Radioattività ambientale Radiazioni direttamente e indirettamente ionizzanti Radiazione con energia sufficiente a liberare elettroni da atomi o molecole

Direttamente: particelle cariche Indirettamente: particelle elettricamente neutre

Radioattività ambientale:

- Radioattività naturale
 - Radionuclidi fossili
 - Radionuclidi secondari
- Radioattività artificiale
- Radiazioni di origine cosmica
 - Raggi cosmici primari e secondari
 - Radioattività cosmogenica

Dato che $\tau_{capostipite} \gg \tau_{figli}$ spesso le famiglie sono in EQUILIBRIO SECOLARE

Le famiglie radioattive – ²³⁸U

Nelle catene radioattive:

- Decadimenti alfa seguiti da decadimenti beta (eccesso di neutroni)
- Solo decadimenti β^- (eccesso neutroni)

- Q elevato $\rightarrow \tau$ 'piccolo'
- Decadimenti γ quasi esclusivamente dopo decadimenti β (i decadimenti α vanno spesso su stato fondamentale)
- Equilibrio secolare e rottura della catena (e.g. Ra è metallo alcalino e si può facilmente legare ad acqua ed uscire dalle rocce oppure il Rn è un gas nobile)

Le famiglie radioattive – ²³⁵U

Nelle catene radioattive:

- Considerazioni analoghe a ²³⁸U
- La rottura dell'equilibrio secolare è meno probabile nella catena dell'²³⁵U perché i tempi di decadimenti del ²²³Ra e ²¹⁹Rn sono molto più brevi

a.i. $(^{238}U) = 99.3 \%$ a.i. $(^{235}U) = 0.7 \%$

In base alle abbondanze isotopiche e conoscendo i tempi di decadimento è possibile stimare (in modo approssimativo) quando è stato prodotto l'uranio (e gli altri nuclei pesanti) presenti in natura

 L'uranio si trova in natura (suolo, rocce, alimenti) e quindi nel nostro corpo (~ *Bq*)

Le famiglie radioattive – ²³²Th

Nelle catene radioattive:

- Considerazioni analoghe a U
- Essendo il ²³²Th il capostipite con vita più lunga si ha che gli isotopi appartenenti a questa catena sono quelli con attività maggiore in natura

Se $A(^{228}Ac) = A(^{208}Tl)$ allora catena all'equilibrio tra ^{228}Ra e ^{208}Tl ma non posso dire nulla ^{232}Th (perché $\tau_{1/2}(^{228}Ra) = 5.75 y$)

Le famiglie radioattive -

- I nuclidi delle catene decadono prevalentemente α
- Siccome per A grande si ha stabilità per N/Z \approx 1,5 per mantenere i nuclidi sulla fascia di stabilità β dovrebbero essere emessi 3 neutroni ogni 2 protoni
- I nuclidi si arricchiscono troppo in neutroni

Decadimenti β^-

- Alcuni nuclidi possono decadere si
a α che β

- Le 3 catene naturali si concludono su un isotopo del Pb (Z=82, numero magico).
- In ogni catena vengono emessi, oltre a $\alpha \in \beta$, anche **svariati raggi** γ dato che molti **decadimenti** avvengono **su stati eccitati**.
- Ci sono alcuni punti critici in cui l'equilibrio secolare si può rompere.

Altri isotopi radioattivi presenti in natura

App. 27

Altre forme di radioattività naturale e artificiale facilmente osservabili:

- Altri nuclidi di lunga vita media fuori dalle catene
- 'Fall-out'

Particelle radioattive che vengono trasportate nell'atmosfera dopo un'esplosione o un incidente nucleare e gradualmente cadono come polvere o precipitazioni

- Esperimenti nucleari in atmosfera (anni 60) ٠
- Cernobyl (fine anni 80)

•	Pro	duzione	di	nuclidi	per	app	licaz	ioni	medico	/inc	lust	ria	li
					r								

Isotopo	$ au_{1/2}$	Decadimento	Applicazione
⁶⁰ Co	5,26 y	γ	medicina, industria
$^{55}\mathrm{Fe}$	2,73 y	EC	medicina, calibrazione
⁶³ Ni	100 y	β^{-}	rivelatori a cattura elettronica
$^{90}\mathrm{Sr}$	28 y	β^{-}	rivelatori a cattura elettronica
^{137}Cs	30 y	γ	medicina, industria
$^{192}\mathrm{Ir}$	75 d	γ	medicina, industria
²¹⁰ Po	138 d	α	antistatico
$^{241}\mathrm{Am}$	$458 \mathrm{~y}$	α	antistatico, sensori di fumo, industria
^{99m} Tc	6.03 h	γ	diagnostica clinica

γ

Isotopo	$ au_{1/2}\left(\mathrm{y} ight)$
$^{40}\mathrm{K}$	$1,28 \ge 10^9$
$^{113}\mathrm{Cd}$	$9 \ge 10^{15}$
¹¹⁵ In	$4,4 \ge 10^{14}$
¹⁸⁷ Re	$5 \ge 10^{10}$

Isotopo	$ au_{1/2}$
$^{3}\mathrm{H}$	12.3 y
$^{131}\mathrm{I}$	8.04 d
^{129}I	$1.57 \ge 10^7 \ge 10^5 = 10^5 = 10^5 = 10^5 = 10^5 = 10^5 = 10^5 = 10^5 = $
^{137}Cs	30.17 y

Radioattività ambientale

Alcuni riferimenti **pratici** e **generali** delle energie e delle lunghezze di attenuazione per la radioattività ambientale:

Spettro energetico

'Tipico' spettro dovuto alla radioattività ambientale e spettro da sorgente di ²³²Th

I decadimenti beta di contaminazioni interne al rivelatore o in materiali vicini producono eventi in questa regione ma spettro continuo Misura effettuata nei laboratori sotterranei del Gran Sasso. Per questo motivo non ci sono i μ altrimenti sempre presenti.

Raggi cosmici

Spettro energetico

'Tipico' spettro **gamma** dovuto alla radioattività ambientale e spettro da sorgente di ²³²Th

Spettro energetico

'Tipico' spettro **gamma** dovuto alla radioattività ambientale e spettro da sorgente di $^{232}\mathrm{Th}$

Simulazioni numeriche Monte Carlo

L'esempio più semplice: un cubo di materiale e una sorgente puntiforme

Generalmente utilizzati per sistemi molto più complessi....

Raggi cosmici

Radioattività ambientale:

- Radioattività naturale
 - Radionuclidi fossili
 - Radionuclidi secondari
- Radioattività artificiale
- Radiazioni di origine cosmica
 - raggi cosmici primari e secondari
 - radioattività cosmogenica

Radiazioni di origine cosmica - Raggi cosmici

Radiazioni di origine cosmica - Raggi cosmici primari

- il flusso è modulato nel tempo dall'attività solare
- composizione: 90% protoni, 9% ⁴He, 1% nuclei più pesanti
- il flusso è modificato dal campo geomagnetico
 - effetto latitudine

Radiazioni di origine cosmica - Raggi cosmici primari

Raggi cosmici secondari

- Prodotti dall'interazione dei primari con i nuclei dell'atmosfera
- Sotto i 3 km arrivano praticamente solo i secondari prodotti nell'atmosfera (il 90 % dell'atmosfera sotto i 16 km)

Flusso verticale dei secondari

Altitude (km)

10

15

10000

Radiazioni di origine cosmica - Raggi cosmici

A livello del mare

- totale: ~ 1,1 \cdot 10² $m^{-2}\,s^{-1}\,sr^{-1}$ intorno alla verticale
 - distribuzione angolare $\propto \cos^2\theta$ (con θ angolo rispetto allo zenith e per $E_{\mu} \sim 3~GeV)$
 - per area orizzontale ~ 1 $cm^{-2} min^{-1}$
- muoni
 - $\langle E_{\mu} \rangle \sim 2 \ GeV \longrightarrow MIP$ (Minimum Ionizing Particle)

Sotto il Gran Sasso e altri laboratori sotterranei

App. 34

Radiazioni di origine cosmica - Radioattività cosmogenica

Radionuclidi cosmogenici --> Radio-nuclidi prodotti nelle collisioni della componente adronica (p, n, ...) dei raggi cosmici con elementi stabili dell'atmosfera

$14_{\rm M}$, $12_{\rm C}$, $3_{\rm H}$	Isotopo	$\tau_{1/2}$
$n + N \rightarrow C + H \qquad \qquad$	 - ³ H	12 y
$^{3}H \rightarrow ^{3}He + e^{-} + \overline{\nu_{e}}$	⁷ Be	53 d
Usato per bombe nucleari, fusione nucleare, ricerca,	$^{10}\mathrm{Be}$	$10^{6} { m y}$
· · · · · · · · · · · · · · · · · · ·	$^{11}\mathrm{C}$	20 min
$n + {}^{14}N \rightarrow {}^{14}C + p$	– ¹⁴ C	5730 у
$^{14}C \rightarrow {}^{14}N + e^- + \overline{\nu_e}$		
Presente nei materiali organici (organismi viventi) e usato per		

Presente nei materiali organici (organismi viventi) e usato per radio datazione

Radiodatazione

Emissione di neutroni

Radioattività ambientale:

- Radioattività naturale
 - Radionuclidi fossili
 - Radionuclidi secondari
- Radioattività artificiale
- Radiazioni di origine cosmica
 - raggi cosmici primari e secondari
 - radioattività cosmogenica
- Emissione di neutroni

Neutroni

• I neutroni liberi sono instabili

 $n \rightarrow p + e^- + \overline{v_e}$ $au_n = 14,8 min$

 $M_n = M_p + 1,29 MeV = 939,56 MeV$

- Particelle neutre —— Interazione e.m. trascurabili
 - Al contrario dei fotoni realmente non ionizzano e interagiscono 'solo' attraverso le forze nucleari forti ed esclusivamente con i nuclei

Sorgenti di neutroni

- Fissione spontanea
- Sorgenti radioattive composite
 - ${}^{9}Be(\alpha, n){}^{12}C \longrightarrow ~ 100 n/10^{6}\alpha$

la sorgente α può essere ²¹⁰Po, ²⁴¹Am, ...

la sorgente γ può essere ¹²⁴Sb, ²⁴Na, ...

- ${}^9Be(\gamma,n){}^8Be$
- $^{2}H(\gamma,n)^{1}H$

Neutroni

Classificazione dei neutroni

Neutron energy	Energy range	
$0,025~{ m eV}$	Thermal neutrons —	\longrightarrow E ~ $k_B T$ ~ 0,025 eV
0,025 - 1 eV	Epithermal neutrons	$k_B = 8.6 * 10^{-5} \ eV/^{\circ}K$
1-10 eV	Slow neutrons	
10 eV - 20 MeV	Fast neutrons	
> 20 MeV	Ultrafast neutrons	

Processi di scattering del neutrone e interazione con la materia

