PRODOTTO DI SOLUBILITA'

- 1. Una soluzione satura di iodato di lantanio La(IO₃)₃ in acqua presenta una concentrazione di IO₃- pari a 2.07 x 10⁻³ M. Calcolare il prodotto di solubilità di La(IO₃)₃.
- 2. Si calcoli la massa di Ag₂SO₄ che si scioglie in 1.00 l di acqua pura e in 1.00 l di una soluzione 0.420 M di Na₂SO₄. (K_{DS}= 1.20 x 10⁻⁵).
- 3. In una soluzione satura di BaF₂ la concentrazione di ione Ba²⁺ è 7.60•10⁻³ M . Calcolare il prodotto di solubilità di BaF₂ e la solubilità di BaF₂ in una soluzione 0.950 M di BaCl₂.
- 4. Calcolare la solubilità di Pbl₂ (K_{ps}=7.10•10⁻⁹) in acqua, in una soluzione 0.100 M di Kl ed in una soluzione 0.100 M di Pb(NO₃)₂.
- 5. Calcolare il pH di una soluzione satura di Ni(OH)₂ e la sua solubilità, espressa in g l⁻¹, se la soluzione viene tamponata a pH = 7.00 (K_s = 5.47×10^{-16}).
- 6. Calcolare i g di Ag₃PO₄ che si sciolgono in 2.00 l di acqua ed in 2.00 l di una soluzione 0.200 M di AgNO₃. (Prodotto si solubilità di Ag₃PO₄: 1.80 x 10⁻¹⁸)
- 7. Calcolare la solubilità, espressa in g/l, di Fe(OH)₂ in acqua ed in una soluzione tampone di NH₃ 0.100 M e NH₄Cl 0.800 M ($K_b = 1.80 \cdot 10^{-5}$, $K_s = 1.64 \cdot 10^{-14}$).
- 8. Sapendo che il prodotto di solubilità a 25°C del solfato di bario è K_s=1.49 x 10⁻⁹, si calcolino le concentrazione di tutti gli ioni presenti nella soluzione ottenuta dal mescolamento di 10.0 ml di una soluzione di cloruro di bario 0.10 M con 40.0 ml di una soluzione di solfato di sodio 0.025 M.
- 9. Una miscela di BaCl₂ e NaCl di massa 1.50 g viene disciolta in acqua e lo ione cloruro viene precipitato con nitrato d'argento. Si ottengono 3.14 g di AgCl. Calcolare la composizione della miscela.