IMPIEGO del PERBORATO in redox e per l'attivazione della luminescenza

REATTIVITA' REDOX del PERBORATO DI SODIO ESAIDRATO

La struttura dello ione perossoborato è la seguente:

Lo stato di ossidazione dell'ossigeno nel gruppo perossido -(0-0)2-è -1

A temperatura di circa 60° C il perborato si **decompone in soluzione acquosa liberando perossido di idrogeno H_2O_2**, instabile rispetto alla reazione di **disproporzione**:

$$2 H_2 \Omega_{2(aq)} = 2 H_2 \Omega_{(l)} + \Omega_{2(q)}$$

Dunque, il perborato può, agire **sia come ossidante** (l'ossigeno del gruppo perossido si riduce allo stato di ossidazione -2) **sia come riducente** (l'ossigeno si ossida e si forma ossigeno molecolare \mathbb{O}_2 con numero di ossidazione \mathbb{O}_2). Il perborato è in grado, ad esempio, di essere ridotto da KI (che si ossida ad \mathbb{I}_2 di colore colore scuro) o di essere ossidato da KMn \mathbb{O}_4 (che si riduce a Mn $^{2+}$).

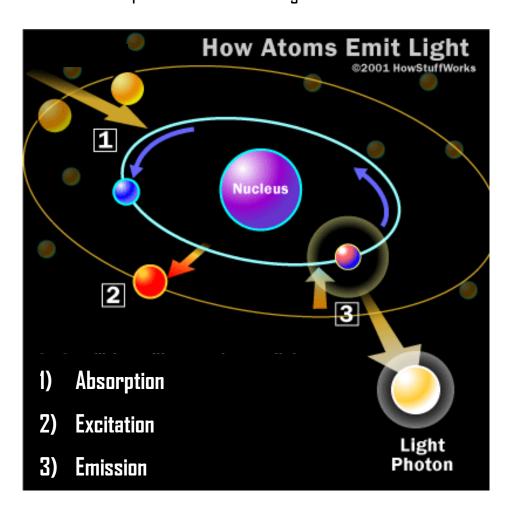
ESPERIENZA di LABORATORIO

REATTIVITA' REDOX del PERBORATO DI SODIO ESAIDRATO

- Prendere 2 provette da 25 mL e disporle nel porta provette
- Sciogliere 0.5 g in un beaker da 150 mL circa di perborato in 15 ml di soluzione di acido solforico H_2SO_4 4 M
- Utilizzare la soluzione per le due prove seguenti:

Provetta 1) aggiungere 3-4 ml di soluzione di perborato e poi addizionare 1 ml circa di soluzione 0.02 M di KMnO_4 .

Provetta 2) aggiungere 3-4 ml di soluzione di perborato e poi addizionare aggiungere 2 ml circa di una soluzione al 2% in peso di Kl.



IMPIEGO del PERBORATO per l'attivazione della luminescenza

ASSORBIMENTO ed EMISSIONE

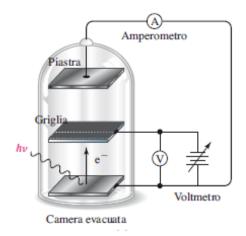
Alcune nozioni di base

Le onde elettromagnetiche sono caratterizzate sia da una lunghezza d'onda λ che da una frequenza \mathbf{v} che sono tra loro in relazione tramite la legge λ $\mathbf{v}=\mathbf{c}=$ velocità della luce nel vuoto = 300.000 km/s lnoltre i fotoni sono portatori di una energia $\mathbf{E}=\mathbf{h}~\mathbf{v}$

l fotoni interagiscono con gli elettroni in tre modi:

Assorbimento: un fotone viene assorbito da un elettrone che va dal livello energetico iniziale E_1 al livello eccitato E_2 , con: $E_2 = E_1 + hv$

Emissione spontanea: l'elettrone che si trova in uno stato eccitato decade dal livello E_2 al livello E_1 , con $E_1 = E_2 - hv$.


Emissione stimolata: un elettrone che si trova in uno stato eccitato, che viene colpito da un fotone può diseccitarsi **emettendo un altro fotone**.

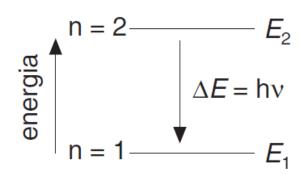
Effetto fotoelettrico e modello di Bohr (cfr. capitolo 7 Silberberg)

Alcune nozioni di base

Dati sperimentali: interazione luce / materia → spettri caratteristici

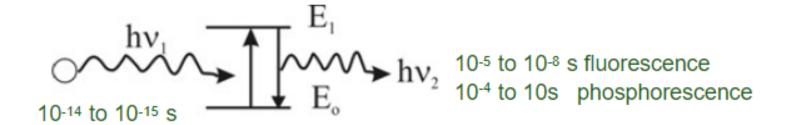
di emissione di assorbimento

Einstein: effetto fotoelettrico: ipotizza natura corpuscolare della luce con energia del fotone


$$E = h v$$

Bohr:

Un atomo può scambiare energia con l'esterno solo se un suo elettrone passa da un'orbita stazionaria a un'altra. Se ciò avviene, l'energia scambiata corrisponde all'assorbimento, o emissione, di un *fotone* con energia (hv) pari alla differenza di energia tra i due stati coinvolti nella transizione.

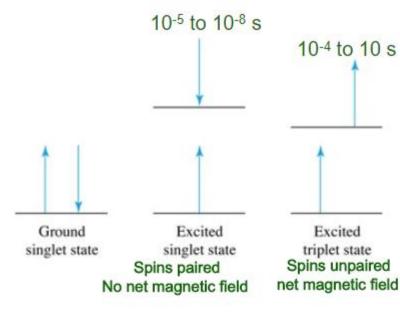

Se un elettrone passa dallo stato n = 2 allo stato n = 1 si ha l'emissione di un fotone di energia pari a:

$$E_2 - E_1 = hv$$

FLUORESCENZA E FOSFORESCENZA

Alcune nozioni di base

- Excitation of e- by absorbance of hv.
- Re-emission of h_V as e⁻ goes to ground state.
- Use hv₂ for qualitative and quantitative analysis


FLUORESCENZA E FOSFORESCENZA

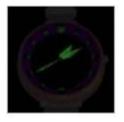
Differenti scale temporali

Stato di singoletto:

elettroni con spin

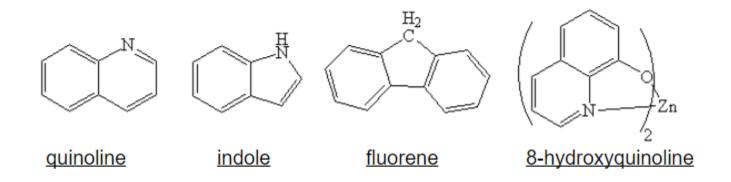
opposto

Stato di tripletto: elettroni con medesimo spin


<u>Fluorescence</u>

Phosphorescence

Example of Phosphorescence

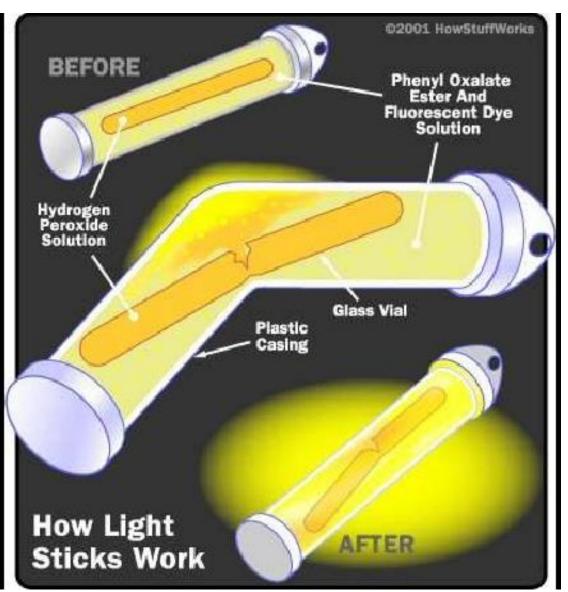

1 sec

640 sec

FLUORESCENZA, FOSFORESCENZA E CHEMILUMINESCENZA

Il ruolo della struttura

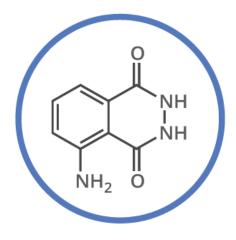
• Solitamente si tratta di composti aromatici, e cioè che contengono sistemi π



Chemiluminescenza: l'eccitazione avviene attraverso «attivazione chimica» e non con radiazione elettromagnetica

- chemical reaction yields an electronically excited species that emits light as it returns to ground state.
- relatively new, few examples

$$A + B \rightarrow C^* \rightarrow C + hv$$


LIGHT STICKS and GLOW STICK BRACELET

phenyl oxalate ester (glow sticks)

CRIME SCENE CHEMISTRY – LUMINOL

WHAT TRIGGERS LUMINOL'S CHEMILUMINESCENCE?

BLOOD

BLEACH

FAECES

URINE

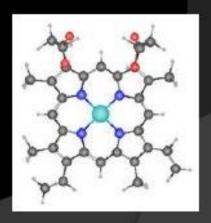
HORSERADISH

The reaction that triggers luminol's chemiluminescence has to be catalysed. The iron in blood can carry out this role, but luminol can also be oxidised by bleach to achieve the same effect.

Enzymes in faeces and horseradish can also help trigger the reaction.

HOW DOES LUMINOL REACT TO PRODUCE LIGHT?

Luminol solution also contains an oxidising agent, such as hydrogen peroxide, and a base. In the presence of a catalyst, the reaction produces energy, promoting electrons in the product to higher energy levels, before they fall back down and release their excess energy as light.


© COMPOUND INTEREST 2016 - WWW.COMPOUNDCHEM.COM | Twitter: @compoundchem | Facebook: www.facebook.com/compoundchem This graphic is shared under a CC BY-NC-ND licence. Luminol photo: Osajus, Flickr.com, CC-BY licence (www.flickr.com/photos/osajus/12424273244/)

Forensic Application of Luminol

- 1930s: German forensic scientist discovered luminol could be used to test for presence of blood
- Blood is naturally alkaline (pH is slightly basic...7.35 to 7.45)
- Blood contains
 Hemoglobin, responsible for carrying
 oxygen throughout the body
- Hemoglobin contains the trace metal Iron (Fe)
 - Iron in hemoglobin catches oxygen atoms so RBC can carry them throughout the body
 - Iron in blood acts as a catalyst, oxidizing luminol and creating a faint glow

Drawbacks of Luminol

- Forensics in the media
- Luminol may react with other chemicals and produce a glow, not just blood
 - Reacts with cleaning reagents, such as bleach
 - What can this tell us about a crime scene
- Luminol can also destroy genetic evidence in blood
 - Makes DNA testing less efficient or impossible
 - Should not be used where there is little blood evidence present
 - You don't want to further dilute the blood with luminol or compromise the little genetic evidence available
- Luminol often is used as a last resort to support trace evidence from the scene

ESPERIENZA di LABORATORIO

Equipments e vetreria necessari

Cilindro graduato

Beaker

Vetrini d'orologio

Beuta

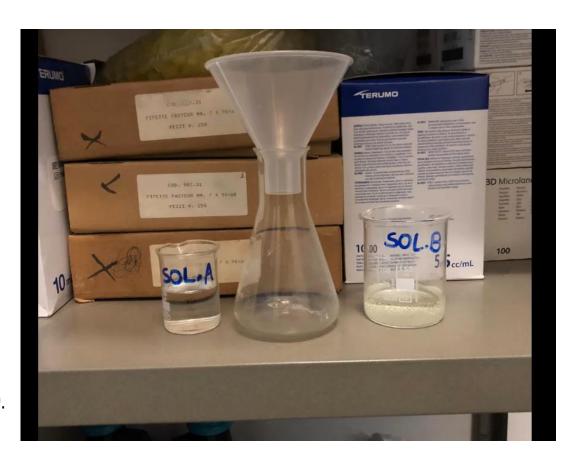
Spatola

ancoretta magnetica

Piastra riscaldante e agitante

Pipetta Pasteur

Reattivi necessari


Perborato di sodio esaidrato

Procedura sperimentale

- 1. Preparare una soluzione basica, dissolvendo O.1 g circa di luminol su bilancia analitica in 38 mL di acqua distillata (usare cilindro graduato da 100 mL) e aggiungere 2 mL di NaOH 3M (con pipetta Pasteur); lasciare sotto agitazione fino a completa dissoluzione (soluzione A).
- 2. Pesare circa 0.8 g sodio perborato su bilancia analitica e scioglierlo in 32 mL di H20 *(usare cilindro graduato da 100 mL) ed aggiungere (con pipetta Pasteur) 4 mL di soluzione di K3[Fe(CN)6] al 3% (soluzione B).
- 3. Andare in una stanza buia e **versare la soluzione A e B contemporaneamente** in
 un imbuto a tramoggia posto su di una beuta
 da 150 mL e visualizzare la luce emessa

* Se non si scioglie e si ottiene una sospensione va bene comunque