposizioni atomiche che sono vere in quello stato.

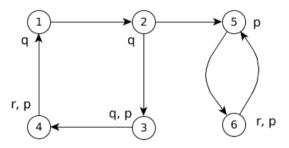
$$I: Q \longrightarrow 2^{AP}$$

Modello di Kripke

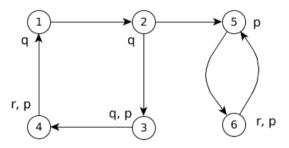
$$A = (Q, T, I)$$

Cammino: $\pi = q_0 q_1 q_2 \cdots$, $(q_i, q_{i+1}) \in T$ per ogni i

Suffisso di ordine i di π è il cammino $\pi^{(i)} = q_i q_{i+1} \cdots$



Famiglie di cammini massimali



Famiglie di cammini massimali

 $(1234)^{\omega}$ $(1234)^*(12)(56)^{\omega}$

Interpretiamo le formule di LTL su un modello di Kripke

Procediamo in due fasi:

- 1) definiamo un criterio per stabilire se una formula α è vera in un cammino massimale π
- 2) diciamo che la formula è vera rispetto a uno stato q se è vera in tutti i cammini massimali che partono da q

Sia $\pi = q_0 q_1 q_2 \cdots$ un cammino e sia α una formula di LTL

 $\pi \models \alpha$ significa che α è vera nel cammino π

Definiamo la relazione |= per induzione sulla struttura delle formule.

Sia $\pi = q_0 q_1 q_2 \cdots$ un cammino e sia α una formula di LTL

 $\pi \models \alpha$ significa che α è vera nel cammino π

Definiamo la relazione |= per induzione sulla struttura delle formule.

Supponiamo che α e β siano due formule, p una proposizione atomica.

Sia $\pi = q_0 q_1 q_2 \cdots$ un cammino e sia α una formula di LTL

 $\pi \models \alpha$ significa che α è vera nel cammino π

Definiamo la relazione |= per induzione sulla struttura delle formule.

Supponiamo che α e β siano due formule, p una proposizione atomica.

$$\pi \models p \quad \text{ sse, } \quad p \in I(q_0)$$

$$\pi \models \neg \alpha \quad sse \quad \pi \not\models \alpha$$

$$\pi \models \alpha \lor \beta$$
 sse $\pi \models \alpha \circ \pi \models \beta$

Operatori temporali

Operatori temporali

$$\pi \models X\alpha$$
 se e solo se $\pi^{(1)} \models \alpha$

Operatori temporali

$$\pi \models X\alpha$$
 se e solo se $\pi^{(1)} \models \alpha$

$$\pi \models \mathsf{F}\alpha \quad \text{se e solo se} \quad \exists i \in \mathsf{N} : \pi^{(i)} \models \alpha$$

Operatori temporali

$$\pi \models X\alpha$$
 se e solo se $\pi^{(1)} \models \alpha$

$$\pi \models F\alpha \quad \text{se e solo se} \quad \exists i \in N : \pi^{(i)} \models \alpha$$

$$\pi \models G\alpha$$
 se e solo se $\forall i \in N : \pi^{(i)} \models \alpha$

L'operatore U

Ipotesi: $\alpha, \beta \in FBF$

 $\pi \models \alpha \cup \beta$ se e solo se

L'operatore U

Ipotesi: $\alpha, \beta \in FBF$

$$\pi \models \alpha \cup \beta$$
 se e solo se

1. esiste
$$i \in N$$
 tale che $\pi^{(i)} \models \beta$ $(\pi \models F\beta)$

L'operatore U

Ipotesi: $\alpha, \beta \in FBF$

$$\pi \models \alpha \cup \beta$$
 se e solo se

- 1. esiste $i \in N$ tale che $\pi^{(i)} \models \beta$ $(\pi \models F\beta)$
- $\text{ 2. per ogni h, } \quad 0 \leqslant h < i, \quad \pi^{(h)} \models \alpha$