Introduction to Phytotecnologies and Phytomanagement

Werther Guidi Nissim

Department of Biotechnology and Biosciences – University of Milano-Bicocca - Italy

Phytotechnologies

• The term phytotechnology describes the **application of science** and engineering to **solve problems** and provide solutions through **plants**.

• The term underlies the use of **plants** as **living technologies** to help address environmental challenges.

Phytotechnologies

• Phytotechnolgies involves **identifying** biological systems that are most adaptable to human needs.

Phytotechnologies

 Phytotechnology includes all plant-based pollution remediation and prevention systems, including, phytoremediation, constructed wetlands, green roofs, green walls and planted landfill caps.

Phytoremediation – What?

 Phytoremediation describes the degradation and/or removal and/or stabilization of a particular contaminant on a polluted site by a specific plant or group of plants, and their associated microorganisms.

Phytoremediation – Why?

Conventional remediation **techniques** show several weaknesses.

'Pump-and-treat' (cleaning polluted groundwater through extraction, filtration and recharge methods) and 'dig-and-haul' (where polluted soils are dug up and shipped off site), are:

- Expensive
- Single-outcome technologies
- Limited site-design potential beyond treatment
- Often extremely invasive and disruptive (soil quality)

Phytoremediation – Why?

OPPORTUNITIES

1- Vegetation-based remediation has been found to be **less expensive** in comparison with industry-based technologies and approaches.

Parameters	Incineration	Dig-and-Haul	Phytoremediation
Surface (m ²)	10 000	10 000	10 000
Depth (m)	0.2	0.2	0.2
Total soil volume (m ³)	2000	2000	2000
Average soil density (t m ⁻³)	2.6	2.6	2.6
Soil mass t	5200	5200	5200
Unit Cost (\$ t⁻¹)	500-600	100-200	25-50
Total cost (\$)	2.6 - 3 M\$	0.5 -1 M\$	130 -260 K\$

From : Greenberg et al 2006 modified

MORE CERTAIN

LESS CERTAIN

Dig and haul

Incineration

Low temperature thermal

Soil washing

Air sparging and bioventing

Bioslurry reactors

Composting

Landfarming

Phytotechnologies

Natural attenuation

2- Plant-based systems are **natural**, **passive**, **solar energy-driven** methods of addressing the **cleanup** and **regeneration** of several types of polluted sites

3 - Phytoremediation leaves the **soil intact**, even **improved**, unlike other, more invasive methods of remediation

4- High public acceptance, particularly if the site is located close to or within residential neighborhoods, (phytoremediation is a natural, visually and aesthetically pleasing remediation technology)

Ancillary potential benefits

Community use: The involvement of stakeholders can offer opportunities to engage local communities with phytotechnology installations.

Educational use: providing an outdoor classroom experience for local students and people.

Habitat creation: The introduction of vegetation as a natural remediation technique increases the amount and variety of habitat on a formerly polluted and abandoned site.

Biomass production: phytoremediation stands can be harvested and used for the production of biomass for **bioenergy**, creating an economic product that compensates remediation costs.

CONSTRAINTS

- Some soils may be too toxic or infertile for any plants to be grown.
- Phytoremediation is limited to relatively shallow contaminated sites and is dependent on the adaptability of the plants used.

- The elongated timescale of phytoremediation may preclude its use in short-term site regeneration projects.
- Many projects take at least 5 years or more to reach maturity and some could be designed as legacy projects, with lifespans of 50 years or more.

MORE CERTAIN

LESS CERTAIN

Dig and haul

Incineration

Low temperature thermal

Soil washing

Air sparging and bioventing

Bioslurry reactors

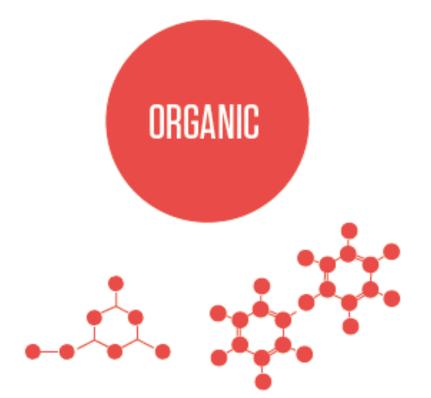
Composting

Landfarming

Phytotechnologies

Natural attenuation

In some cases, plants may need to be **harvested** and **disposed** as a waste to remove a pollutant; this can be costly and energy intensive.



Monitoring may be required and soil- and groundwater-testing practices may be **costly**

Current legal and regulatory conditions surrounding phytoremediation may be difficult to navigate (missing in some countries).

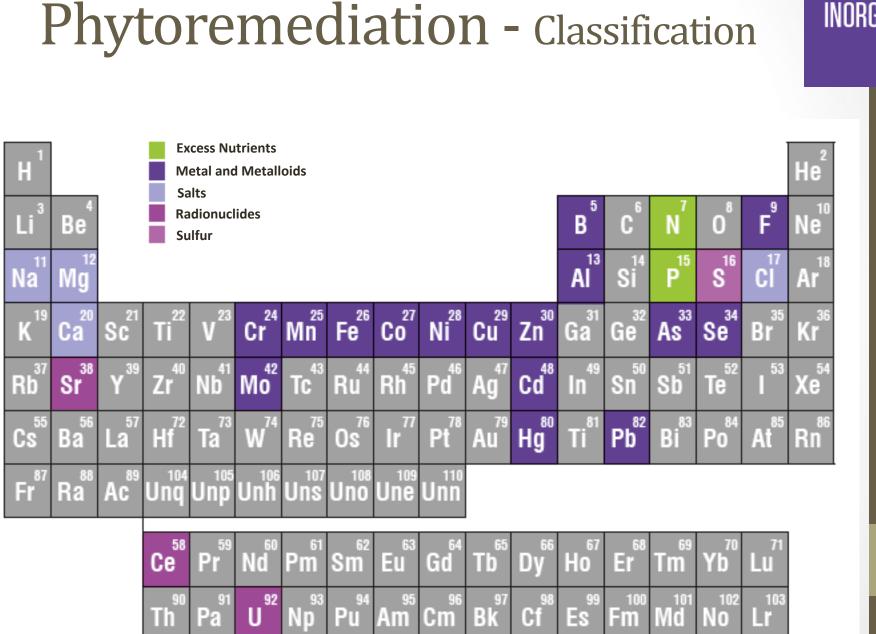
ORGANIC CONTAMINANTS

Pollutants compounds containing bonds of carbon, oxygen and hydrogen

INORGANIC CONTAMINANTS

Elemental pollutants released into the environment

Common Organic Pollutants **Successfully Targetable** by Phytoremediation


Pollutant	Typical Sources
PetroleumHydrocarbons:Oil,Gasoline, Benzene, Toluene, PAHs, gasadditive:MTBE:Methyl Tertiary ButylEther	Fuel spills, leaky underground or above-ground storage tanks
Chlorinated Solvents:such as TCE:trichloroethylene(mostcommonpollutant of groundwater)	
Pesticides : Atrazine, Diazinon, Metolachlor, Temik (to name a few)	Herbicides, insecticides and fungicides from agricultural and landscape applications
Explosives: RDX	Military activities

ORGANIC

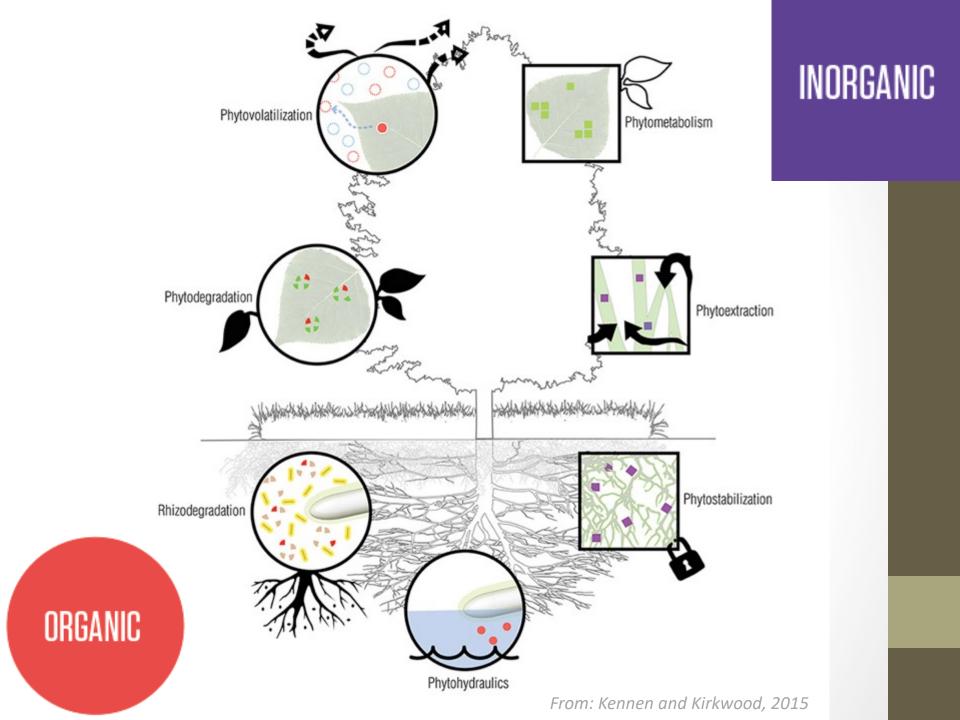
ORGANIC

Common Organic Pollutants **Not Easily Targetable** by Phytoremediation

Pollutant	Typical Sources
Persistent Organic Pollutants : Including DDT, Chlordane, PCBs	Historic use as pesticides or in products such as insulation and caulking
Explosives: TNT	Military activities

INORGANIC

INORGANIC

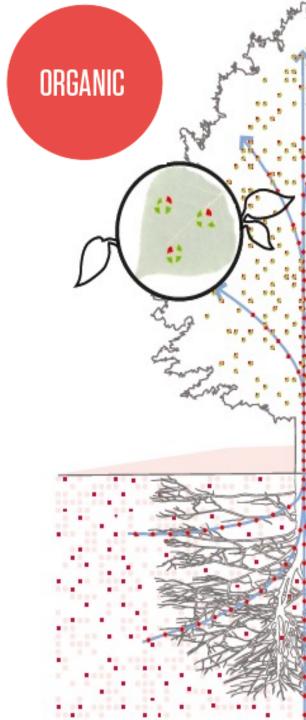

Common Inorganic Pollutants **<u>Successfully Targetable</u>** by Phytoremediation

Pollutant	Typical Sources
Plant Macronutrients: Nitrogen and Phosphorus	Wastewater, landfills, agriculture and landscape practices
Metals/Metaolloids: Arsenic (As), Nickel (Ni), Selenium (Se) (shorter time frame) Cadmium (Cd) and Zinc (Zn) (longer time frame)	Mining, industry, emissions, automobiles and agriculture

INORGANIC

Common Inorganic Pollutants **Not Easily Targetable** by Phytoremediation

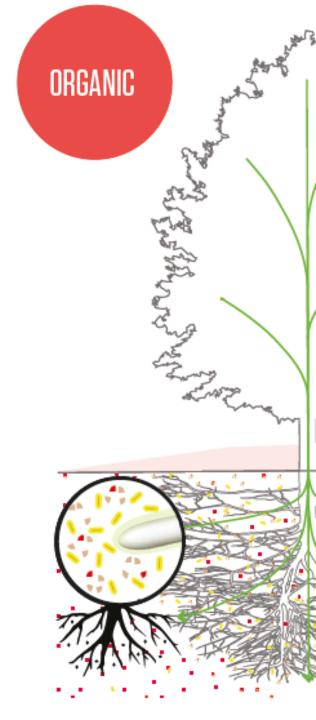
Pollutant	Typical Sources
Metals/Metalloids: Boron (B), Cobalt (Co), Copper (Cu), Chromium (Cr), Iron (Fe), Manganese (Mn), Molybdenum (Mo), Lead (Pb), Fluorine (F), Mercury (Hg), Aluminum (Al)	automobiles, agriculture,
Salts: Sodium chloride, Magnesium chloride	Road de-icing, gas fracking and oil drilling, fertilizers, herbicides
RadioactiveIsotopes:Cesium,Strontium, Uranium	Military and energy production activities



1. Phytodegradation

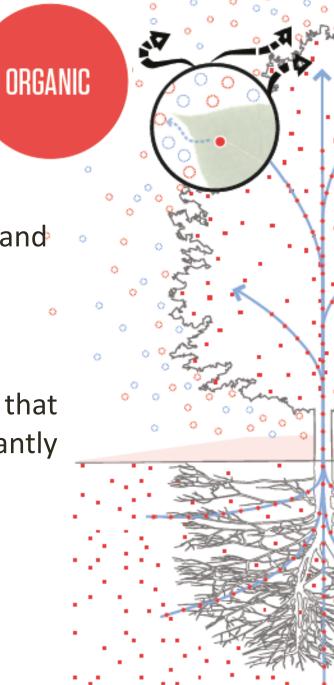
The contaminant is taken up by the plant's root and **broken down** into (often) non-toxic metabolites.

The plant often uses such by-product metabolites in its growth process, so little contamination remains.


The degradation occurs during photosynthesis or by internal enzymes and/or microorganisms (endophytes) living within the plant.

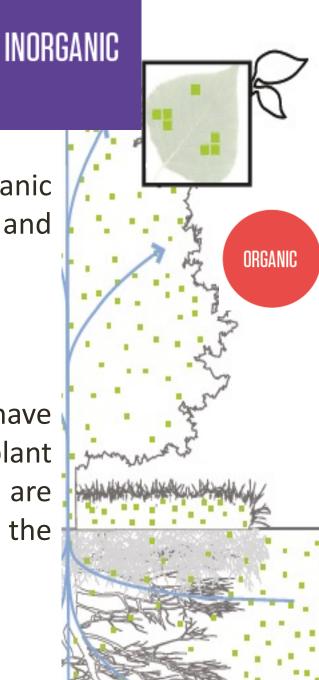
2. Rhizodegradation

 The root exudates released by the plant and/or the soil microorganisms around the roots break down the contaminant.

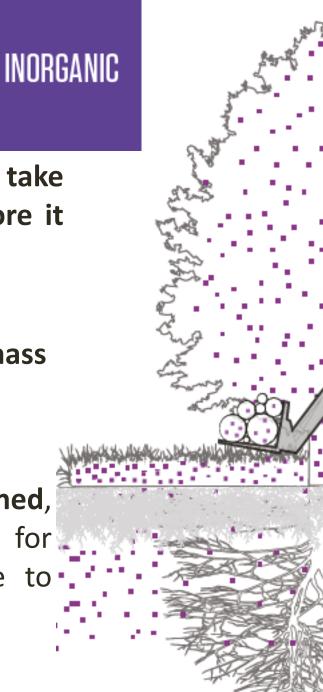

 The plant essentially acts as a reactor by helping to increase numbers of microorganisms and sometimes encouraging the growth of specific degrading communities of microbes

3. Phytovolatilization

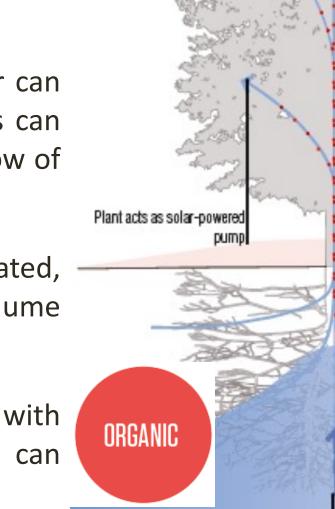
 The plant takes up the pollutant in the soil and transpires it to the atmosphere as a gas.


• The gas is usually released slowly enough that the surrounding air quality is not significantly affected.

4. Phytometabolism


 The nutrients needed by plants (inorganic elements such as N, P, K) are processed and turned into plant biomass.

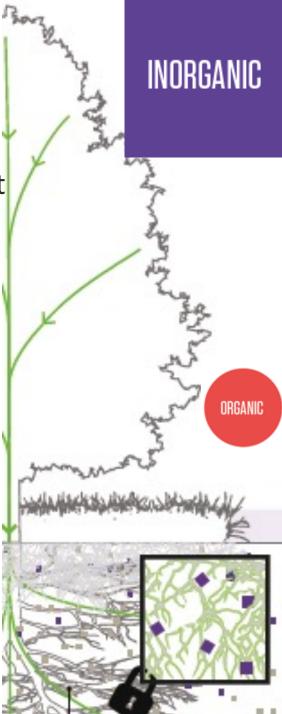
Sometimes when **organic contaminants** have been broken down by a plant (phytodegradation), the metabolites are **phytometabolized** and incorporated into the plant's biomass.


5. Phytoextraction

- Phytoextraction is the ability of the plant to take up a pollutant from soils and water and store it into the biomass.
- To remove pollutants from the site, **biomass** must be **harvested** before the leaf drop.
- The harvested plant material can be burned, followed by disposal in a landfill, reused for biomass or burned and smelted into ore to collect valuable metals (called phytomining)

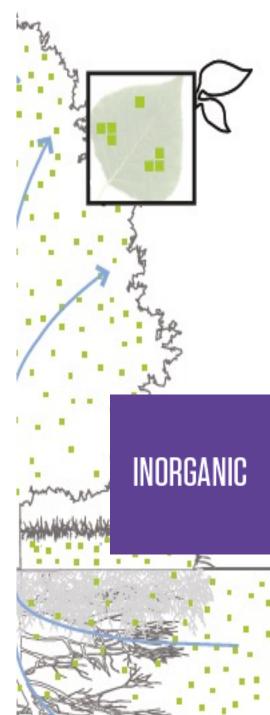
6. Phytohydraulics

- Phytohydraulics is the **pull** created as water is brought into the roots.
- The pull can be so strong that groundwater can be drawn towards a plant and many plants can actually change the direction or stop the flow of groundwater.
- If the groundwater is contaminated, phytohydraulics may be able to attenuate plume movements.
- This technique coupled phytodegradation/phytovolatilization eliminate the pollutant.



INORGANIC

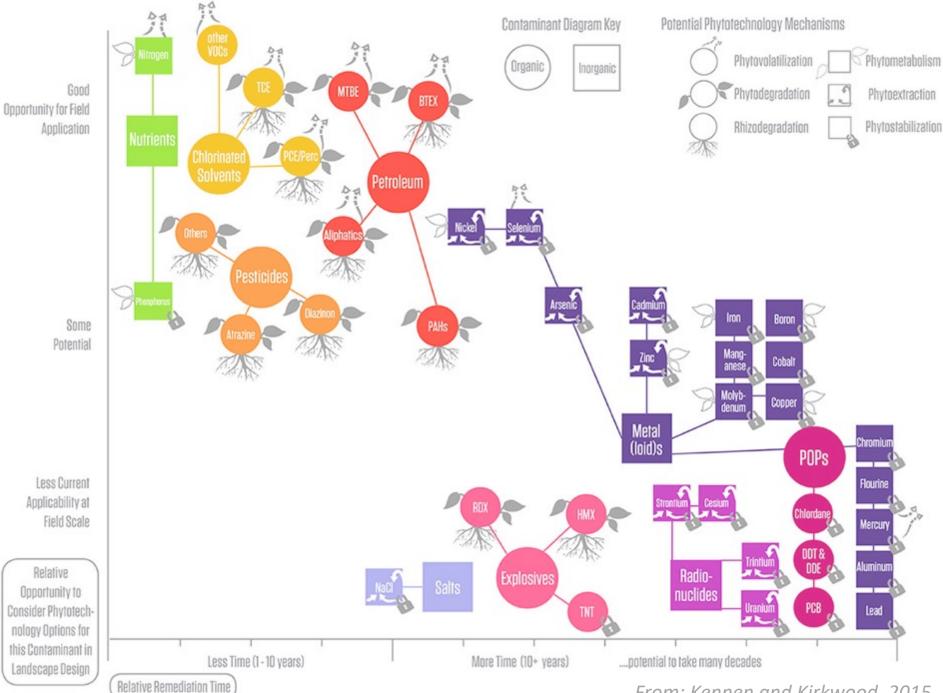
7. Phytostabilization


 The plant holds the contaminant in place so that it does not move off site.

 The plant releases phytochemicals into the soil that bind contaminants making them less bioavailable.

8. Rhizofiltration

 In constructed wetlands and stormwater filters, (e.g. willow vegetation filters) the roots of plants filter out pollutants from the water.



Name

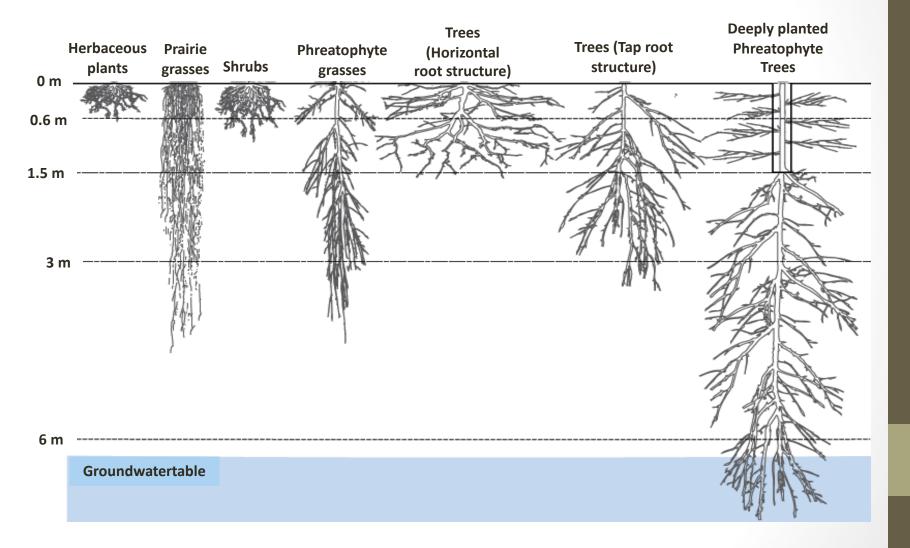
Description

Pollutant

Phytodegradation	Plant destroys it	ORGANIC
Rhizodegradation	Soil biology destroys it	ORGANIC
Phytovolatilization	Plant turns it into a gas	ORGANIC INORGANIC
Phytometabolism	Plant uses it in growth, incorporates it into biomass	ORGANIC
Phytoextraction	Plant takes it up, stores it and is harvested	ORGANIC INORGANIC
Phytohydraulics	Plant draws it close and contains it with water	ORGANIC
Phytostabilization/ Phytosequestration	Plant caps and holds it in place	ORGANIC
Rhizofiltration	Contaminant is filtered from water by roots and soil	ORGANIC INORGANIC

From: Kennen and Kirkwood, 2015

Plant characteristics and installation considerations


Plant characteristics and installation considerations

1 - TOLERANCE TO POLLUTION AND COMPETITIVENESS

- If plants cannot grow on a site, it is impossible for a phytotechnology system to be successful.
- When selecting species, the very first qualifier to consider is whether it will **tolerate** the encountered concentrations of pollutants.
- Hardy perennials, which adapt to the local climate and aggressively outcompete weeds are preferred.

2 - ROOT DEPTH AND STRUCTURE

 Since the plant must be able to reach the pollutant, phytoremediation is limited by root depth.

Plant characteristics and installation considerations

Deep soil and/or groundwater pollution

• Prairie perennial species.

• **Phreatophytes** (usually they have at least a part of roots constantly in touch with water). These plants send long root systems in search of water and can reach depths of up to 6-8 m (e.g. poplar and willow).

Plant characteristics and installation considerations

Shallow soil pollution

- When contamination is near the surface, species with fibrous root zones are able to come in contact with contamination, because of the number of small, dense roots dispersed through the soil.
- Fibrous roots provide more surface area for colonization by microorganisms and allow close interaction between the contaminant and the microbiology associated with roots.

Plant Species for Phytoremediaion of Organic Compounds: Deeprooted tree and shrub species in temperate regions

Latin	Common	Petroleum Category Targeted	Contaminant	Vegetation Type	Reference
Acer platanoides	Norway Maple	Easy	BTEX	Tree	Cook and Hesterberg, 2012
Alnus glutinosa	Black Alder	Both		Tree/Shrub	Tischer and Hubner, 2002
Betula pendula	European White Birch	Hard	РАН	Tree	Rezek et al., 2009
Celtis occidentalis	Hackberry	Both	BTEX-TPH-PAH	Tree	Cook and Hesterberg, 2012
Eucalyptus spp.	Eucalyptus	Easy	BTEX	Tree	Coltrain, 2004
Fraxinus pennsylvanica	Green Ash	Hard	РАН	Tree	Spriggs et al., 2005
Paulownia tomentosa	Princess Tree	Both	РАН	Tree	Macci et al., 2012
					Applied Natural Sciences, Inc., 1997
					Barac et al., 2009
					Burken and Schnoor, 1997a
					Coltrain, 2004
					Cook et al., 2010
					Cook and Hesterberg, 2012
					El-Gendy et al., 2009
					Euliss et al., 2008
					Euliss, 2004
					Fagiolo and Ferro, 2004
	Poplar species and hybrids	Both	Aniline, Benzene, Ethylbenzene, Penol, Toluene, m- Xylene, PAH, BTEX, MTBE, DRO, TPH		Ferro et al., 2013
Deputus enn				Troo	Ferro, 2006
Populus spp.					ITRC PHYTO 3
					Kulakow, 2006b
					Kulakow, 2006
					Luce, 2006
					Ma et al., 2004
					Olderbak and Erickson, 2004
					Palmroth et al., 2006
					Spriggs et al., 2005
					Tossell, 2006
					Unterbrunner et al., 2007
					Weishaar et al., 2009
					Widdowson et al., 2005
			DRO		Carman et al., 1997, 1998
Salix spp.	Willow		ТРН	Tree/Shrub	Coltrain, 2004
Sanx spp.			BTEX	ince/sinus	Cook and Hesterberg, 2012
		Both	РАН		Euliss et al., 2008

Hevy Metal phytoextraction

Hyperaccumulators

Plus:

 actively accumulate several percent of TEs in the dry mass of their above-ground parts; INORGANIC

Minus

- they may not produce enough biomass to be useful for harvesting and extraction;
- they may not be native to a site and could be weedy or invasive, or difficult to cultivate;
- hyperaccumulators have been confirmed only for few TEs (Ni, Zn, Cd, Mn, As and Se)

Hevy Metal phytoextraction

High-biomass species

Plus:

 more effective to use in field conditions than hyperaccumulators especially when paired with other amendments to change the soil chemistry;

INORGANIC

- easier to grow, readily available as seeds/cutting and better adapted to soil conditions and climate;
- easier to harvest;

Minus

Lower contaminant up-take rate than hyperaccumulators

Plant Species for Phytoremediaion of Heavy metals

Hyperaccumulators

Latin	Common	Targeted TEs	Vegetation Typ	e Reference
Arabidopsis halleri	Rockcress	Cd, Zn	Herbaceous	Banasova and Horak, 2008
Dichapetalum gelonoides	Gelonium Poison-Leaf	Zn	Herbaceous	Reeves, 2006
Minuartia verna	Spring Sandwort	Zn	Herbaceous	Reeves, 2006
Polycarpaea synandra	Polycarpaea	Zn	Herbaceous	Reeves, 2006
				Baker et al., 2000
				Broadhurst et al., 2013
				Chaney et al., 2005, 2010
				Lasat et al., 2001
	Alpine Pennycress			McGrath et al., 2000
Thlaspi caerulescens		Cd, Zn	Herbaceous	Reeves, 2006
				Rouhi, 1997
				Saison et al., 2004
				Salt et al., 1995
				Schwartz et al., 2006
				Simmons et al., 2013, 2014
Thlaspi capaeifolium ssp.Rotundifolium	Pennycress	Zn		Baker and Brooks, 1989
			Herbaceous	Rascio, 1977
				Reeves, 2006
	Viola	- · -		Baker and Brooks, 1989
Viola caliminaria		Cd, Zn	Herbaceous	Reeves, 2006

Not - Hyperaccumulators

Latin	Common	Targeted TEs	Vegetation Type	e Reference
Amaranthus				
hypochondriacus	Amaranth	Cd	Herbaceous	Li et al., 2013
				Bauddh and Singh, 2012
Drancing income	Indian Mustard	Cd, Zn	Herbaceous	Blaylock et al., 1997
Brassica juncea	inulan wustaru		Herbaceous	Bluskov et al., 2005
				Lai et al., 2008
		Cd, Zn		Thewys et al., 2010
Brassica napus	Rapeseed		Herbaceous	Van Slycken et al., 2013
				Witters et al., 2012
				Adesodun et al., 2010
				Cutright et al., 2010
Helianthus annuus	Sunflower	Cd, Zn	Herbaceous	Nehnevajova et al., 2005
nenuntinus unnuus	Sumower			Nehnevajova et al., 2007
				Padmavathiamma and Li, 2009
				Stritsis et al., 2014
	Hybrid poplar	Cd, Zn		Hu et al., 2013
				Ruttens et al., 2011
Populus spp .			Tree	Van Slycken et al., 2013
Salix spp.				Thewys et al., 2010
				Hinchman et al., 1997
				Algreen et al., 2013
				Evangelou et al., 2012
	Willow	Cd, Zn	Shrub	Ruttens et al., 2011
	WIIIOW		SIIIUD	Thewys et al., 2010
				Van Slycken et al., 2012
				Witters et al., 2012
Sedum alfredii				Li et al., 2011
		Cd, Zn		Lu et al., 2013
	Sedum		Harbacasus	Wang et al., 2012
			Herbaceous	Xiaomei et al., 2005
				Xing et al., 2013
				Zhuang et al., 2007

Phytoextraction of trace elements by different species under Mediterranean conditions

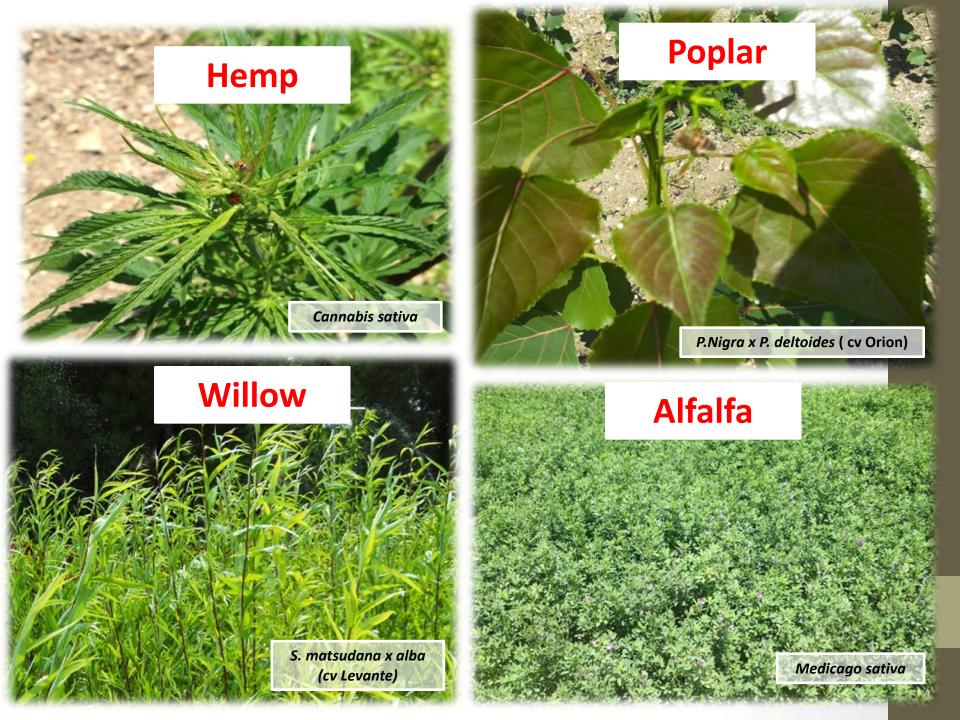
Site description

- Military site formerly used for the disposal of metal waste
- Soil with scattered, moderate mixed-contamination TEs (Cd, Cu, Ni, Pb, Zn)

Before planting

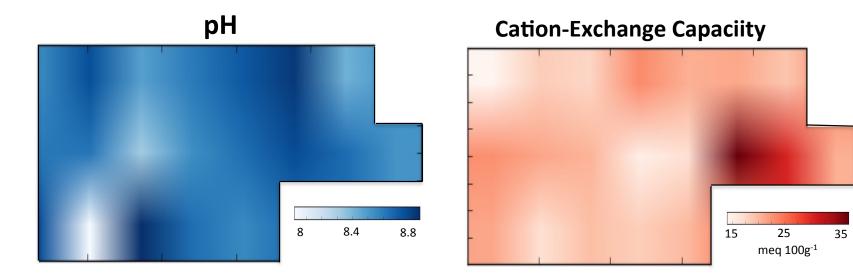
Ploughing

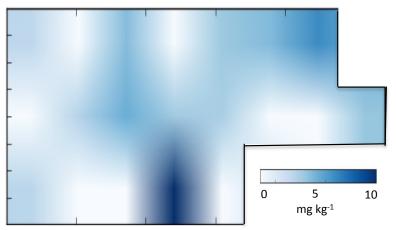
Removal of waste materials


Irrigation system set-up

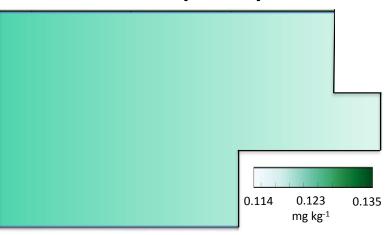
Soil sampling

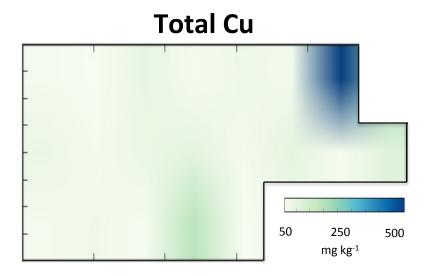
Bed preparation

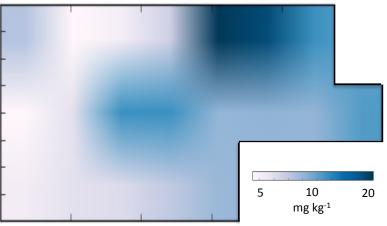


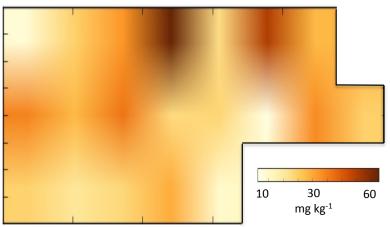

Some characteristics

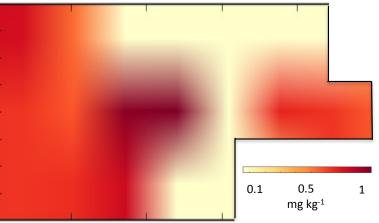
- <u>Planting density</u> (willow and poplar): 0.4 m x1.2 m (20,880 plants ha⁻¹)
- <u>Sowing density</u>:20 kg ha⁻¹ (alfalfa); 250 seeds m⁻² (hemp)
- <u>Mechanical weed control</u> (twice each year)
- Fertilization Super Phosphate 300 kg ha⁻¹ at planting, 180 kg ha⁻¹ of ammonium nitrate each spring
- <u>Sprinkler irrigation</u> (adjusted on actual crop ET)
- Woody crops cut back after year 1, hemp sown on year 2
- Unplanted plots (4)
- Twenty plots grouped in a randomized-block design

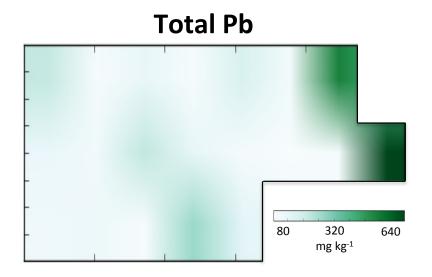

Soil characteristics

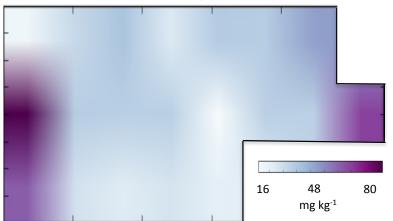

Total Cd


Extractable (DTPA) Cd

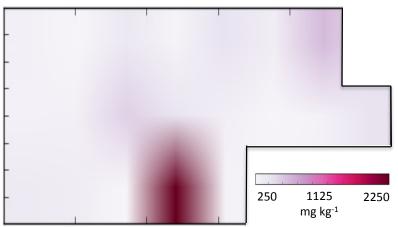

Soil characteristics

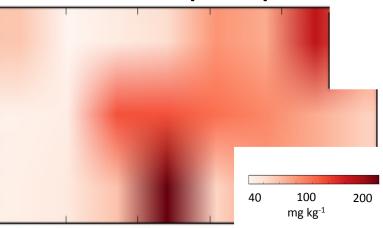

Extractable (DTPA) Cu


Total Ni


Extractable (DTPA) Ni

Soil characteristics




Extractable (DTPA) Pb

Total Zn

Measurements

1 - Biomass yield

2 - TE concentration in the biomass

3 - TE accumulation

4 - Soil TE assessment

5 – Water use

1 - Biomass yield assessment

Willow and Poplar: 5 plants/plot - Aboveground biomass (stem+leaf) 3 plant/plot - Root biomass

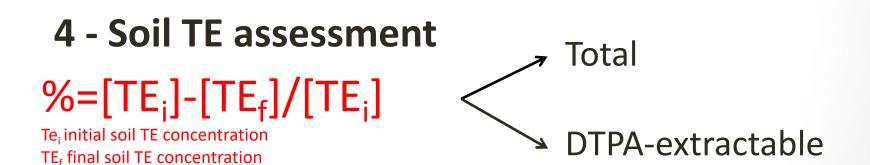
Hemp and Alfalfa: 1m⁻²/plot

All data expressed as Mg ha⁻¹ yr⁻¹ (DW)

2 - TE concentration in the biomass

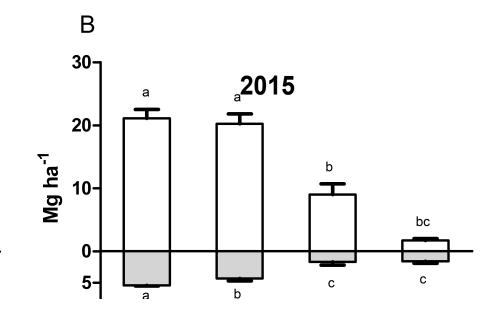
Mineralization and ICP-AES spectroscopy

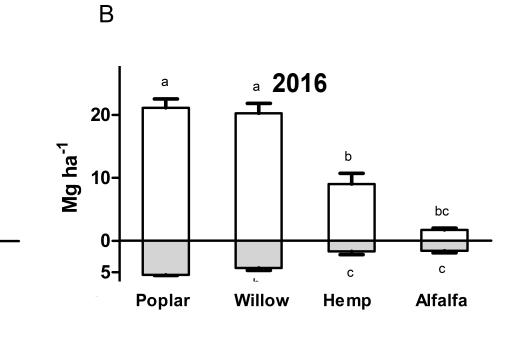
Data expressed as mg (TE) /kg biomass (DW)

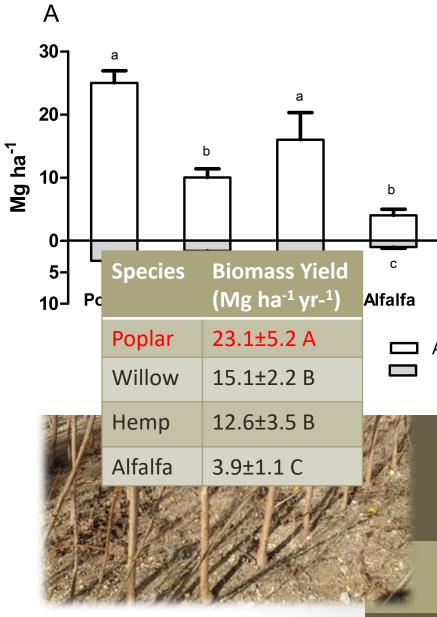


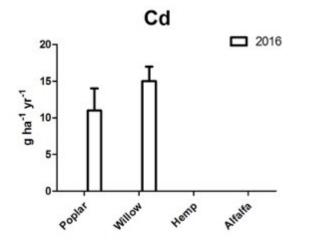
3 - Total TE accumulation

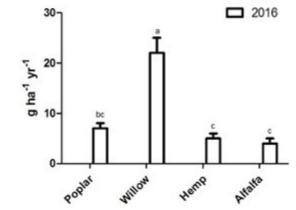
TE_x accumulation (g ha⁻¹ yr⁻¹)=[TE_x]*Biomass yield


5 – Water use of different crops

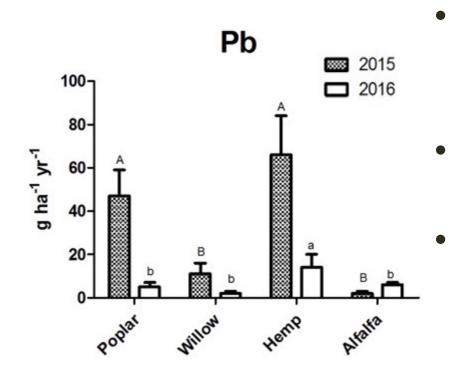

Water use (m³ t⁻¹)= Irrigation amount (m³)/Aboveground biomass (t)




Results



Aboveground biomass

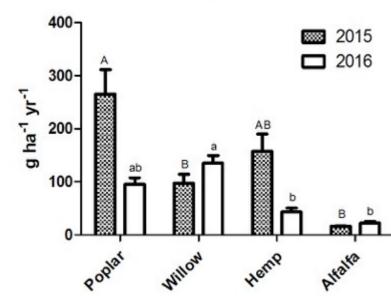


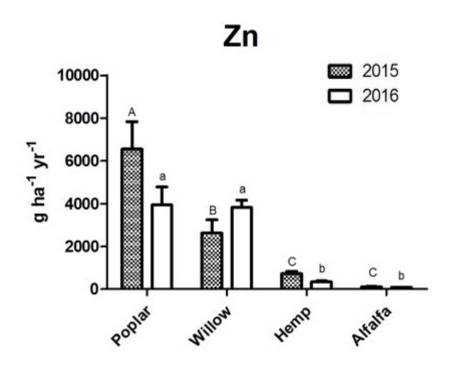
- Only found in the 2nd year
- Cd only in poplar and willow
- Ni mainly in willow
- Few grams per ha

Ni

- Poplar, willow and hemp: 1st year>2nd year
- Alfalfa: 1st year<2nd year
- Best performing: Hemp (≈35 g ha⁻¹ yr⁻¹)

Poplar and hemp: 1st year>2nd year


2015 2016 300 200 100 Poplar Nillow lemp


Cu

Willow and alfalfa: 1st year<2nd year

Best performing **Poplar** (≈190 g ha⁻¹ yr⁻¹) Willow (≈115 g ha⁻¹ yr⁻¹) Hemp (≈90 g ha⁻¹ yr⁻¹)

Poplar, and hemp: 1st year>2nd year

Willow and alfalfa: 1st year<2nd year

Best performing: **Poplar (≈5,200 g ha**⁻¹ yr⁻¹) Willow (≈3,200 g ha⁻¹ yr⁻¹)

Decrease in soil TE concentration

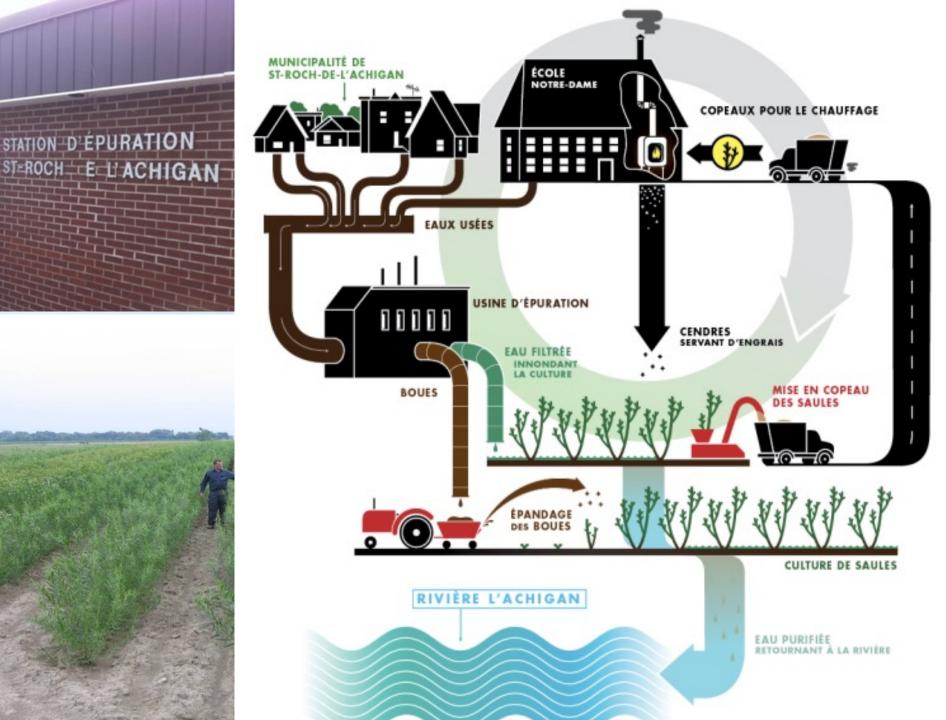
	Cadmiu m		Copper		Nickel		Lead		Zinc	
	Tot	DTPA- Ex	Tot	DTPA- Ex	Tot	DTPA- Ex	Tot	DTPA- Ex	Tot	DTPA- Ex
Willow	6.6	59.9	11.4	16.0	12.4	22.0	13.6	24.1	19.6	72.9
Poplar	5.2	37.0	10.0	19.5	9.1	49.4	8.4	46.0	25.3	63.4
Hemp	2.1	30.4	9.4	5.9	11.8	41.1	14.7	46.5	18.4	11.7
Alfalfa	3.9	26.9	11.1	15.7	4.6	60.6	4.1	3.0	15.6	46.4
Unplante										
d	1.4	21.6	6.4	4.3	2.7	2.2	0.8	9.0	7.5	6.8

The effect is presented as variation (%) between the initial and the final value. Values in bold denote a significant (p≤0.05) effect

- **Only** the **DTPA-Extractable** soil fraction significantly affected
- Soil under willow: Cd (60%) and Zn (73%)
- Soil under poplar: Cd (37%), Ni (50%) and Zn (63%)
- Soil under hemp: Pb (47%)
- Soil under alfalfa: Ni (60%)

Rhizofiltration for the treatment of urban wastewater (Phytometabolism)

Saint-Roch-de-l'Achigan Qc (Canada)
Population: 4000


INORGANIC

Overview

- Municipal pre-treated effluents often contain large amounts of nutrients, nitrogen and phosphorus in particular
- Such elements are pollutants for the environment (eutrophication) but at the same time represent a source of nutrients for the plant
- Some plants can be used to attenuate problem

The best suited plant/crop...

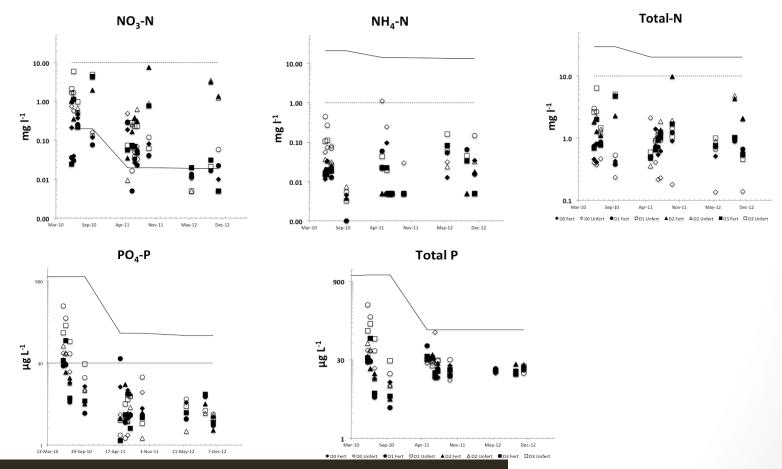
- High ET
- Fast growth
- Easy establishment
- Large root system
- Long lasting
- No food/no fodder destination...

STATION D'ÉPURAT

Main characteristics

- •Filter surface: 7.200m²
- •Species: Salix miyabeana
- •Planting density: about 16.000 plants ha⁻¹
- •Planting date: June 2008
- •Rotation cycles: 2 years
- •Wastewater supply:

First rotation: first year 0 (min) - 580 mm (Max) second year 0 (min) - 780 mm (Max)


Second rotation: first year 0 (min) – 650 mm (Max)

second year 0 (min) - 950 mm (Max)

•Working period: 135 days (May- September)

Decontamination efficiency

In most cases, the pollutant concentration in drainage water was low enough to meet the legislative limit values in Quebec (Canada)

Guidi Nissim et al. 2015. Ecological Engineering 81:395-404