OTHER

- -Nuclear (Eu, Gd, Ce, Y, Sm, Er)
- -Defence (Nd, Pr, Dy, Tb, Eu, Y, La, Lu, Sc, Sm)
- -Water treatment
- -Pigments Ce, Y
- -Fertilisers

CERAMICS

La, Ce, Pr, Nd, Y Eu, Gd, Lu, Dy

- -Capacitors
- -Sensors
- -Colourants
- -Scintillators
- -Refractories

MAGNETS

Nd, Pr (Tb, Dy)

- -Motors
- -Disc drives
- -MRI
- -Power generation
- -Microphones and speakers
- -Magnetic refrigeration

CATALYSTS

La, Ce (Pr, Nd)

- -Petroleum refining
- -Catalytic converter
- -Diesel additives
- -Chemical processing
- -Industrial pollution scrubber

RARE EARTHS

$\overline{}$

HING PHOSPHORS

Eu, Y, Tb, Nd, Er, Gd (Ce, Pr)

- -Display phosphors CRT, LPD, LCD
- -Fluroscent lighting
- -Medical imaging
- -Lasers
- -Fibre optics

METALLURGICAL ALLOYS

La, Ce, Pr, Nd, Y

- -NimH batteries
- -Fuel cells
- -Steel
- -Lighter flints
- -Super alloys
- -Aluminium/Magnesium

GLASS AND POLISHING

Ce, La, Pr, Nd, Gd, Er, Ho

- -Polishing componds
- -Decolourisers/colourisers
- -UV resistant glass
- -X-ray imaging

REE criticality

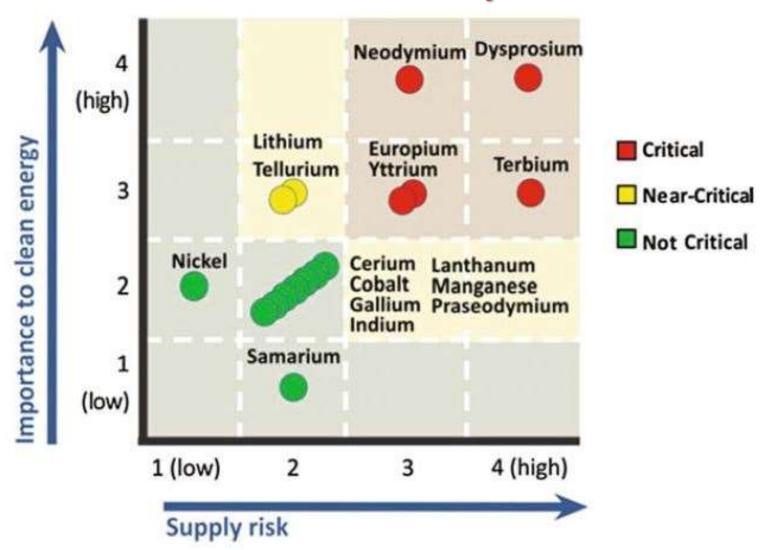


Fig. 7.2 DOE medium-term (2015–2025) criticality matrix, showing the five most critical rare earth elements (Y, Nd, Eu, Tb, Dy), and the non-critical ones (Ce, Pr, Sm). Reproduced with permission of the U.S. Department of Energy (2011)

REE

REE Element	Symbol	Atomic number	Atomic weight	Density (g/cm³)	Melting point (°C)	Clarke (ppm)
Scandium	Sc	21	44.95	2.989	1541	14
Yttrium	Υ	39	88.90	4.469	1522	21
Lanthanum	La	57	138.90	6.146	918	30
Cerium	Ce	58	140.11	8.160	798	63
Praseodymium	Pr	59	140.90	6.773	931	7.1
Neodymium	Nd	60	144.24	7.008	1021	27
Promethium	Pm	61	145.00	7.264	1042	n.a.
Samarium	Sm	62	150.36	7.520	1074	4.7
Europium	Eu	63	151.96	5.244	822	1.0
Gadolinium	Gd	64	157.25	7.901	1313	4.0
Terbium	Tb	65	158.92	8.230	1356	0.7
Dysprosium	Dy	66	162.50	8.551	1412	3.9
Holmium	Но	67	164.93	8.795	1474	0.83
Erbium	Er	68	167.26	9.066	1529	2.3
Thulium	Tm	69	168.93	9.321	1545	0.30
Ytterbium	Yb	70	173.04	6.966	819	1.96
Lutetium	Lu	71	174.97	9.841	1663	0.31

REE – crustal abundance

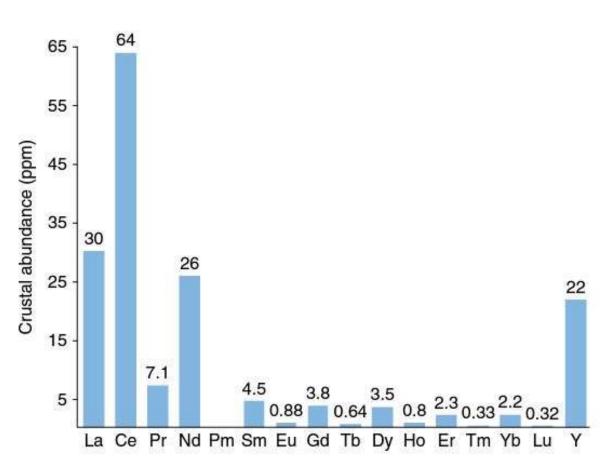


Figure 13.2 Crustal abundances of rare earth elements (Data from Taylor and McClennan, 1985). The light rare earths, lanthanum (La), cerium (Ce) and neodymium (Nd), are the most abundant rare earth elements in the Earth's crust.

REE – geochemical properties

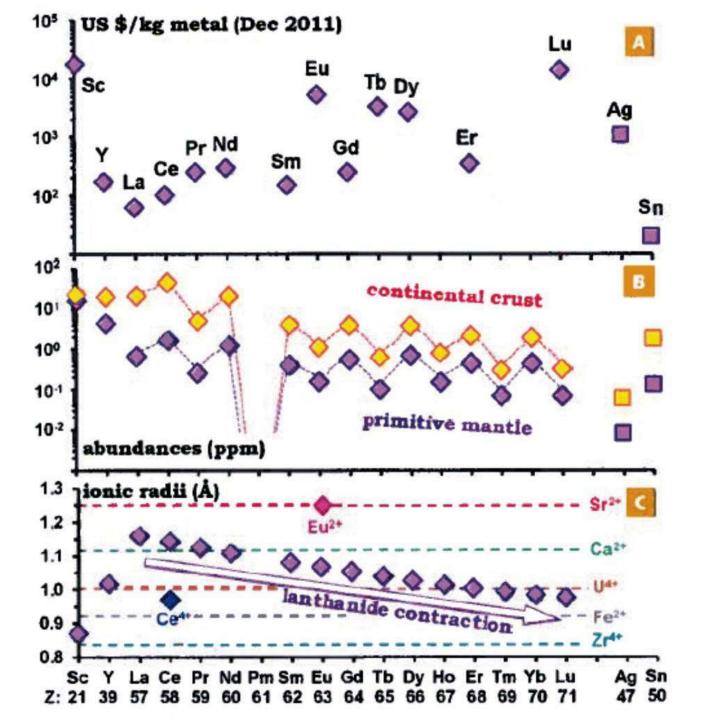
- They are a group of 17 metallic elements (15 lanthanides + Sc and Y), with similar geochemical characteristics
- they are all present in nature, Pm is the most rare element
- identified and distinguished only in the twentieth century
- very similar chemical properties (ionic radii and oxidation state) → very difficult to separate
- not so "rare": average crustal abundance 9.2 ppm
- divided in LREE (La → Eu) and HREE (Gd → Lu and Y)
- REE with even Z are more abundant than REE with odd Z
- REE are all trivalent (+3) with the exception of Ce (+4) and Eu (+2) in some contexts
- as metal, they are silvery-white, malleable, ductile, reactive
- the electronic structure gives particular magnetic and optical properties
- REE (with the exception of Sc, Y, La, Yb and Lu) are strongly paramagnetic and with a strong magnetic anisotropy.

REE - ethymology

Table 1.1 The etymology of the names of the rare earth elements

Atomic number	Symbol	Name	Etymology
21	Sc	Scandium	After the Latin word Scandia (Scandinavia), where the rare earth elements were first found
39	Y	Yttrium	After the village of Ytterby in Sweden
57	La	Lanthanum	From the Greek word "lanthanein", meaning hidden
58	Ce	Cerium	After the dwarf planet Ceres, itself named after the Roman goddess of agriculture and motherly love
59	Pr	Praseodymium	From the Greek "prasios", or green, and "didymos", meaning twin
60	Nd	Neodymium	From the Greek "neos", or new, and "didymos", meaning twin
61	Pm	Promethium	After the Greek god of fire Prometheus
62	Sm	Samarium	After the mineral samarskite, in turn named after Vasili Samarsky-Bykhovets (1803–1870), discoverer of samarskite
63	Eu	Europium	After the continent of Europe

REE - ethymology


64	Gd	Gadolinium	After the mineral gadolinite, in turn named after Johan Gadolin
65	Tb	Terbium	After the village of Ytterby in Sweden
66	Dy	Dysprosium	After the Greek "dysprositos", meaning "difficult to catch"
67	Но	Holmium	After the medieval Latin name for Stockholm (Holmia)
68	Tm	Thulium	After the mythological, most northern place on Earth, Thule
69	Er	Erbium	After the village of Ytterby in Sweden
70	Yb	Ytterbium	After the village of Ytterby in Sweden
71	Lu	Lutetium	After Lutetia, the Latin name for Paris

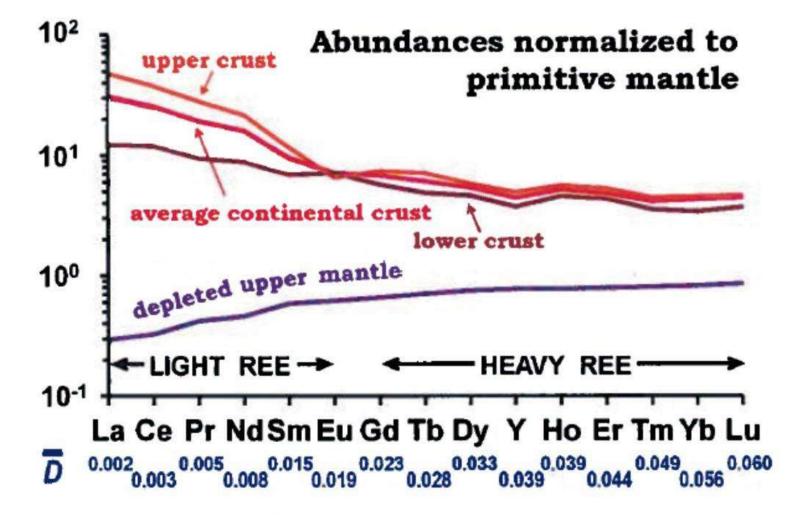

REE – selected properties

Table 13.1 Selected properties of the rare earth elements.

Element name	Chemical symbol	Atomic number	Atomic weight	Density at 25 °C (kg/m³)	Melting point (°C)	Cation radius (pm)	Colour of +3 cation in solution
scandium	Sc	21	44.96	2992	1541	87.0	Colourless
yttrium	Y	39	88.91	4475	1522	107.5	Colourless
lanthanum	La	57	138.91	6174	918	121.6	Colourless
cerium	Ce	58	140.12	6711	798	119.6	Colourless
praseodymium	Pr	59	140.91	6779	931	117.9	Yellow-green
neodymium	Nd	60	144.24	7000	1021	116.3	Rose
promethium	Pm	61	144.91	7220	1042	A thereses	Pink
samarium	Sm	62	150.36	7536	1074	113.2	Yellow
europium	Eu	63	151.96	5248	822	112.0	Colourless
gadolinium	Gd	64	157.25	7870	1313	110.7	Colourless
terbium	Tb	65	158.93	8267	1356	109.5	Pale pink
dysprosium	Dy	66	162.50	8531	1412	108.3	Pale yellow-green
holmium	Ho	67	164.93	8797	1474	107.2	Yellow
erbium	Er	68	167.26	9044	1529	106.2	Pink
thulium	Tm	69	168.93	9325	1545	105.2	Greenish tint
ytterbium	Yb	70	173.04	6966	819	104.2	Colourless
lutetium	Lu	71	174.97	9842	1663	103.2	Colourless

Compiled from Gupta and Krishnamurthy (2005); pm, picometres.

REE abundances in the depleted mantle (Workman and Hart 2005) and continental crust (Rudnick and Gao 2003) normalized to the composition of the primitive mantle (McDonough and Sun 1995). Bulk rock—melt partition coefficients (\overline{D}) , calculated for a typical mantle peridotite, are given below the respective REEs. Note the gradual increase in compatibility from La to Lu (i.e. the decreasing tendency to partition into a melt).

REE minerals

REM	Formula	REO content
Mineral		(wt.%)
Aeschynite-(Ce)	(Ce, Ca, Fe, Th)(Ti, Nb) ₂ (O, OH) ₆	32
Allanite-(Ce)	(Ce, Ca, Y) ₂ (AI, Fe ³⁺)3(SiO ₄) ₃ OH	38
Apatite	$Ca_5(PO_4)_3(F, CI, OH)$	19
Bastnäsite-(Ce)	(Ce, La)(CO ₃)F	75
Brannerite	(U, Ca, Y, Ce)(Ti, Fe) ₂ O ₆	9
Britholite-(Ce)	(Ce, Ca) ₅ (SiO ₄ , PO ₄) ₃ (OH, F)	32
Cebaite-(Ce)	$Ba_3Ce_2(CO_3)_5F_2$	32
Eudialyte	$Na_4(Ca, Ce)_2(Fe^{2+}, Mn, Y) ZrSi_80_{22}(OH,CI)_2$	9
Euxenite-(Y)	(Y, Ca, Ce, U, Th)(Nb, Ta, Ti) ₂ O ₆	24
Fergusonite-(Ce)	(Ce, La, Nd)NbO ₄	53
Florencite-(Ce)	$CeAl_3(PO_4)_2(OH)_6$	32
Gadolinite-(Ce)	(Ce, La, Nd, Y) ₂ Fe ²⁺ Be ₂ Si ₂ O ₁₀	60
Huanghoite-(Ce)	BaCe(CO ₃) ₂ F	39
Kainosite-(Y)	Ca ₂ (Y, Ce) ₂ Si ₄ O ₁₂ CO ₃ H ₂ O	38
Knopite	(Ca, Ti, Ce ₂)O ₃	n.d.
Liparite	(Ce, La, Na, Ca, Sr)(Ti, Nb)O ₃	30
Monazite-(Ce)	(Ce, La, Nd, Th)PO ₄	65
Parisite-(Ce)	Ca(Ce, La) ₂ (CO ₃) ₃ F ₂	61
Samarskite-(Y)	(Y, Ce,U,Fe ³⁺) ₃ (Nb,Ta,Ti) ₅ O ₁₆	24
Synchysite-(Ce)	Ca(Ce, La)(CO ₃) ₂ F	51
Xenotime	YPO ₄	61
Yttrocerite	(Ca, Ce, Y, La)F ₃ .nH ₂ O	53

REM – rare earth minerals

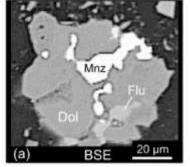
Table 13.2 The most common rare earth minerals, including an indication of the rare earth oxide (REO), thorium (Th) and uranium (U) contents and beneficiation process.

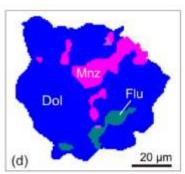
Mineral	Formula	Wt % REO	Th, U	Other REE variants	Beneficiation
CARBONATES AND) FLUORCARBONATES				
ancylite-(Ce)	SrCe(CO ₃) ₂ (OH)· H ₂ O	43	(2)	La	HCl acid dissolution (exp)
bastnäsite-(Ce)	CeCO ₃ F	75	6541	La, Nd, Y	F
huanghoite-(Ce)	BaCe(CO ₃), F	40	+		
parisite-(Ce)	CaCe,(CO,), F,	50	37	Nd	F
synchysite-(Ce)	CaCe(CO ₃) ₂ F	51	-	Nd, Y	F
PHOSPHATES					
cheralite	Ca,Th(PO ₄) ₂	variable	M		(4)
churchite-(Y)	YPO ₄ .2H ₂ O	51	V	Nd	Til.
florencite-(Ce)	(Ce)Al ₂ (PO ₄) ₂ (OH) ₂	32	2	Sm	4
monazite-(Ce)	CePO ₄	70	V	La, Nd, Sm	F or GME
xenotime-(Y)	YPO ₄	61	٧	Yb	GME
OXIDES					
aeschynite-(Ce)	(Ce,Ca,Fe,Th)(Ti,Nb),(O,OH)	32	V	Nd,Y	2
cerianite-(Ce)	CeO,	100	V V		-
loparite-(Ce)	(Ce,La,Nd,Ca,Sr)(Ti,Nb)O ₃	30	123		Chlorination
yttropyrochlore-(Y)	$(Y,Na,Ca,U)_{1-2}Nb_2(O,OH)_7$	e.g. 17	V		

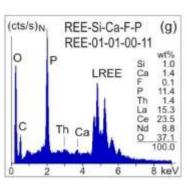
REM – rare earth minerals

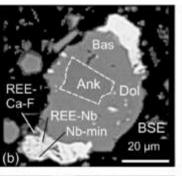
Table 13.2 The most common rare earth minerals, including an indication of the rare earth oxide (REO), thorium (Th) and uranium (U) contents and beneficiation process.

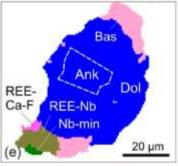
Mineral	Formula	Wt % REO	Th, U	Other REE variants	Beneficiation
SILICATES					
allanite-(Ce)	CaNdAl ₂ Fe ²⁺ (SiO ₄)(Si ₂ O ₂)O(OH)	38	V	La, Nd, Y	153
britholite-(Ce)	(Ce,Ca,Sr) ₂ (Ce,Ca) ₃ (SiO ₄ ,PO ₄) ₃ (O,OH,F)	e.g. 23	V	Υ	343 3
eudialyte	Na, Ca, Fe, Zr, Si(Si, O,) (O, OH, H, O), (CI, OH),	e.g. 9	8		Have leached REEex
fergusonite-(Ce)	CaNdAl,Fe2*(SiO,)(Si,O,)O(OH)	53	-?	Nd, Y, β-fergusonite-	Hot caustic
				(Ce), Nd,Y	digestion and acid dissolution ^{ex}
gadolinite (Ce)	Ce ₂ Fe ²⁺ Be ₂ O ₂ (SiO ₄) ₂	60	٧	Υ	treated with acid (small scale)
gerenite-(Y)	CaNdAl ₂ Fe ²⁺ (SiO ₄)(Si ₂ O ₂)O(OH)	44	5 73		155
kainosite-(Y)	$Ca_{2}Y_{2}(SiO_{3})_{4}(CO_{3}).H_{2}O$	38	543		
keiviite-(Y)	Y,Si,O,	69	8	Yb	5 = 0
steenstrupine-(Ce)	$Na_{14}Ce_{6}(Mn^{2+})_{2}(Fe^{3+})_{2}Zr(PO_{4})_{7}Si_{12}O_{36}(OH)_{2}.3H_{2}O$	31	٧		F and leach ^{exp}
FLUORIDES					
fluocerite-(Ce)	CeF ₃	83	<u> </u>	La)\$\frac{1}{2}\$

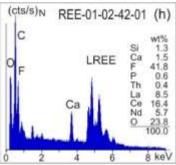

Minerals currently mined commercially are in bold.

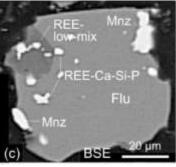

F=flotation; GME=combination of gravity, magnetic and electrostatic processes; exp=technique not yet applied on a working mine.

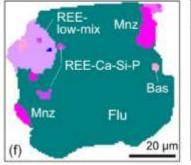

U, Th contents: M=usually has major (wt%) Th; V=Th and U are variable from <1 wt% to major (e.g. 10 wt%) amounts. Other minerals usually have <1 wt% Th and U but almost all will contain trace quantities of these elements.

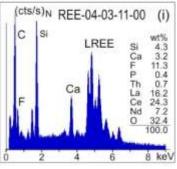

X250 100 Mm

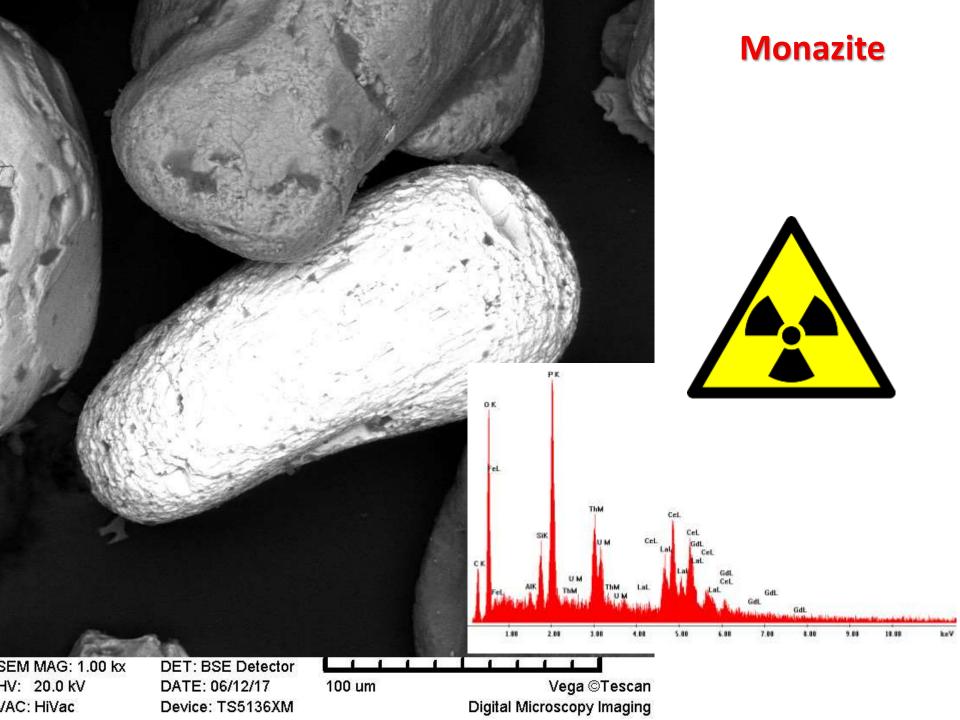

Bastnaesite

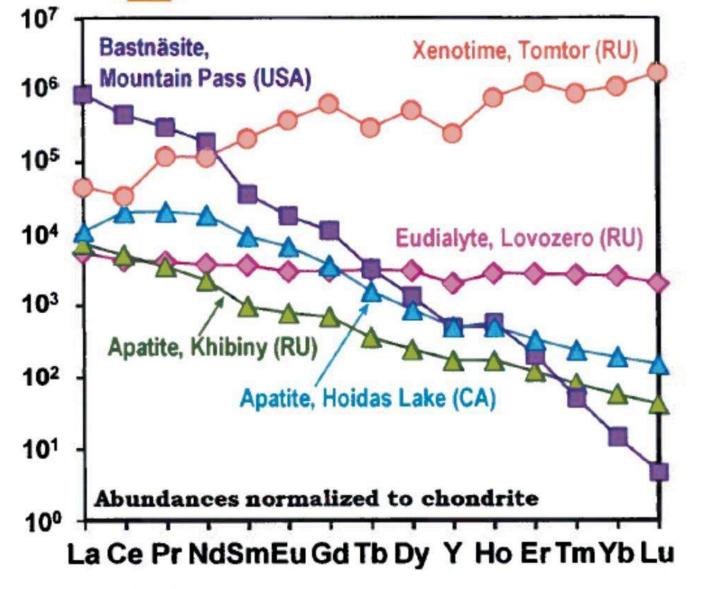


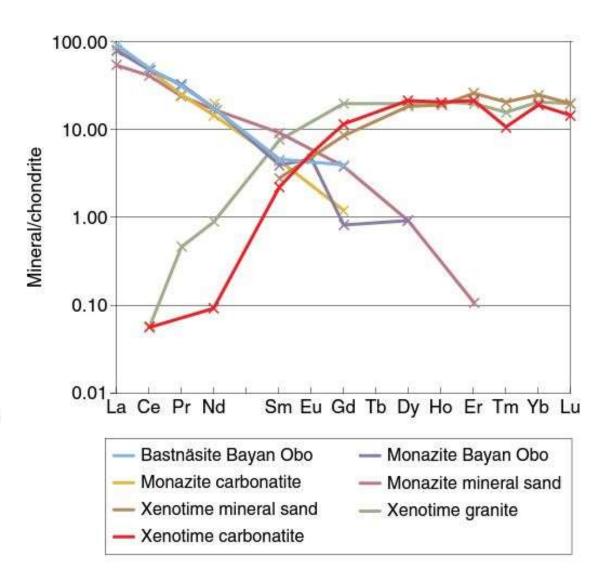












Chondrite-normalized REE profiles of selected minerals (Chakhmouradian and Reguir, unpublished data), including some typical constituents of REE ores and minerals that are currently investigated as potential industrial sources of rare earths (abbreviations as in Table 1; chondrite values from Anders and Grevesse 1989)

REM – rare earth minerals

Figure 13.3 Compositions of the most common light REE minerals, bastnäsite-(Ce) and monazite-(Ce), and the most common heavy REE mineral, xenotime-(Y). Following usual precedent, values are divided by values of a chondrite meteorite (McDonough and Sun, 1995) in order to remove the Oddo-Harkins 'zig-zag' effect. (Data from Förster (1998), Smith et al. (2000), van Emden et al. (1997), Wall and Mariano (1996), Wall et al. (2008).)

REE ore deposits

Distributed in a wide range of magmatic, metamorphic and sedimentary rocks.

Geological environments with REE concentrations are essentially two:

- Primary ore deposits

linked to **magmatic** and **hydrothermal** processes

- Secondary ore deposits

linked to **sedimentary** processes and **meteoric alteration**.

Primary ore deposits

Deposit type	Brief description	*Number documented	Typical grades and tonnage	Major examples
Primary deposits				
Carbonatite- associated	Deposits associated with carbonate-rich igneous rocks associated with alkaline igneous provinces and zones of major faulting	107	A few 10s thousands of tonnes to several hundred million tonnes, 0.1–10% REO e.g. Bayan Obo: 750 million tonnes at 4.1% REO	Mountain Pass, USA; Bayan Obo, China; Okorusu, Namibia; Amba Dongar, India; Barra do Itapirapuã, Brazil; Iron Hill, USA
Associated with alkaline igneous rocks	Deposits associated with igneous rocks characterised by abundant alkali minerals and enrichment in HFSE	122	Typically <100 million tonnes (Lovozero >1000 million tonnes), grade variable, typically <5% REO e.g. Thor Lake: 64.2 million tonnes at 1.96% REO	Ilimaussaq, Greenland; Khibina and Lovozero, Russia; Thor Lake and Strange Lake, Canada; Weishan, China; Brockman, Australia; Pajarito Mountain, USA
Iron-REE deposits (iron oxide-copper-gold deposits)	Copper-gold deposits rich in iron oxide and diverse in character and form	4	e.g. Olympic Dam: 2000 million tonnes at 0.3295% REO (Orris and Grauch, 2002)	Olympic Dam, Australia; Pea Ridge, USA
Hydrothermal deposits (unrelated to alkaline igneous rocks)	Typically quartz, fluorite, polymetallic veins and pegmatites of diverse origin	63(a)	Typically <1 million tonnes, rarely up to 50 million tonnes, grade variable, typically 0.5–4.0%, rarely up to 12% REO e.g. Lemhi Pass: 39 million tonnes at 0.51% REO (Orris and Grauch 2002)	Karonge, Burundi; Naboomspruit and Steenkampskraal, South Africa; Lemhi Pass and Snowbird and Bear Lodge, USA; Hoidas Lake, Canada

Primary ore deposits

Linked to magmatic processes

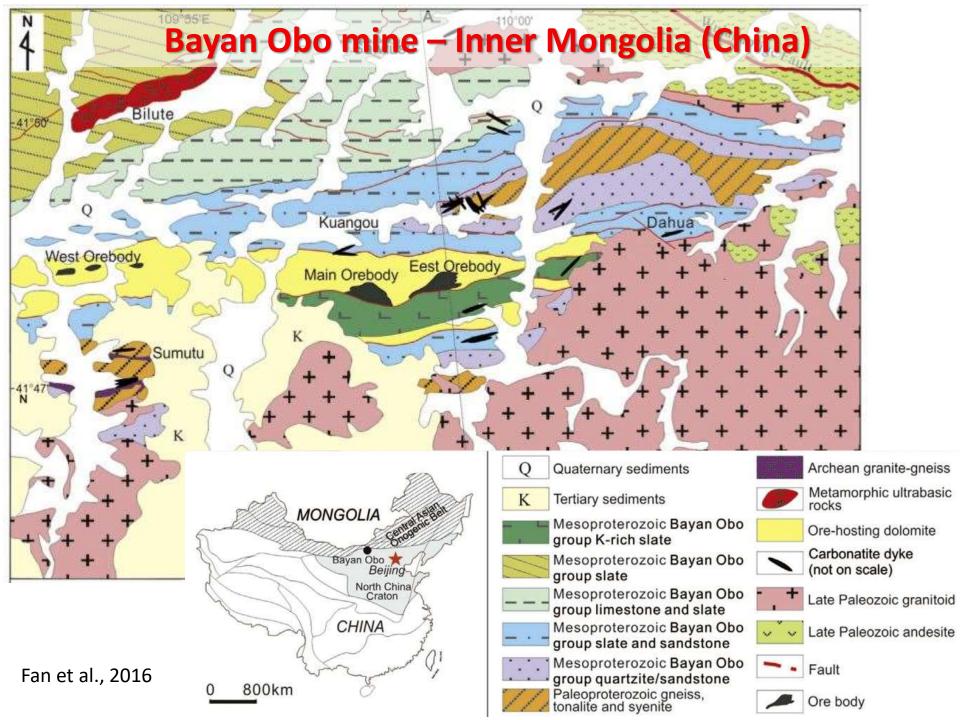
Mountain Pass carbonatitic intrusion, Colorado (USA):

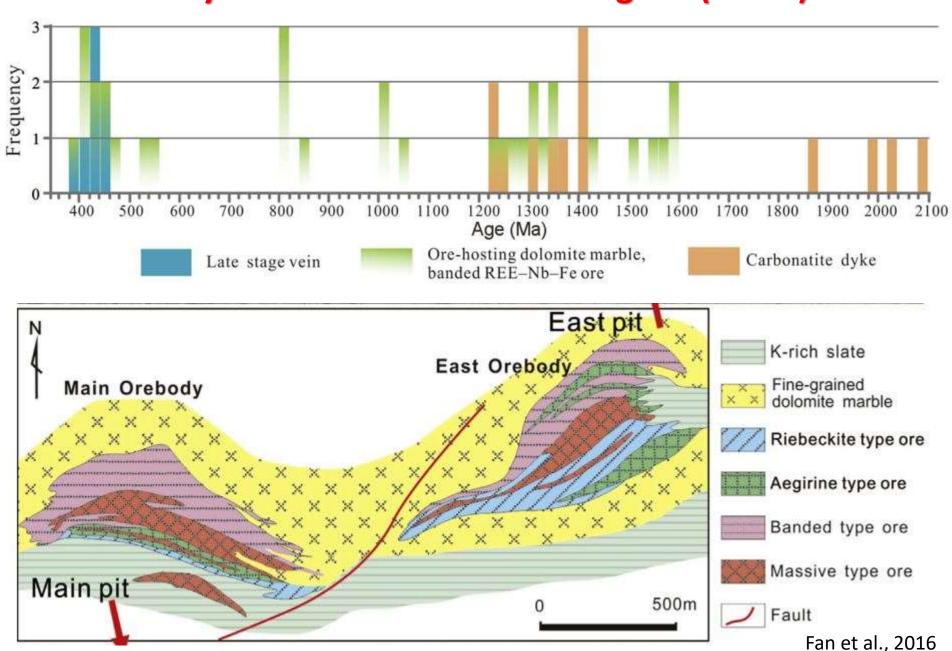
"tout-venant" with 7-8% REE, calcite (40%), barite and celestine (25%), bastnäsite (12%), strontianite (10%), silicates (8%) and rare sulfides (galena).

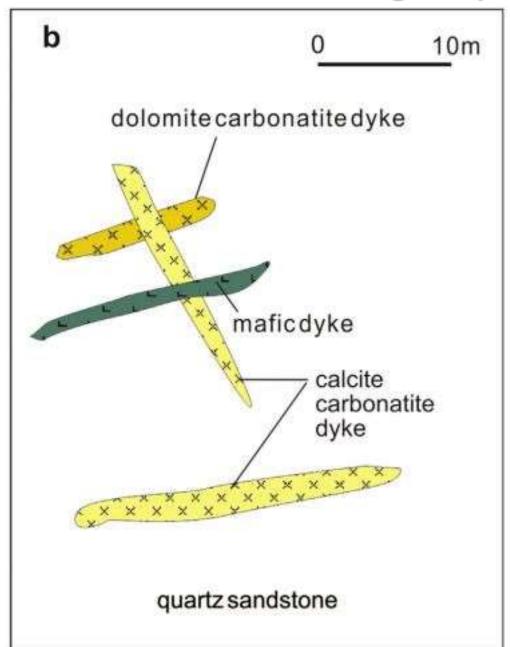
Reserves about 100 Mt @ 7% REO, annual production about 20.000 t/year.

Fe-REE ore deposits, also known as *Iron Oxide Copper Gold* (IOCG) or *Olympic Dam Type* (with reference to the well-known Australian Cu-U-Ag-Au-REE deposit).

REE ore deposits are hosted in a wide variety of magmatic (both intrusive and volcanic) and sedimentary rocks.

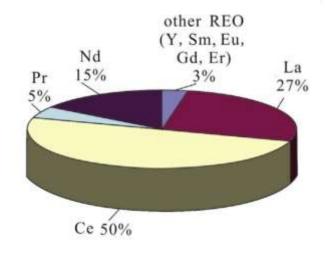

Primary ore deposits

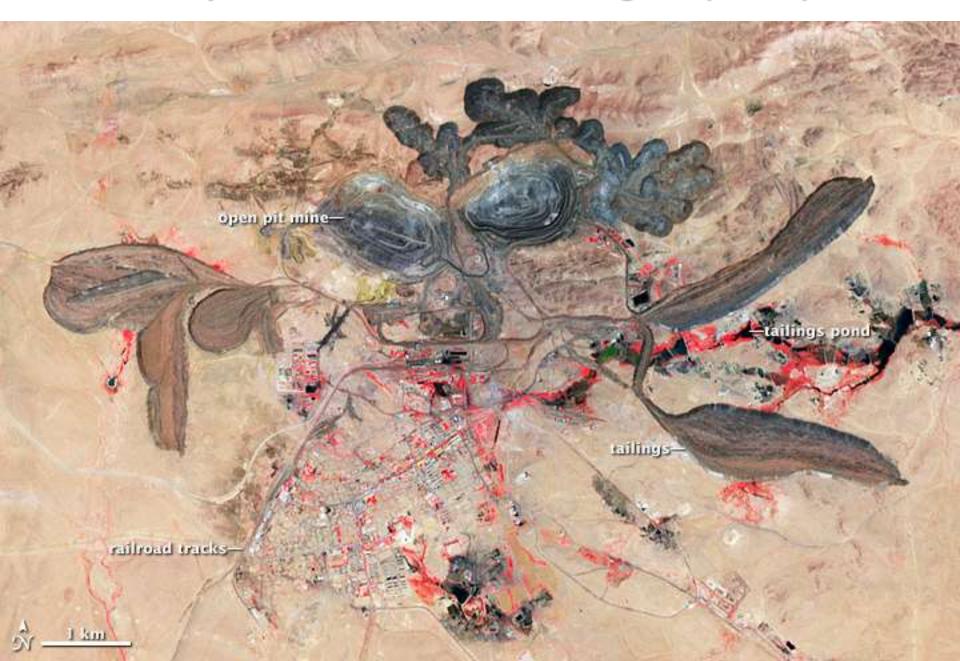

Linked to **hydrothermal processes**


Bayan Obo, Inner Mongolia (China)

Fe deposit (10 Gt @ 32.35% Fe₂O₃) composed of three ferruginous bodies interlayered in the upper part of a dolomite formation.

The REE mineralization, a by-product with grades about 6%, is *stratabound*, consisting of centimetric veins of dolomite, bastnäsite and monazite, that impregnate ferruginous lenses with hematite and magnetite.





Bayan Obo ore

Table 2.7 Average REE-composition of Bayan Obo ore (Zhi Li and Yang 2014)

Oxide	wt%	
La ₂ O ₃	24–26	
CeO ₂	50	
Pr ₆ O ₁₁	3–5	
Nd ₂ O ₃	16–18	
Sm_2O_3	1.5	
Eu ₂ O ₃	0.2	
Gd ₂ O ₃	0.4	
(Tb-Lu) ₂ O ₃	0.2-0.3	
Y ₂ O ₃	0.3	

Mountain Pass Mine, Sulphide Queen Carbonatite

Major Minerals:

Calcite CaCO,

Dolomite CaMg(CO₃)₂

Barite BaSO₄
Celestite SrSO₄
Quartz SiO₂

Bastnäsite (REE)CO₃F

Abundant to Trace:

Monazite (REE,Th)PO₄

Apatite Ca₅(PO₄)F

Parasite (REE)₂Ca(CO₃)₃F₂

Strontianite SrCO₃

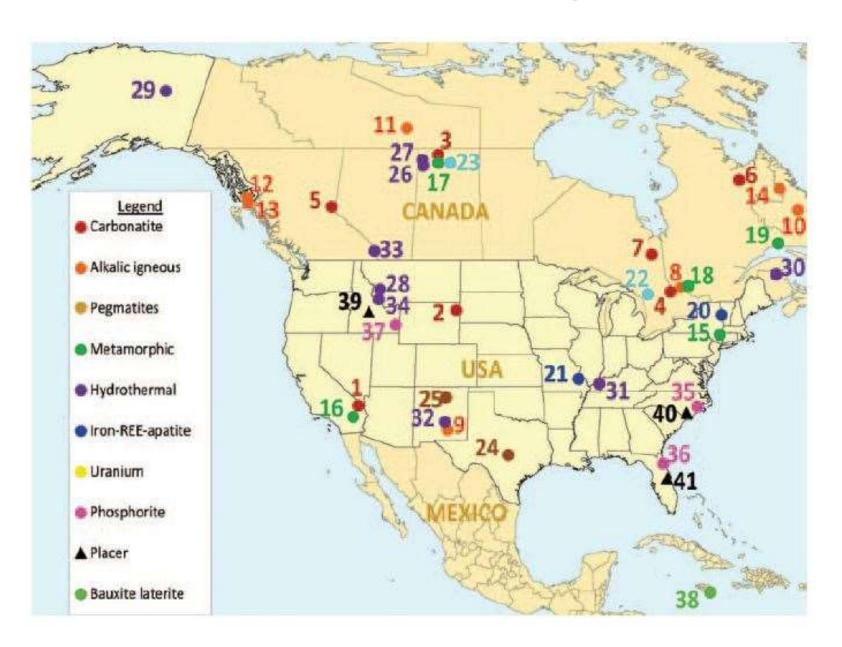
Widespread:

Galena PbS

Talc Mg₃Si₄O₁₀(OH)₂

Trace:

Pyrite FeS₂



Mountain Pass mine (California, USA) ore concentrate

Table 2.6 Mean composition of Mountain Pass concentrate (Castor 2008)

Oxide	(wt%)	
La ₂ O ₃	33.79	
CeO ₂	49.59	
Pr ₆ O ₁₁	4.12	
Nd ₂ O ₃	11.16	
Sm ₂ O ₃	0.85	
Eu ₂ O ₃	0.105	
Gd ₂ O ₃	0.21	
Tb ₄ O ₇	0.016	
Dy ₂ O ₃	0.034	
Ho ₂ O ₃	0.034	
Er ₂ O ₃	0.006	
Tm ₂ O ₃	0.002	
Yb ₂ O ₃	0.002	
Y ₂ O ₃	0.13	
Total	100.049	

North America REE ore deposits

Secondary ore deposits

placers

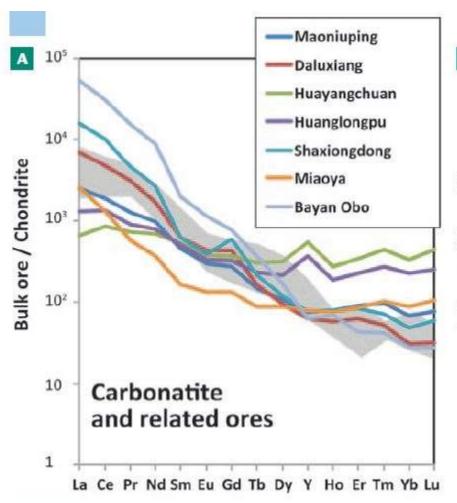
Exclusively **monazite**, as a by-product of **coastal sands** rich in Ti minerals (ilmenite and rutile) and zircon, e.g. Australia, Southern India, Ceylon, south-eastern coast of China, South Africa, Mozambique, Espirito Santo State in Brazil, the eastern USA coast and Madagascar or alluvial cassiterite deposits (Malesia).

• meteoric alteration – supergene enrichment: residual, lateritic

Particularly rich in REE are the lateritic horizons that are formed over the carbonatites in tropical – equatorial climates.

REE deposits in laterites may become the major REE source of the World.

Secondary ore deposits


Secondary deposits				
Marine placers (including coastal dune deposits formed by aeolian processes)	Accumulations of resistant, heavy minerals, concentrated by coastal processes and found along or close to existing coastlines	264(b)	Highly variable tonnage, commonly in the order of 10s to 1–3 hundred million tonnes, generally <0.1% monazite e.g. Jangardup 30 million tonnes at 0.046% Monazite (Orris and Grauch 2002)	Eneabba, Jangardup, Capel, WIM 150, North Stradbroke Island, Australia; Green Cove Springs, USA; Richards Bay, South Africa; Chavara, India
Alluvial placers	Concentrations of resistant, heavy minerals in river channels	78(b)	10s to <200 million tonnes, typically <0.1% monazite e.g. Horse Creek: 19 million tonnes at 0.041% monazite (Orris and Grauch 2002)	Perak, Malaysia; Chavara, India; Carolina monazite belt and Horse Creek, USA; Guangdong, China
Paleoplacers	Ancient placer deposits typically forming consolidated, cemented rocks	13(b)	10s million tonnes up to 100 million tonnes, typically (<0.1% REO	Elliot Lake, Canada; Bald Mountain, USA
Lateritic deposits	Residual surface deposits formed from intense chemical weathering of REE- enriched igneous rocks	42(c)	A few 10s thousands of tonnes to several hundred million tonnes, 0.1–10% REO e.g. Mt Weld: 12.24 million tonnes at 9.7% REO (up to 40% REO)	Mount Weld, Australia; Araxá, Brazil; Kangankunde, Malawi
Ion-adsorption clays	Residual clay deposits formed from the weathering of REE-enriched granites	>100	Most <10 000 tonnes, low- grade (0.03–0.35% REO)	Longnan, Xunwu, China

Monazite-bearing Stream and Beach Placer Deposits

Carbonatites vs. ion-adsorption ores

LREE clays HREE clays 104 **Bulk ore / Chondrite** 103 102 **Bulk ores** 10 Ion-adsorption (lateritic) ores La Ce Pr Nd Sm Eu Gd Tb Dy Y Ho Er Tm Yb Lu

FIGURE 2 Representative chondrite-normalized plots showing the distribution of REEs in the deposits discussed in the text. Yttrium is plotted as a pseudo-lanthanide between Dy

and Ho. (A) Bulk-rock composition of carbonatites and related ores. The grey field shows the global range for carbonatites, from Woolley and Kempe (1989). (B) Bulk-rock and mineralogical composition of ion-adsorption (lateritic) ores

REE deposits of China

TABLE 1 GENERAL INFORMATION ON THE MOST IMPORTANT REE DEPOSITS IN CHINA (listed from LREE enriched to HREE enriched)

DEPOSIT AND LOCATION	RESERVES (× 10 ⁶ tonnes)	Control of the Contro		KEY REE MINERALS
Bayan Obo (Inner Mongolia)	REE ₂ O ₃ : 48 Nb ₂ O ₅ : 2.2	6 0.13	Multistage origin, main stages: 1370–1200, 430–420, 343–225 (Wang et al. 1994; Chao et al. 1997)	REE fluorocarbonates (bastnäsite, parisite, etc.), monazite
Maoniuping (Himalayan Mianning– Dechang REE belt)	1.45	0.5-8.16	40-30 (Yuan et al. 1995)	Bastnäsite, monazite
Daluxiang (Himalayan Mianning– Dechang REE belt)	0.76	5	15–10 (Yang et al. 1998)	Bastnäsite
Miaoya (Qinling orogenic belt)	1.21	1.72	235 (Xu et al., unpublished data)	Bastnäsite, synchysite, monazite
Huanglongpu (Qinling orogenic belt)	Unavailable	?	220 (Du et al. 2004)	Bastnäsite, synchysite, monazite, xenotime
Huayangchuan (Qinling orogenic belt)	Unavailable	?	181 (Yu 1992)	Bastnäsite, synchysite, xenotime, allanite
Ion-adsorption clays (southern China)	Ambiguous (up to 10)	0.05-0.2	195–130 (granitic rock) 2–0 (weathered crust)	Clay minerals, weathered primary minerals (e.g. xenotime)

Table 13.3 Rare earth mines and advanced projects

Name, Location	Geology	Ore minerals*	Grade and size	Notes on company, mining, processing
Carbonatite				
BAYAN OBO, Inner Mongolia, China	Metamorphosed and metasomatically altered carbonatite	bastnäsite, monazite	750 Mt at 4.1% REO	Baotou Steel Rare Earth (Group) Hi Tech Co Ltd. Open pit. Flotation, sulphuric acid extraction. REE by-product of iron ore.
MAONIUPING, Mianning County, Sichuan, China	Carbonatite related. hydrothermal	bastnäsite	1.2 Mt at 2.89% REO	Jiangxi Copper Sichuan Rare Earth Company. Open pit. Flotation.
DALUCAO, Liangshan Autonomous Prefecture, Sichuan, China	Carbonatite/alkaline rocks related	bastnäsite	1.86 Mt ?REO	Dechang Houdi Rare Earth Mining Co., Ltd. Open pit.
WEISHAN, Shandong Province, China	Carbonatite and alkaline rocks	bastnäsite	12.75 Mt REO, grade >1.6% (Wu et al. 1996)	Shandong Weishan Lake Rare Earth Co. Ltd. Open pit.
MOUNTAIN PASS, California, USA	Carbonatite	bastnäsite (monazite planned)	20 Mt at 8.24% REO, 5% cut-off	Molycorp Inc. Open pit. Flotation. Processed to REE products on site.
Bear Lodge, Crook County, Wyoming, USA	Carbonatite dykes and veins in alkaline igneous complex	ancylite, bastnäsite-group minerals	15.88 Mt at 3.454% REO, 1.5% cut-off. 0.5484 Mt REO	Rare Element Resources (RER). Open pit. Crushing, attrition, screening and hydrochloric acid leaching.
MT WELD, Western Australia	Lateritic weathered carbonatite	monazite	17.49 Mt at 8.1% REO, 1.416 Mt REO#	Lynas Corp. Open pit. Flotation. Concentrate sent to Kuantan, Malaysia.

Table 13.3 Rare earth mines and advanced projects

Name, Location	Geology	Ore minerals*	Grade and size	Notes on company, mining, processing
Dong Pao, North Vietnam	Lateritic weathered carbonatite	bastnäsite, synchysite, (minor monazite)	7.4 Mt at 5.22% REO, 3% cut-off, for No. 3 orebody	Toyota Corp, Sojito, Vinacomin joint venture.
Zandkopsdrift, Namaqualand, northern Cape, South Africa	Weathered carbonatite	monazite with crandallite and some churchite	21 Mt at 1.99% REO at 1% cut-off, 415,000 t REO	Frontier Minerals. Open pit. Flotation. REE extraction at Saldanha Bay.
Alkaline rocks				
KHIBINY, Kola Peninsula, Russia	Agpaitic nepheline syenite	fluorapatite	9 Mt REO ^{0&G}	Apatit GOK Open Pit and underground. By-product of fertiliser manufacture if nitric acid used.
LOVOZERO, Kola Peninsula, Russia	Agpaitic nepheline syenite	loparite	3.4 Mt REO#, 0.8-1.5% REO ^{08G}	Lovozerskiy Mining Company. Underground mine. REE by-product of Nb.
Dubbo Zirconia, Toongi, central west NSW, Australia	Alkaline trachyte dyke	bastnäsite, ancylite	73.2 Mt at 0.75% REO. 0.549 Mt total REO.	
Nechalacho, Thor Lake, North West Territories, Canada	Peralkaline layered nepheline syenite with hydrothermal upgrade of REE	bastnäsite, allanite, parisite, monazite, synchysite. HREE in fergusonite and zircon.	107.59 Mt at 1.26-1.48% REO, 4.3 Mt REO	Avalon Rare Metals Inc. Undergound mine. Also Nb.

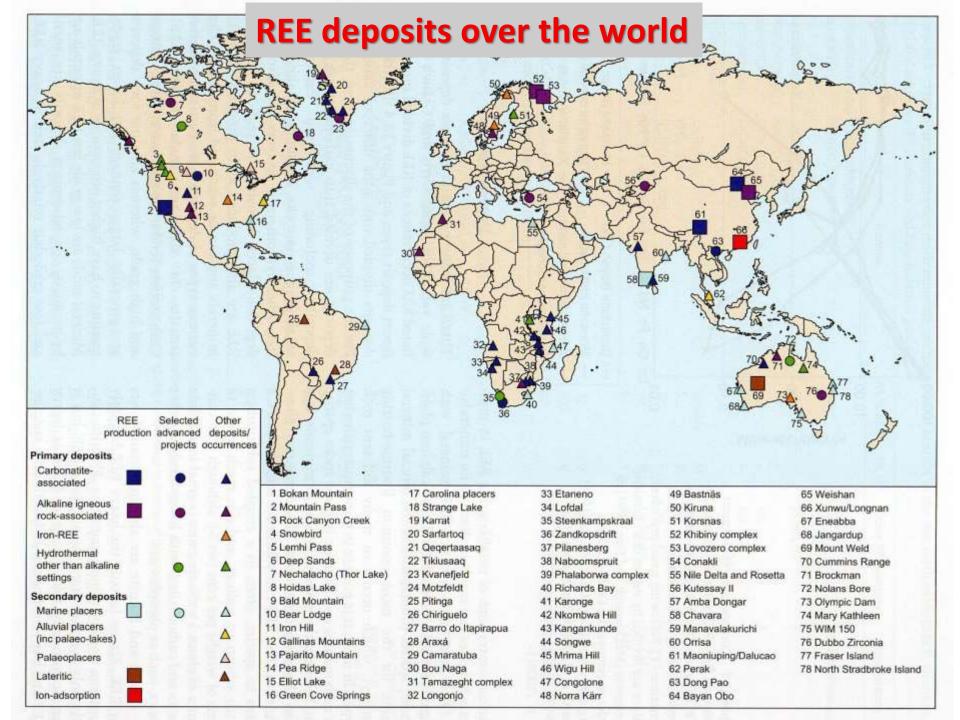
Name, Location	Geology	Ore minerals*	Grade and size	Notes on company, mining processing
Kvanefjeld , Ilimaussaq Gardar Province, Greenland	Agpaitic nepheline syenite	steenstrupine, (eudialyte)	619 Mt at 10,585 ppm REO, 6.55 Mt REO	Greenland Minerals and Energy Ltd and Westrip Holdings. Open pit. Carbonate pressure leaching to recover U, precipitation of REE.
Strange Lake, NE Quebec/NW Labrador border, Canada	Peralkaline granite (hypersolvus, subsolvus and pegmatite) with additional hydrothermal concentration of REE	yttropyrochlore, kainosite, allanite, gadolinite, gerenite, keiviite: (fluorocarbonates & monazite)	114.8 Mt at 0.999 % REO, 43% HREE	Quest Rare Metals.
Zeus, Kipawa alkaline complex, Témiscamingue, Quebec, Canada	Alkaline compex with syenite and granite	eudialyte, Y-bearing titanite, britholite	67,200 t REO, significant HREE	Matamec Explorations. Open pit. Mild crushing and leaching. Also Zr.
Kutessay II, Aktyuz Ore field, Chu Oblast, Kyrgyz Republic	3 mineralised zones, (I, II, III). Massive pockets of REE carbonates	monazite, xenotime(Y), bastnäsite-(Y), parisite-(Y)?, synchysite-(Y), yttrofluorite, fluorcerite	16.27 Mt at 0.264% REO ^{BGS} 50:50 LREE:HREE	Stans Energy Corp. Former REE mine. Produced all 15 REE.

Table 13.3 Rare earth mines and advanced projects

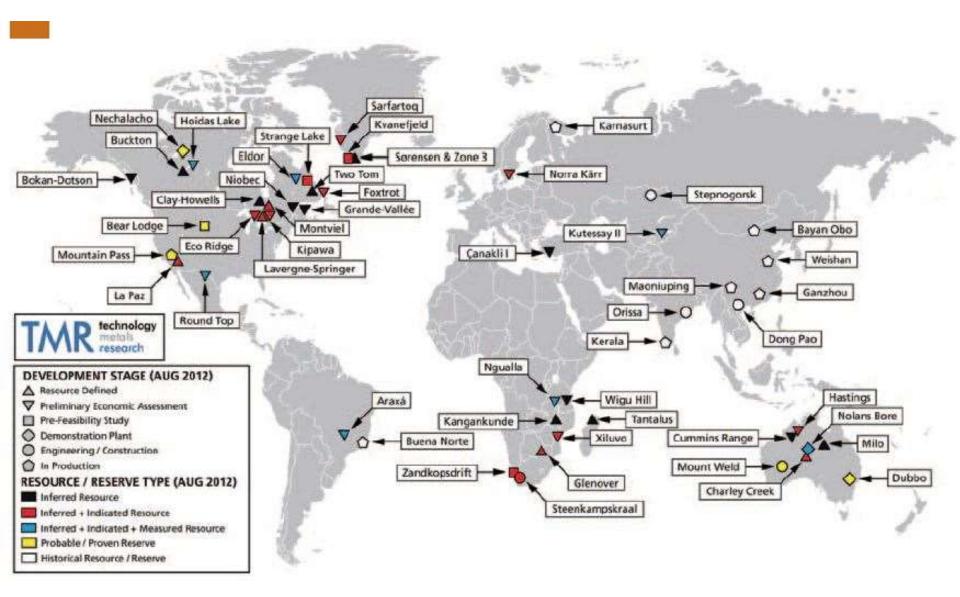
Name, Location	Geology	Ore minerals*	Grade and size	Notes on company, mining, processing
Ion adsorption				
Ion adsorption deposits, 214 deposits in Jiangxi, Hunan, Guangdong, Guangxi,and Fujian, China	Clay-rich weathered granites and other silicate rocks	REE are adsorbed onto kaolinite and other clays	most deposits <10,000 t, 0.03-0.35% REO ^{BGS} , HREE rich	Multiple companies. In-situ leaching or small scale mining and leaching.
Hydrothermal				
Steenkampskraal, Western Cape Province, South Africa	Hydrothermal monazite in metamorphosed gneisses	monazite	249,500 t at 17% REO, 29,400 t REO)#	Rareco (Great Western Minerals Group). Underground mine. Gravity separation and flotation.
Nolans project, Northern Territories, Australia	Sub-vertical dykes, veins and stockworks of fluorapatite in gneiss.	REE-bearing fluorapatite (especially Nd and Eu), cheralite	30.3 Mt at 2.8% REO, 848 kt REO	Arafura Resources. Open pit. Heavy media. REE carbonate recovery from acid leach.
Hoidas Lake, Saskatchewan, Canada Placer	REE in apatite and allanite veins	apatite, allanite	2.8 Mt at 2.139-2.568% REO	Great Western Minerals Group.
Manavalakurichi, Tamil Nadu, India	Marine placer?	monazite	total reserves in India amount to 10Mt monazite.#	Indian Rare Earths Ltd (IREL), Federal Department of Atomic Energy.

Name, Location	Geology	Ore minerals*	Grade and size	Notes on company, mining, processing
Chavara, Kerala, India	Marine/alluvial placers	monazite		IREL
Orissa, Orissa, India	Alluvial placers	monazite		IREL
Chhatapur, Ganjam district, Orissa, India	Alluvial placers on coast	monazite		Toyotsu Rare Earths (IREL and Toyota Tsusho).
Other SARECO, Kasatomprom's nuclear facilities, Ust-Kamenogorsk, Kazakhstan**	Y-rich U ore tailings, U ores, in situ leaching solutions and REE deposits	?	?	Sumitomo, Kazatomprom. Processing at Kazatomprom facility.
Pitinga , Amazon Region, Brazil	Processing tailings at a tin mine	xenotime-(Y)	8.5% REO in tin tailings	Neo Material Technologies, Mitsubishi.

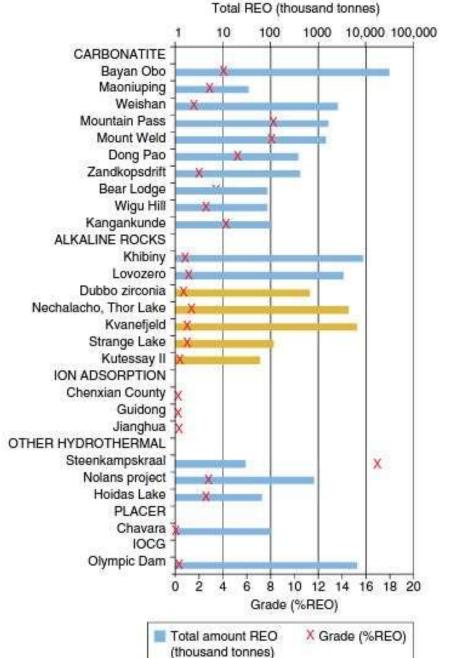
OPERATING MINES in capitals


source Roskill, company websites

^{0&G} Orris & Grauch, 2002.


Nb, niobium; Ta, tantalum; U, uranium; Zr, zirconium.

^{**}also a second source in Kazakhstan but too few details known to list


^{*}all minerals are -(Ce) varieties unless specified

REE advanced projects

REE reserves – size and grade

Resource with significant

amount of HREE

Figure 13.5 Comparison of the size and grade of rare earth mines and advanced development projects. (Data from Table 13.3.)

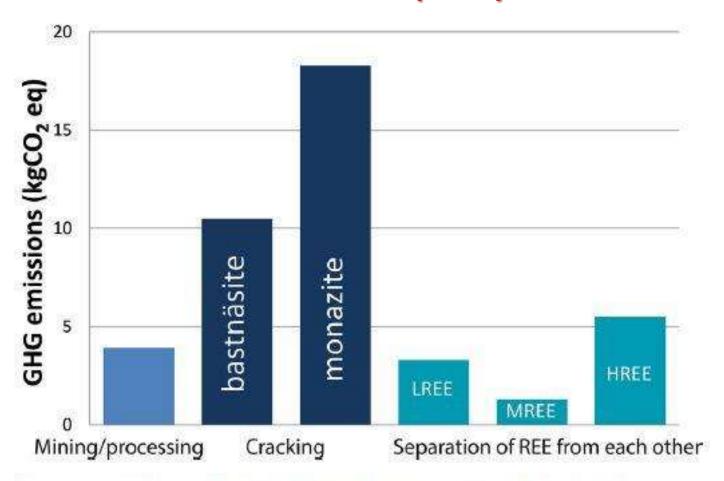
REO world reserves

Country	Reserves (tonnes)
China	50 000 000
Commonwealth of Independent States	19 000 000
United States of America	13 000 000
India	3 100 000
Australia	1 600 000
Other Countries	22 100 000
World Total	113 800 000

Table Estimated world REO reserves (reserves are defined by USGS as that part of the reserve base which could be economically extracted or produced at the time of determination. The term reserves need not signify that extraction facilities are in place and operative. Reserves include only recoverable materials (Cordier, 2011).

REE: ENVIRONMENTAL ISSUES

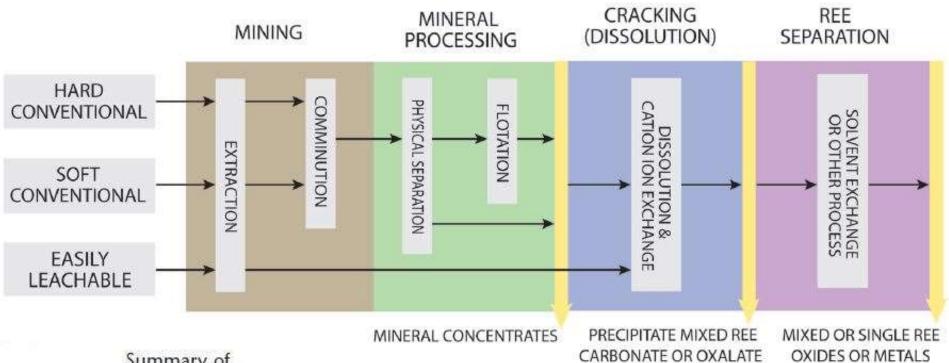
The extraction and processing of REE has a **strong environmental impact**:


- the presence of radioactive contamination for some REM, such as xenotime and monazite (may contain significant amounts of U and Th);
- HF and H₂SO₄ containing gases are released in the environment, as well as acid waters and solid radioactive waste;
- REE production requires large quantities of electricity (even though the same REE are used for technologies related to renewable energies).

REE: ENVIRONMENTAL ISSUES - Baotou (China)

REE: GREENHOUSE GAS (GHG) EMISSIONS

Greenhouse gas (GHG) emissions equivalent per kg of rare-earth oxide produced calculated from a life cycle assessment of a) mining, concentrating Bayan Obo REE ore; b) dissolving (cracking) the two ore minerals bastnäsite and monazite to release their REEs; c) separating the light (L), medium (M) and heavy (H) REEs from each other. After Koltun and Tharumarajah (2014).


REE: LIFE-CYCLE ASSESSMENTS (LCAs)

SUMMARY OF FOUR LIFE-CYCLE ASSESSMENTS (LCAs) with a functional unit of 1 kg of rare-earth oxides (REOs), three from Bayan Obo (Inner Mongolia, China), highlighting different results obtained from the same deposit, plus one for a Chinese ion-adsorption deposit.

Factor	Unit	Bayan Obo 1	Bayan Obo 2	Bayan Obo 3	lon adsorp- tion clay
Global warming	kg CO₂ eq	12–16	32.29–32.49	22.98-35.27	20.9–35.5
Acidification	kg SO₂ eq	6.4-8.8	N/A	96.27–99.28	0.165-0.288
Eutrophication	kg N eq	0.04-0.06	N/A	0.18-0.27	0.303-2.87
Respiratory effects	kg PM2.5 eq	N/A	N/A	0.16-0.18	0.026-0.045
Ozone depletion	kg CFC-11 eq x 10 ⁻⁶	2.0-3.5	N/A	3.8-20	2.4-3.2
Cumulative energy demand	MJ	174–232	169.2–179.5	315-578.8	255–388
	L	75	73		Ja.

Data from Sprecher et al. (2014), Koltun and Tharumarajah (2014), Zaimes et al. (2015), Vahidi et al. (2016)

REE: MINING AND PROCESSING ROUTES

Summary of mining and processing routes for rare-earth element (REE) deposits. Ores are divided into three types: hard conventional, such as igneous carbonatite and alkaline igneous rocks; soft conventional, such as mineral sands; and easily leachable, which includes ion-adsorption clays.


REE: MINING AND PROCESSING ROUTES

EXAMPLES OF RARE-EARTH ELEMENT (REE) DEPOSITS AND QUALITATIVE ANALYSIS OF THEIR MINING AND PROCESSING CHARACTERISTICS. Characteristics shaded green and in bold are generally advantageous to responsible sourcing, grey are less so and unshaded cells are less favourable.

Ore type	Energy for crushing and grinding	Grain size/ Difficulty of beneficiation	Chemicals (acid, flotation reagent)	Radioactivity: ore mineral and host rock	Amount of rock to be moved*	By-products
Carbonatite	Medium – High	Variable – 10 µm	Flotation – medium	Medium	Low	Not usually
Weathered carbonatite	Medium	10 µm and finer	Flotation – medium	Low-Medium	Low	Not usually
Alkaline rock	High	Variable 1 µm and larger	Variable	Variable	High	Co-products common
Ion adsorption clay (in-situ leaching)	None	Beneficiation not needed	Leaching, so can be high	Low	Low	None
Mineral sand (placer)	None-Low	10 – 100 μm	Low	High	High	from TiO ₂ , zircon etc production
By-product of igneous apatite	High	100 μm–mm	Medium	Low	High	from fertiliser manufacture
Red mud	Bauxite processing	n/a REE from red mud	Medium?	Low	High	from Al production

^{*} i.e. low grade = large amount of rock

Bastnäsite beneficiation flow diagram

Generalised bastnäsite beneficiation flow diagram, based upon the former Mountain Pass operation.

REE extraction from bastnäsite

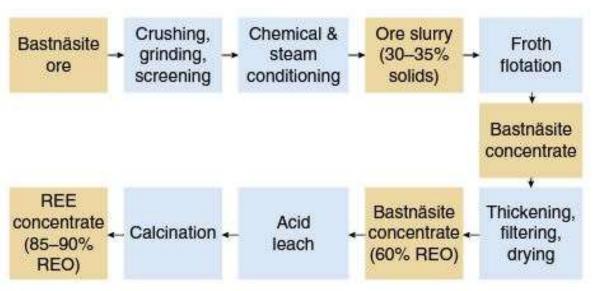
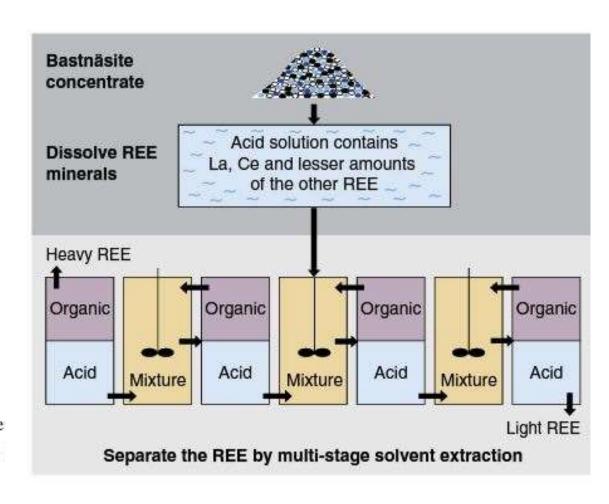
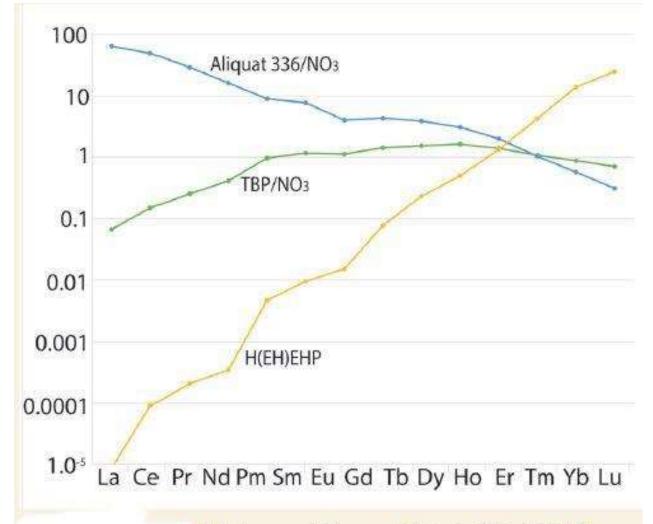
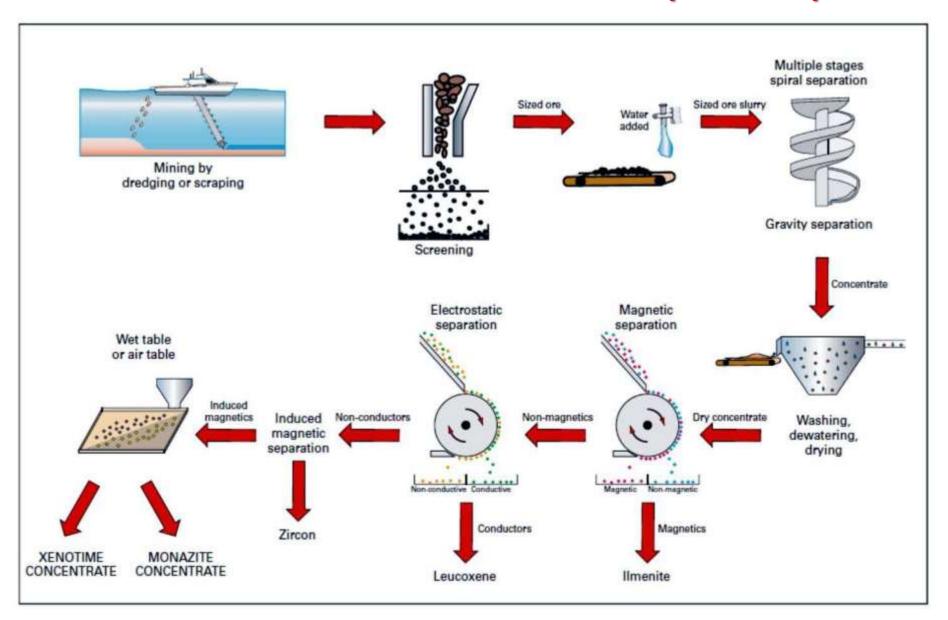


Figure 13.7 Schematic summary of the beneficiation of bastnäsite ores.

REE extraction from bastnäsite


Figure 13.9 Schematic flowsheet for the extraction of rare earths from bastnäsite at Mountain Pass. (After Molycorp Inc., 2011b.)

REE extractants

Relative partition coefficients (P) of REE³⁺, i.e. [P(REE³⁺)] for the three extractants:
(1) 2-Ethylhexyl phosphonic acid, mono-2-ethylhexyl ester (H(EH)EHP). (2) Tributyl phosphate in a nitrate medium (TBP/NO₃). (3) Aliquat 336 in a nitrate medium (Aliquat³³⁶/NO₃). The scale is normalized to a partition of one for Y. The larger the difference of P(REE³⁺) between two adjacent REEs, the more selective the extractant. Modified from Lucas et al. (2015).

Monazite and xenotime extraction from placer deposits

Monazite and xenotime extraction from placer deposits

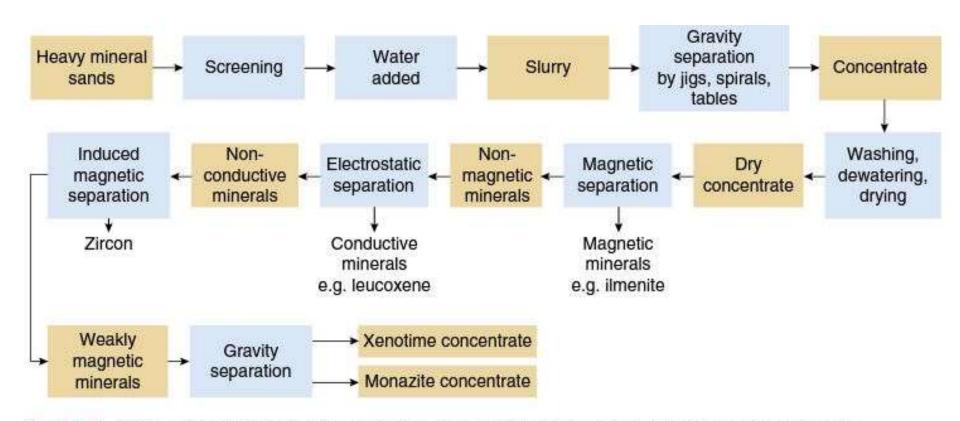
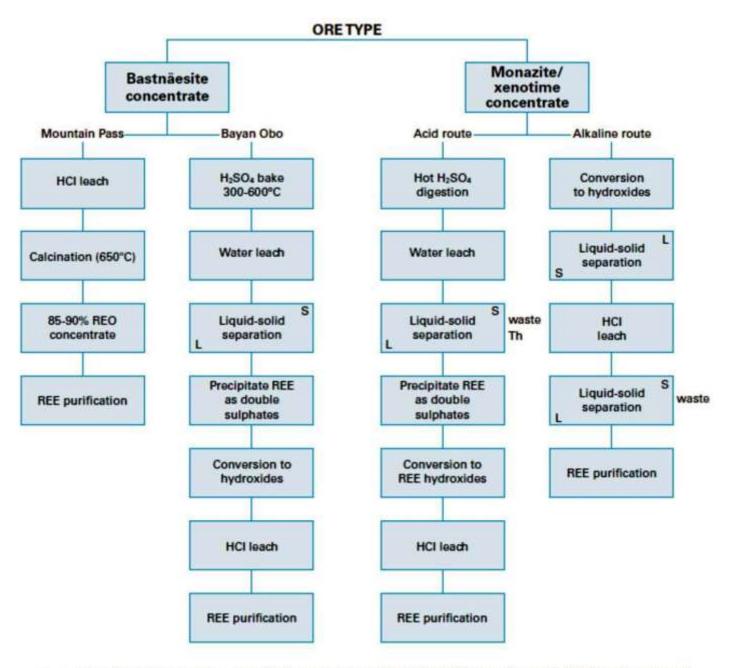



Figure 13.8 Schematic summary for the extraction of monazite and xenotime from heavy mineral sands.

Examples of processing routes for the separation of individual REE from the major REE-bearing minerals. H₂SO₄, sulphuric acid; HCl, hydrochloric acid (adapted from Chegwidden and Kingsnorth, 2002).

OTHER

- -Nuclear (Eu, Gd, Ce, Y, Sm, Er)
- -Defence (Nd, Pr, Dy, Tb, Eu, Y, La, Lu, Sc, Sm)
- -Water treatment
- -Pigments Ce, Y
- -Fertilisers

CERAMICS

La, Ce, Pr, Nd, Y Eu, Gd, Lu, Dy

- -Capacitors
- -Sensors
- -Colourants
- -Scintillators
- -Refractories

MAGNETS

Nd, Pr (Tb, Dy)

- -Motors
- -Disc drives
- -MRI
- -Power generation
- -Microphones and speakers
- -Magnetic refrigeration

CATALYSTS

La, Ce (Pr, Nd)

- -Petroleum refining
- -Catalytic converter
- -Diesel additives
- -Chemical processing
- -Industrial pollution scrubber

RARE EARTHS

$\overline{}$

HING PHOSPHORS

Eu, Y, Tb, Nd, Er, Gd (Ce, Pr)

- -Display phosphors CRT, LPD, LCD
- -Fluroscent lighting
- -Medical imaging
- -Lasers
- -Fibre optics

METALLURGICAL ALLOYS

La, Ce, Pr, Nd, Y

- -NimH batteries
- -Fuel cells
- -Steel
- -Lighter flints
- -Super alloys
- -Aluminium/Magnesium

GLASS AND POLISHING

Ce, La, Pr, Nd, Gd, Er, Ho

- -Polishing componds
- -Decolourisers/colourisers
- -UV resistant glass
- -X-ray imaging

REE – industrial uses

- catalysts
- metallurgy
- electrical industry, electronics and magnets,
- rechargeable batteries
- super-conductor industry
- phosphors and medical radiography
- glass and ceramic industries, abrasive
- chemical industry
- nuclear power generation
- magnetic refrigeration
- Solid oxide fuel cells (SOFC)
- wastewater treatment

REE – industrial uses

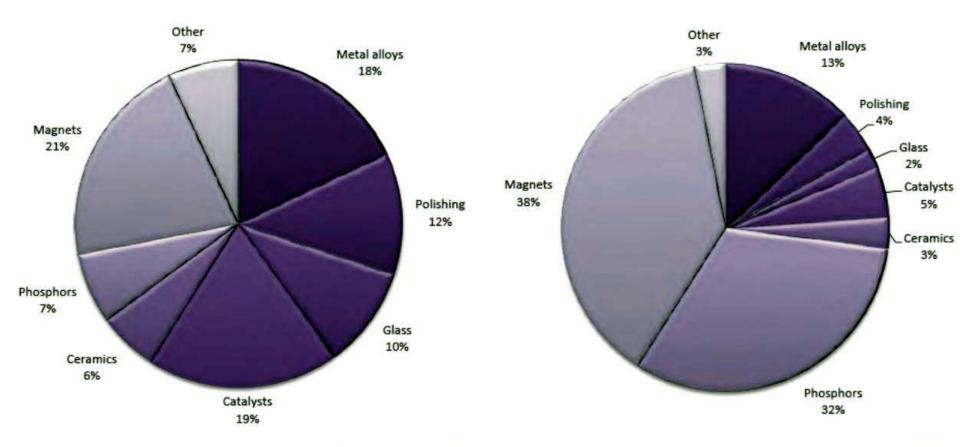
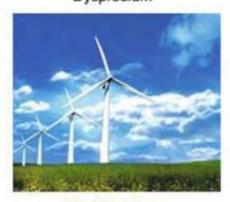


Figure REE consumption by volume (Kingsnorth, 2009). Figure REE consumption by value (Kingsnorth, 2009).

Rare Earth Elements in Consumer Goods

Television Europium, Cerium

Computer Cerium Neodymium


Automobile Lanthanum, Cerium, Yttrium, Dysprosium

Mobile Phone Neodymium Cerium

Aircraft
Lanthanum, Cerium, Yttrium,
Dysprosium, Europium

Wind Turbines
Neodymium, Dysprosium

Solar Panels Lanthanum

Welding Goggles Neodymium

Fluorescent Lighting Terbium

REE – industrial uses

Table 13.4 Uses of rare earth elements, estimated global rare earth oxide (REO) demand in 2012 and forecast REO demand in 2016. (Data from Kingsnorth, 2013.)

Category	Application	Principal elements used	Demand 2012 (tonnes REO)	Demand 2012 (market share %)	Forecast demand 2016 (tonnes REO)	Forecast demand 2016 (market share %)
Magnets	Motors Disc drives Power generation Actuators Microphones and speakers MRI Automotive parts Communication systems Electric drive Frictionless bearings Magnetic refrigeration	Nd, Pr, Tb, Dy, Sm	22,500	20	33,000	21
Metal alloys	Hydrogen storage (NiMH batteries, fuel cells) Steel Aluminium/magnesium Cast iron Superalloy	Ce, La, Pr, Nd, Sm, Sc, Y	22,000	19	30,000	19
Catalysts	Catalytic converter Chemical processing Diesel additives Petroleum refining	Ce, La, Pr, Nd, Y	22,000	19	26,000	15

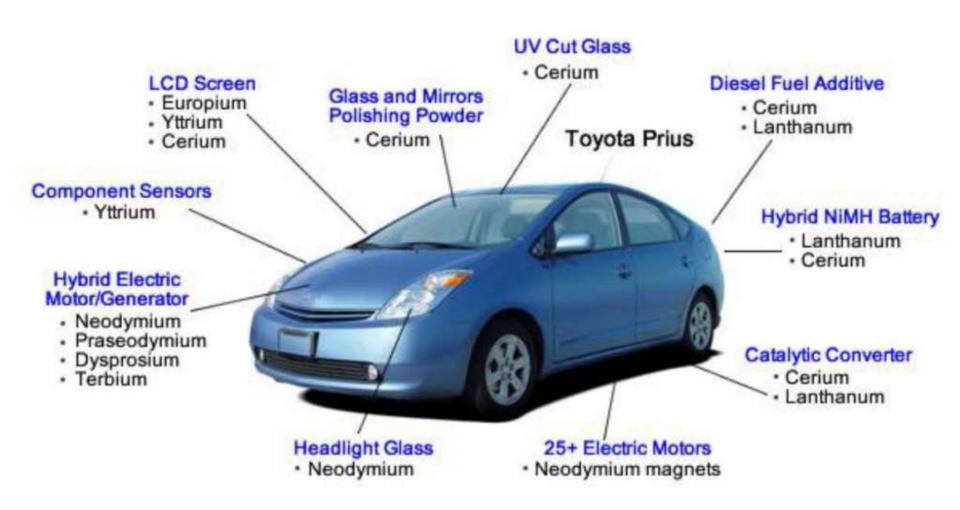
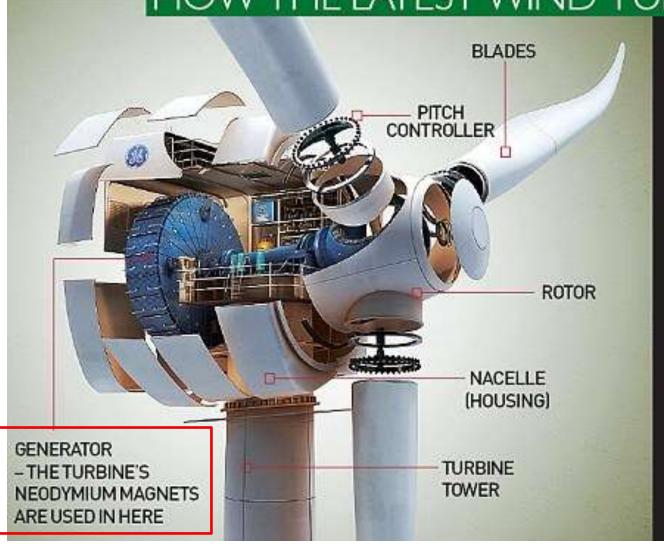

REE – industrial uses

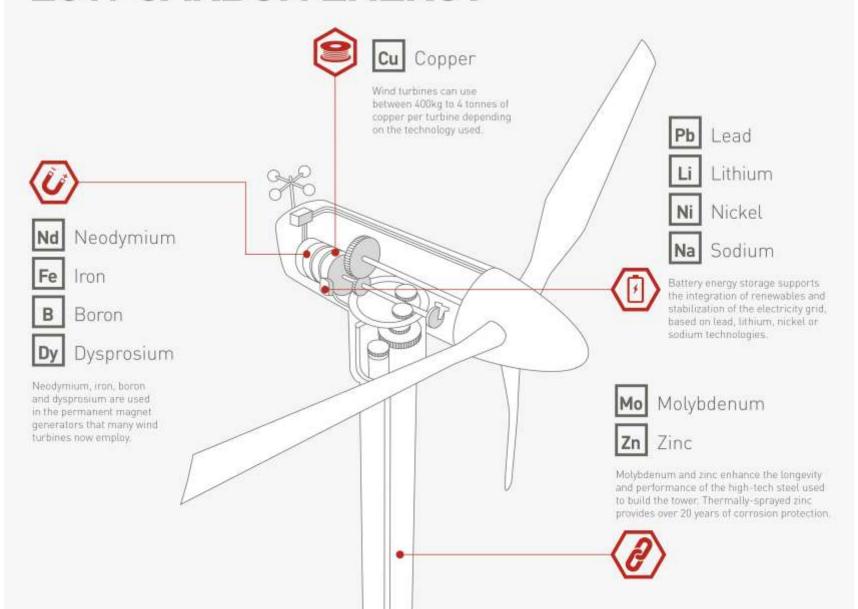
Table 13.4 Uses of rare earth elements, estimated global rare earth oxide (REO) demand in 2012 and forecast REO demand in 2016. (Data from Kingsnorth, 2013.)

Category	Application	Principal elements used	Demand 2012 (tonnes REO)	Demand 2012 (market share %)	Forecast demand 2016 (tonnes REO)	Forecast demand 2016 (market share %)
Polishing	Polishing compounds	Ce, La, Nd	19,000	16	25,000	15
Glass	Optical glass UV resistant glass Thermal control mirrors Colourisors	La, Ce, Pr, Nd, Eu, Gd, Dy, Ho, Er, Y	7,500	7	9,000	6
Phosphors and pigments	Display phosphors Medical imaging Lasers Fibre optics Fluorescent lighting Optical sensors Pigments LEDs	Eu, Tb, Y, La, Dy, Ce, Pr, Gd, Nd, Ce, Er, Eu	8,500	7	9,000	7
Ceramics	Capacitors Sensors Colourants Scintillators	Y, Ce, La, Pr, Nd	6,500	6	8,000	5
Other	Water treatment Fertiliser Medical tracers Coatings Nuclear reactors	Gd	7,000	6	20,000	12
Total			115,000	100	160,000	100


REE applications in the automotive industry

Rare Earth Elements in the Toyota Prius

REE applications in wind turbines


Neodymium has been in use since the middle of the last decade and is a key component of the latest wind turbines. The graphic (left) shows the inner workings of one of the latest designs by market leader GE.

Here's how it works:

- A motor turns the nacelle to face the wind.
- 2. The rotor spins, turning a shaft with the nacelle.
- 3. The shaft spins the generator's neodymium magnets inside stationary copper coils, inducing current in the coils.
- Circuitry adjusts the frequencies and voltage of the current and sends it off to the National Grid.

PROVIDING EFFICIENT, LOW CARBON ENERGY

Properties of Nd-Fe-B magnets

Table 5.2 Properties of sintered and bonded NdFeB-magnets (MMC Magnets 2015)

Magnet type	Remanence (mT) Depending on the variety	Intrinsic coercive force, Hci (kA/m) Depending on the variety	Maximum operating temperature (°C) Depending on the variety
Nd ₂ Fe ₁₄ B (sintered)	1050–1450	877–2786	80–220
Nd ₂ Fe ₁₄ B (bonded)	140–620	143–1200	130–180

Rare Earth Elements in the Military

Predator Drone
Neodymium, Samarium
Electric Motors and Guidance

Smart Bomb Neodymium, Samarium Electric Motors and Guidance

Tomahawk Cruise Missile Neodymium, Samarium Electric Motors and Guidance

Night Vision Goggles
Terbium, Erbium, Gadolinium
Optical Lenses

F-22 Fighter Jet

Europium, Yttrium Terbium, Erbium

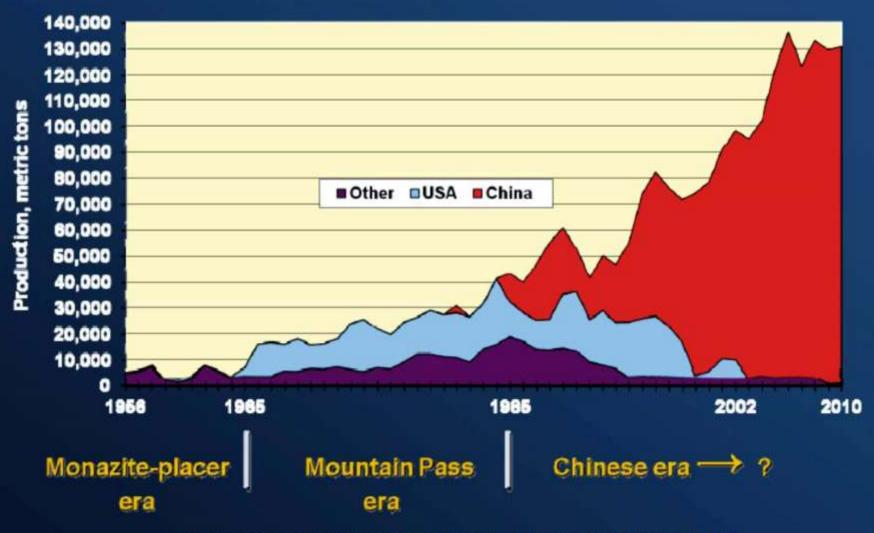
Optical Systems, Visuals and Fiber Optics

Bullet Proof Vest Yttrium Hardened Ceramics

Bradley Tank

Yttrium

Hardened Ceramics


Radar Detection

Europium, Lutetium
Signal Amplification

Nuclear Submarine Europium, Lutetium Sonar Detection

REO Production Trends – 1956 to 2010

Sources: USGS Fact Sheet 087-02 updated with recent USGS Minerals Yearbook data

Production of REO between 1992-2010

Chinese and world production of REO between 1992-2010 (World Minerals Statistics Database, BGS).

REE – imports and exports

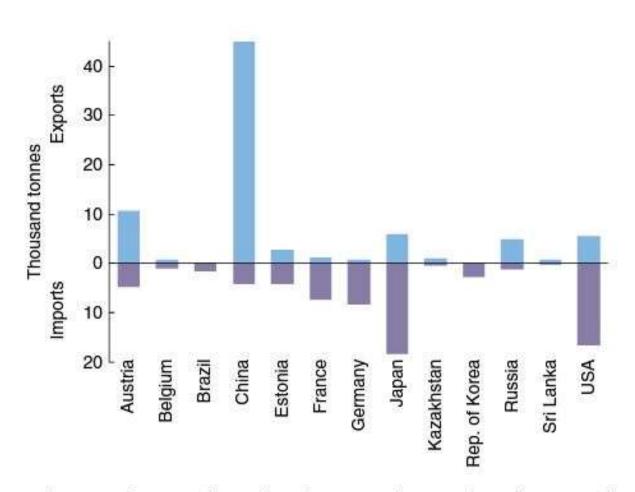


Figure 13.11 Imports and exports of rare earth metals and compounds, 2009. (Data from British Geological Survey World Mineral Statistics Database and UN Comtrade, 2013.)

REE production and estimated reserves

Table 13.5 Production of rare earth oxide (REO) concentrates in 2010 and estimates of reserves. (Production data from Roskill Information Services Ltd; reserve data from Cordier, 2011.)

Country	Comment	REO production (tonnes)	REO reserves (tonnes)	
China	Mainly from bastnäsite from Baotou and ion adsorption clay from southern provinces	120,000	55,000,000	
	stockpiled ore in Sichuan	ca.10,000		
	'unoffcial' sources	ca.15,000		
Russia (reserve: CIS)	In chemical concentrates from mine output in 2009	1,898	19,000,000	
USA	From stockpiled ore. Mining restarted in December 2010	1,883	13,000,000	
India	Chemical concentrates from minerals sands tailings	25-50	3,100,000	
Brazil	Monazite stockpiled by-product from rutile production	550*	48,000	
Australia	Some mining has taken place at the Lynas operation at Mount Weld — the ore was stockpiled until the concentrator was completed.	7	1,600,000	
Others	Small amounts of monazite and xenotime from south-east Asia, probably shipped to China for processing	?	22,030,000	
Total	ST STATE OF THE ST		113,778,000	

REO application and consumption

Application	Consumption (tonnes)	Market share 2015 %	
	2008 actual	2015 forecast	
Catalysts	25 000	30-34 000	16
Glass	12 000	20–22 000	6.5
Polishing	15 000	50-55 000	11
Metal alloys	22 250	45-50 000	26
Magnets	26 250	39–43 000	23
Phosphors and pigments	9000	12-14 000	6.5
Ceramics	7000	8-10 000	5
Other	7500	10-12 000	6
Total/range	124 000	190-210 000	

Global demand for REE in 2008 and 2015 (Kingsnorth, 2010).

REE - prices

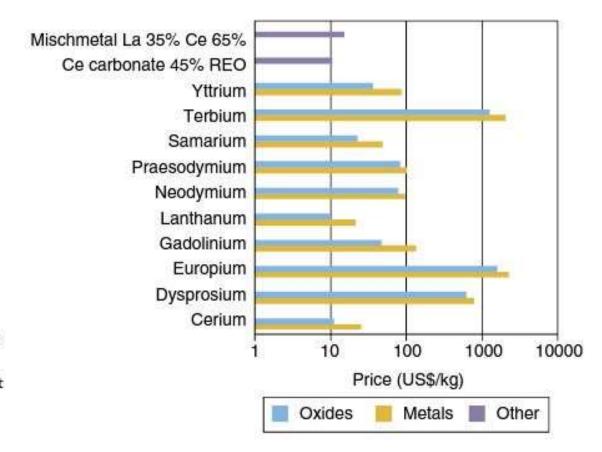


Figure 13.12 Prices of rare earth metals, oxides, mischmetal and mixed light REE carbonate in January 2013. Prices are FOB China, 99% metal min., except Y 99.9% min.; oxide: FOB China, 99% min., except Eu 99.9%, Y, 99.999%. (Data from Metal Pages, www.metal-pages.com.)

REO and metal prices (2011)

REE	Price (US\$ per kg)		
	Metal	Oxide	
Cerium	168–170	149–151	
Dysprosium	3400–3420	2580–2600	
Europium	6600–6620	5860-5880	
Gadolinium	223–228	200–210	
Lanthanum	165–167	149–151	
Neodymium	465-470	335–340	
Praseodymium	280–282	247-250	
Samarium	189–192	127-130	
Terbium	5100-5120	4500-4520	
Yttrium	205–215	180–185	

REO and metal prices on August 16th 2011. Prices shown are for a minimum 99% purity and are quoted in US\$ per kilogram on an FOB China basis (Metal-pages, 2011).

LREE average prices

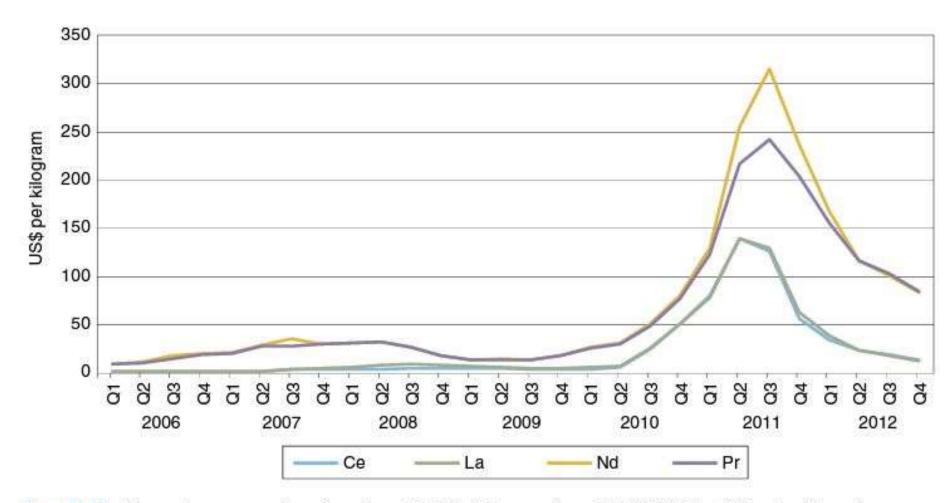


Figure 13.13 Quarterly average prices for selected LREE. Prices are for oxide FOB China 99% min. (Data from Metal Pages, www.metal-pages.com). Ce, cerium; La, lanthanum; Nd, neodymium; Pr, praseodymium.

HREE average prices

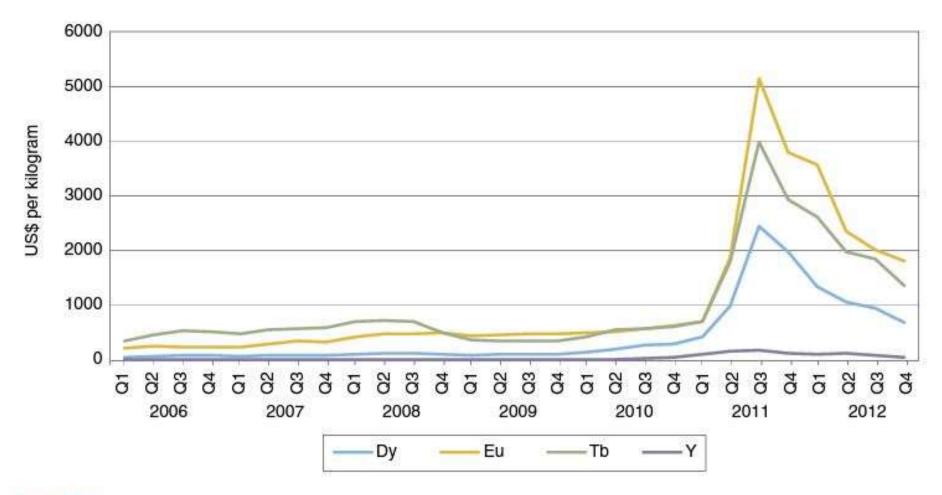


Figure 13.14 Quarterly average prices for selected HREE and Y. Prices are for oxide FOB China 99% min. for Dy and Tb, 99.9% min. for Eu, and 99.999% min. for Y. (Data from Metal Pages, www.metal-pages.com). Dy, dysprosium; Eu, europium; Tb, terbium; Y, yttrium.

RECYCLING OF REE CONTAINING MATERIALS

The recovery of REE is today generally complex and costly in terms of energy:

- different industrial applications;
- different duration of an artifact (e.g. hard drives, electric/hybrid vehicle);
- the need for **complex separation-removal**.


The development of **recycling technologies** of REE containing waste will make this road more and more important, with less environmental problems (e.g. radioactivity, lower energy consumption).

Alternatives to REE

Application	Rare Earth Material	Alternative
Metallurgy		
Nodular iron	Misch metal	Magnesium
Steel	REE silicide	Calcium
Nuclear energy		
Control rod	Europium	Hafnium
Hydrogen storage	Lanthanum nickel alloy	Iron titanium alloy
Glass		
Polishing	Cerium oxide	Plate glass (Pilkington) process
Ceramics		
Glazed ceramic tiles	Cerium	Tin, zirconium

Alternatives to REE in some applications. (Gupta and Krishnamurthy, 2005).

Antimony

Sb – definitions and characteristics

Sb and Sb₂S₃ have been known since 4000 B.C. The metal was used as coating to harden Cu and the sulfide as eyebrow paint.

Table 4.1 Selected properties of antimony.

	201		
Property	Value	Units	
Symbol	Sb		
Atomic number	51		
Atomic weight	121.75		
Density at 25°C	6692	kg/m³	
Hardness (Mohs scale)	3.0		
Melting point	631	°C	
Boiling point	1587	°C	
Specific heat capacity at 25°C	0.21	J/(g °C)	
Electronegativity (Pauling scale)	2.05	25043	
Electrical potential	0.21	V	
Electrical resistivity at 25°C	0.40	$\mu\Omega$ m	
Thermal conductivity	25	W/(m °C)	
Latent heat of fusion	163	kJ/kg	
Latent heat of vaporisation	1602	kJ/kg	

Sb – abundance in the Earth and mineralogy

Table 4.2 Antimony minerals with antimony concentrations greater than 70% Sb and additional antimony minerals (in bold) which typically occur in antimony-bearing ore deposits.

Mineral	Formula	% Sb	
Antimony	Sb	100.00	
Senarmontite	Sb ₂ O ₃	88.39	
Valentinite	Sb ₂ O ₃	83.53	
Nisbite	NiSb ₂	80.58	
Onoratoite	Sb ₈ O ₁₁ Cl ₂	79.78	
Cervantite	Sb3+Sb5+O4	79.19	
Stibiconite	Sb ³⁺ Sb ⁵⁺ ₂ O ₆ (OH)	76.37	
Sarabauite	CaSb ₁₀ O ₁₀ S ₆	75.62	
Kermesite	Sb,S,O	75.24	
Coquandite	Sb ₆ O ₈ (SO ₄) (H ₂ O)	75.11	
Stibnite	Sb,S,	71.68	
Breithauptite	NiŠb	67.47	
Stibarsen	SbAs	61.91	
Gudmundite	FeSbS	58.07	
Ullmannite	NiSbS	57.29	
Berthierite	FeSb,S,	56.94	
Aurostibite	AuSb,	55.28	
Chalcostibite	CuSbS,	48.81	
Jamesonite	Pb ₄ FeSb ₆ S ₁₄	35.39	
Tetrahedrite	(Cu,Fe),,Sb ₄ S,3	29.64	
Famatinite	Cu ₃ SbS ₄	27.63	
Dyscrasite	Ag ₃ Sb	27.34	
Boulangerite	Pb ₅ Sb ₄ S ₁₁	26.44	
Bournonite	PbCuSbS ₃	24.91	
Pyrargyrite	Ag ₃ SbS ₃	22.48	
Freibergite	(Ag,Cu,Fe) ₁₂ (Sb,As) ₄ S ₁₃	18.93	
Stephanite	Ag _s SbS ₄	15.42	
Vinciennite	Cu ₁₀ Fe ₄ Sn(As,Sb)S ₁₆	3.83	

- Sb has strong affinity to S and metals like Cu, Pb and Ag. Moderately siderophile, moderately incompatible and lithophile.
- "Antimony" is derived from the Greek words "anti" and "monos" ("not alone").
- Sb is a lustrous silvery white, brittle, crystalline semi-metal (metalloid) with poor conductivity of electricity and heat.
- Sb⁵⁺, Sb³⁺, Sb⁰ and Sb³⁻
- Clarke 0.2 ppm, basalts vary from 0.02 ppm and 0.8 ppm, seawater 0.15 ppb.
- Sb substitutes for Bi, Pb, As and S in a variety of ore minerals. Close mineralogical association with Ag and Au deposits.

Sb – major deposit classes

- Sb occurs in several different types of ore deposits of all ages. Sb deposits are commonly associated with active continental margins and orogenic belts with steep geothermal gradients.
- Most of Sb deposits are of **hydrothermal origin**. Three main Sb deposits can be distinguished, based on fluid generation and metal source:
 - 1. Low-T hydrothermal (epithermal) in shallow crustal environments associated with magmatic fluids (calc-alkaline to peralkaline, porphyritic felsic to intermediate volcanic and intrusive, often in a volcanic cauldron setting).
 - 2. Metamorphogenic hydrothermal origin in consolidated crustal environments
 - 3. Reduced intrusion-related Au systems.
- Sb deposits may also be distinguished by their metal and mineralogical composition:
 - Simple stibnite (+ Au) deposits;
 - Complex polymetallic deposits of the "epithermal suite": Au, Ag, Te, Se, Hg, As, Sb, Tl and, locally, base metals (Cu, Pb, Bi, Zn).

Sb – major deposit classes

Table 4.3 Size and grade of antimony deposits (grades and tonnages are very variable between deposits and figures given are indicative only). (Source: BGR database.)

Deposit type	Deposit size range (tonnes)	Typical grade (Sb ₂ S ₃ %)	Estimated antimony metal content of known deposits (tonnes)	Per cent of total	
Gold-antimony (epithermal) vein-type	10 ⁴ -10 ⁶	0.1-3.5	580,000	20	
Carbonate replacement	10 ⁶ -10 ⁸	1.5-25	2,500,000	60	
Reduced-magmatic	10 ⁶ -10 ⁸	0.1-1.5	320,000	10	
Polymetallic base metal vein	10 ⁴ -10 ⁶	0.1-0.5	175,000	8	
Hot springs	10 ⁴ -10 ⁶	0.1-0.2	2500	2	
			3,577,500	100	

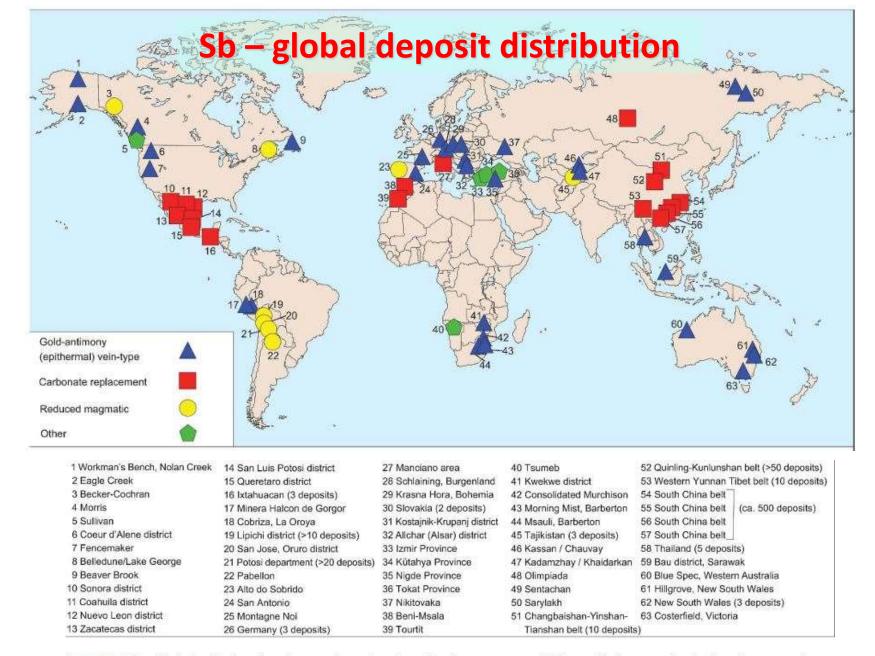



Figure 4.2 The global distribution of antimony mines, deposits and major occurrences. (Polymetallic base-metal vein deposits are not shown separately.) Some of the symbols on the map represent a single important deposit or resource, while others represent a cluster of deposits in one area or region. Antimony is also known to occur in Algeria, Bosnia and Herzegovina, Brazil, Burma (Myanmar), Ecuador, Greece, Honduras, Japan, Kazakhstan, New Zealand and Pakistan.

Sb – extraction methods and processing

- Mining: China, Bolivia. South Africa, Russia, Tajikistan, Turkey and Australia. Sb mining is dominated by few stibnite-rich deposits, with possible by-products including Au, Ag, W and Hg. Underground mining (shrinkage stoping) and open pit.
- Ore processing: from hand sorting to advanced mineral processing. The mineral processing stages generally include conventional crushing and grinding, followed by combined gravity concentration and flotation. At least six principal methods have been used to extract Sb from its ores, depending on the oxidation state and the ore grade.

Sb – ore processing

Sb – beneficiation process

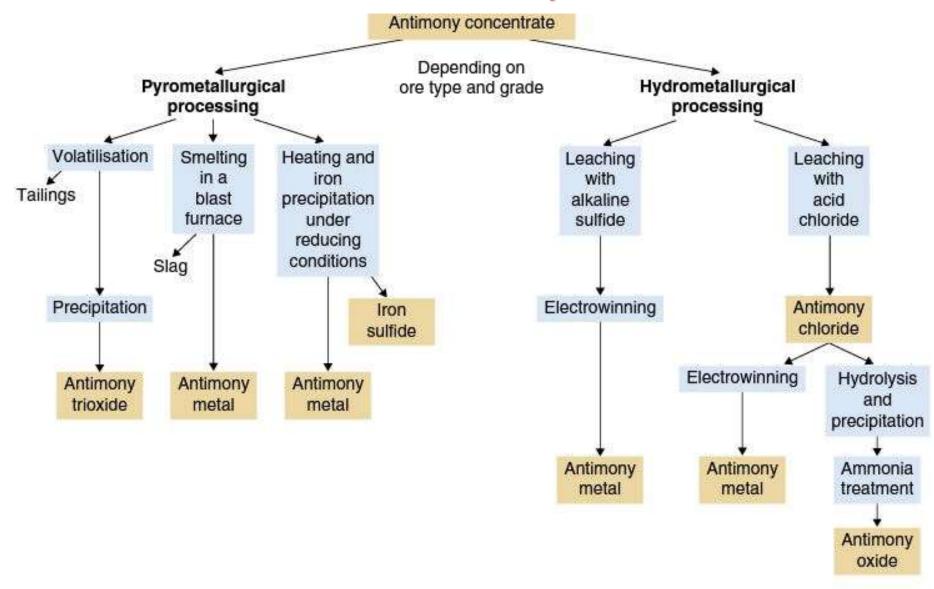


Figure 4.3 Generalised beneficiation flow diagrams, based on various ore dressing and beneficiation processes including the Xikuangshan South ore dressing plant, the Sunshine antimony process and the U.S. Antimony Corp. process. (Modified from Anderson (2000) and U.S. Antimony Corporation (2011).)

Sb – specifications and uses

- low melting point enhancing workability at low T;
- stability in air at room T and in water up to 250 °C;
- resistance to most cold acids; dissolution in some hot acids and in aqua regia;
- incompatibility with strong oxidizing agents (Cl, F);
- high density (6.69 g/cm³), low hardness, brittleness;
- two allotropic forms of Sb: stable metallic and amorphous grey;
- low electrical and thermal conductivity;
- expansion on freezing, like Si, Bi, Ga and Ge.

USES

- **Early uses**: cast metal printing, mirrors, bell metal, pigments, bearing metal, medical and veterinary purposes (parasitic diseases).
- Sb₂O₃ (ATO) used in flame retardants and PET;
- NaSbO₃ used mainly in cathode ray tube glass;
- Sb (primary metal) used mainly in Pb-acid batteries;
- Antimonial lead, mainly recycled from and re-used in Pb-acid batteries.
- Very high purity Sb: semiconductor industry, diodes, infrared detectors.

Sb – uses and consumption

Table 4.5 Estimated global consumption of antimony by end-use in 2000 and 2011. (Data from Roskill, 2012.)

	20	000		2011		Consolidated annual growth rate
Non-metallurgical uses	Tonnes antimony	% of total	Tonnes antimony	% of total	% of non- metallurgical use	%
Flame retardants	70,000	47.4	108,250	52.4	83.8	4.0
Plastic catalysts	6000	4.1	12,100	5.9	9.4	6.6
Heat stabiliser	1400	0.9	2700	1.3	2.1	6.1
Glass	16,000	10.8	1650	0.8	1.3	-18.6
Ceramics	1700	1.2	2550	1.2	2.0	3.8
Other	1500	1.0	1900	0.9	1.5	2.2
Sub-total	96,600	65.4	129,150	62.5	100	2.7
Metallurgical uses	Tonnes antimony	% of total	Tonnes antimony	% of total	% of metallurgical use	
Lead-acid batteries	40,000	27.1	53,600	25.9	69.2	2.7
Lead alloys	11,000	7.5	23,850	11.5	30.8	2.7
Sub-total	51,000	34.6	77,450	37.5	100	3.9
Total	147,600	100	206,600	100		2.7

Sb – recycling and substitution

Recycling

- For most products, such as fire retardants, Sb compounds cannot be recycled.
- Most secondary Sb is obtained from recycled **Pb-acid batteries** (0.6 1.5 % Sb).
- Recovery from small-arms ammunition, semiconductors, bearings and solders cannot be recycled.

Substitution

- Fire-retardant materials: alumina trihydrate, Mg hydroxide, Ca carbonate, Zn borate, etc. However, their performance is inferior to ATO.
- Plastic catalysts and stabilizers: Ba, Cd, Ca, Ge, Pb, Sn, Ti and Zn lead to increased production costs.
- Pb-acid batteries: Pb-Ca-Sn alloy.

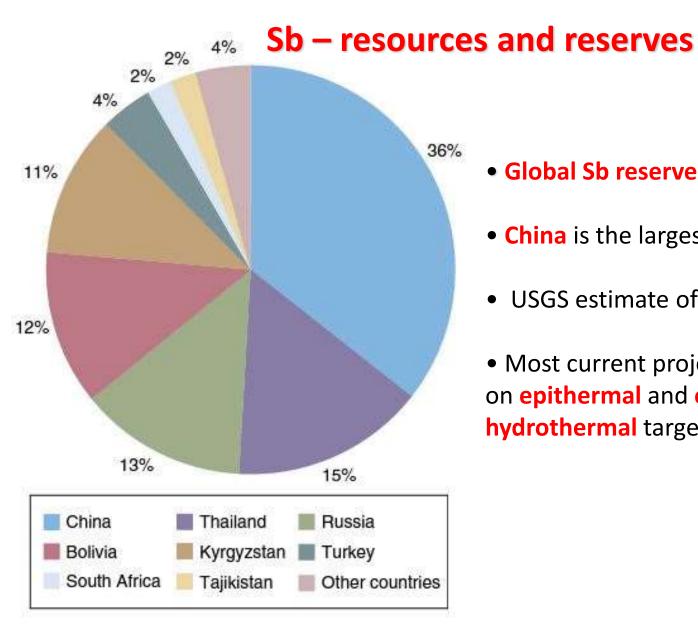
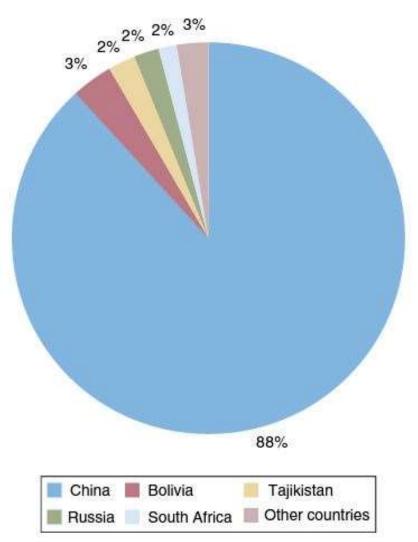



Figure 4.4 The distribution of world antimony reserves in 2011. (Data from: USGS, 2012; Roskill, 2011; Village Main Reef Ltd, 2012.)

- Global Sb reserves: 3.4 Mt (2011).
- China is the largest Sb producer.
- USGS estimate of global Sb 1.8 Mt.
- Most current projects are focusing on epithermal and orogenic hydrothermal targets.

Sb – world mine production and prices

16,000 14,000 12,000 10,000 4000 4000 10,000 10

Figure 4.6 World antimony mine production in 2010, by country. (Data from British Geological Survey, 2012.)

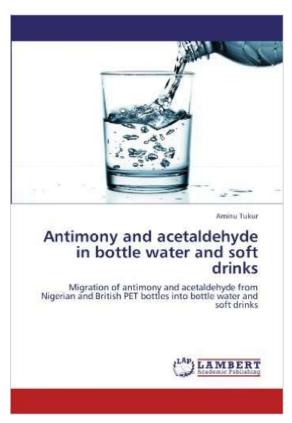
Figure 4.8 Annual average antimony prices between 1900 and 2011. (Data from BGR database.)

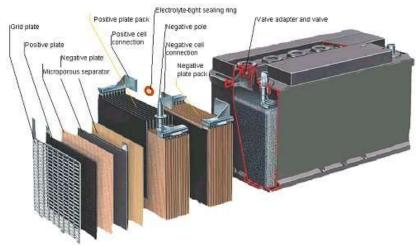
Sb – environmental issues

• Sb is widely dispersed in the environment as a result of natural processes (e.g. volcanic eruptions and erosion of Sb-bearing rocks and minerals).

• Sb is found in very low concentrations in soils, waters and air. It occurs mainly as **Sb(III)** and **Sb(V)** in environmental, biological and geochemical samples.

• Sb has **no known biological function**, negligible health effects (respiratory irritation, dermatitis, pneumoconiosis, gastrointestinal symptoms).


• Sb trioxide (ATO) is classified as "suspected of causing cancer via inhalation".


NIOSH exposure limit: 0.5 mg/m³ 40-hour TWA working week.

Sb – outlook

The use of Sb in **flame retardants** is expected to remain its principal market in the future, although its application in the production of **PET** for plastic bottles, **synthetic textiles** and for the **vulcanization of rubber** is likely to increase. The trend for Pb-acid batteries is difficult to assess.

Beryllium

Be – definitions and characteristics

Table 5.1 Selected properties of beryllium.

Property	Value	Units
Symbol	Ве	
Atomic number	4	
Atomic weight	9.01	
Density at 25°C	1846	kg/m³
Melting point	1287	°C
Boiling point	2475	°C
Hardness (Mohs scale)	5.5	
Specific heat capacity at 25°C	1.82	J/(g °C)
Latent heat of fusion	1350	J/g
Coefficient of linear thermal expansion	11.5×10^{-6}	/°C
Thermal conductivity	210	W/(m °C)
Electrical resistivity at 25°C	0.38	$\mu\Omega$ m
Young's modulus	287	GPa
Mass magnetic susceptibility	1.26×10^{-8}	m ³ /kg
Brinell hardness	600	MN/m^2

Be was discovered in **1797** by the French chemist Vauquelin. It was named *glucina* after its sweettasting salts.

The name **beryllium** was formally adopted by IUPAC in 1949.

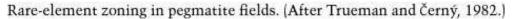
Main physical properties: rigidity, low weight, heat-absorbing capability, dimensional stability.

Be – abundance in the Earth and mineralogy

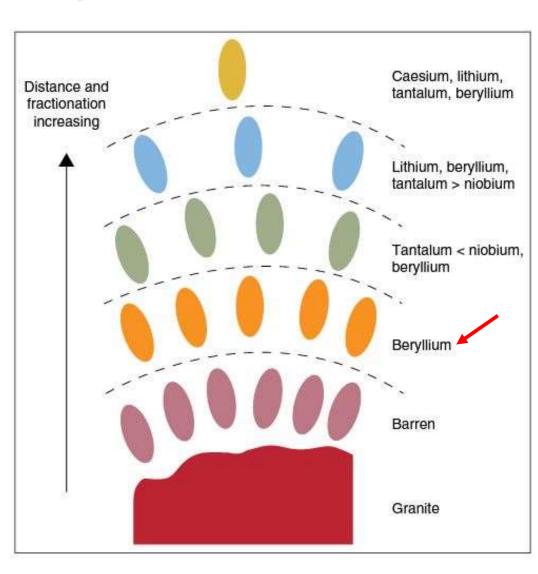
Table 5.4 Selected beryllium minerals and their compositions. Those of current economic importance, bertrandite and beryl, are in bold.

Mineral	Formula	BeO content (wt %	
Bromellite	BeO	98.02	
Behoite	Be(OH),	58.13	
Hambergite	Be ₂ (BO ₃)(OH)	53.5	
Phenacite	Be ₂ SiO ₄	45.5	
Bertrandite	Be ₄ Si ₂ O ₇ (OH) ₂	39.6-42.6	
Moraesite	Be ₂ (PO ₄)(OH)4H ₂ O	25-28	
Hurlbutite	CaBe ₂ (PO ₄)	21.3	
Berylonite	NaBe(PO ₄)	19-20	
Chrysoberyl	BeAl ₂ O ₄	19.8	
Euclase	BeAI(SiO ₄)(OH)	17.0-21.8	
Herderite	CaBe(PO ₄)(OH,F)	15-16	
Barylite	BaBe ₂ (Si ₂ O ₇)	16	
Beryl	Be ₃ Al ₂ Si ₆ O ₁₈	11.0-14.3	
Helvite	$Mn_8(BeSiO_4)_6S_2$	11-14.2	
Danylite	Fe ₈ (BeSiO ₄)S ₂	12.7-14.7	
Genthelvite	$Zn_8(BeSiO_4)_6S_2$	12.6	
Eudidymite	Na(BeSi ₃ O ₇)(OH)	10.5-11.2	
Gadolinite	$(Y,Ca)_2$ Fe $(BeSiO_4)_2(O,OH)_2$	5.5-12.9	

- Be is a silver grey **metal**, noted for its **light weight** (density 1.846 g/cm³).
- Be is virtually transparent to X-rays.
- Sound travels through Be faster than any other metal.
- When added to other metals, especially Cu (alloy), Be provides controllable strengthening mechanisms (good electrical and thermal conductivity, very low friction).
- Non-magnetic and non-sparking properties.
- Clarke: 2.1 ppm. Mafic and ultramafic rocks, sedimentary rocks: < 2 ppm. Felsic igneous rocks: 4 ppm; two-mica granites: 9 ppm.



Be - major deposit classes


- Be can behave as a lithophile,
 chalcophile and siderophile element,
 forming a variety of minerals.
- Bertrandite and beryl are the most important ore minerals.
- Potential future production may come from phenacite Be₂SiO₄ mining.
- Most commonly found in sub-alkaline granitic pegmatitic suites.
- Bertrandite and phenacite are found in both sub-alkaline and alkaline systems.

Two principal types of deposits:

1. Granitic pegmatite deposits

2. Hydrothermal-metasomatic deposits

Be - major deposit classes

Pegmatite deposits

Granitic pegmatites may be divided into two classes:

- 1. <u>Li − Cs − Ta</u> (LCT) − related to S- and I-granites (subduction and/or collisional setting), generally occurring in swarms → more important source of beryl. Be, usually in the form of beryl, makes an early appearance in the zoned sequence close to the source granite intrusion. With increasing fractionation the elements Na and Cs substitute for Be in the beryl lattice and lower the quality.
- 2. Nb Y F (NYF) related to extensional (anorogenic) tectonic settings, tend to occur within restricted areas, proximal to their parental rocks. No commercial Be production is known from NYF pegmatites.

Hydrothermal deposits

- Broad category including replacement, skarn, greisen and vein deposits.
- The deposits are generally related to **felsic magmatism**.
- The **high F content** depresses the freezing point of these magmas and allows **protracted enrichment of incompatible elements**, such as Be, into the late hydrothermal phase.

muscovite

abyssal-HREE abyssal-LREE abyssal-U euxenite, samarskite, fergusonite, pyrochlore, uraninite, zircon allanite, monazite ± uraninite uraninite, thorianite, zircon ± allanite

abyssal-BBe chrysoberyl, sapphirine, exotic boron-bearing minerals

beryl, cassiterite, columbite, lepidolite ± spodumene

Classification of pegmatites. The lithium-cesium-tantalum (LCT) and niobium-yttrium-fluorine (NYF) families follow different enrichment trends as a result of different parent granites and the tectonic setting. Depth also has an effect on mineral content. Rare elements are particularly enriched in shallow miarolitic pegmatites and in rare element pegmatites formed at medium depth. Within these pegmatite

without rare elements

muscovite-Li

muscovite

classes different types and subtypes can be distinguished. There are gradual transitions between the different types. Abyssal pegmatites are different because they are not formed as the residual melt of a granite but in situ by a low degree of melting (from Černý 1992; Černý and Ercit 2005)

muscovite REE fergusonite, samarskite, monazite, beryl

without rare elements

- 1 Lost River
- 2 Thor Lake
- 3 Moose
- 4 Hellroaring Creek
- 5 McCullough Butte
- 6 Mount Wheeler
- 7 Gold Hill
- 8 Spor Mountain
- 9 Tanco
- 10 Black Hills

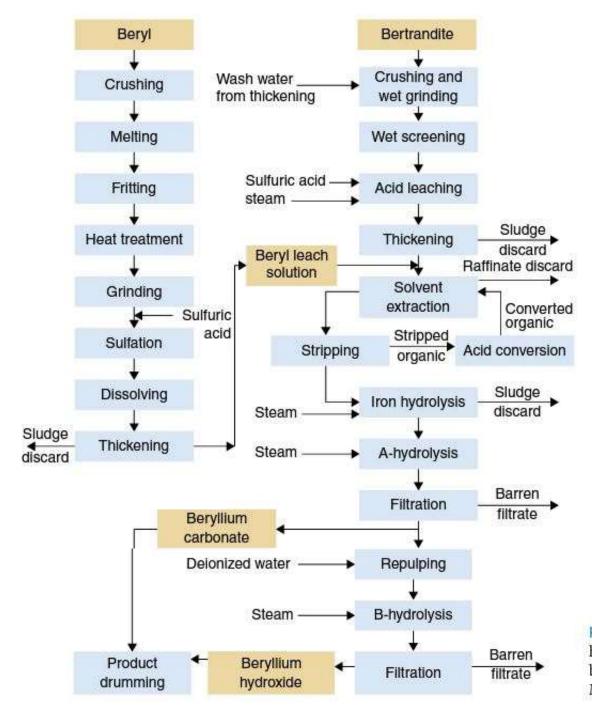
- 11 Boomer
- 12 Iron Mountain
- 13 Sierra Blanca
- 14 Aguachile
- 15 Eskimo Hill
- 16 Strange Lake
- 17 Seal Lake
- 18 Kings Mountain
- 19 Muzo
- 20 Arequipa

- 21 Los Patos
 - 22 Santa Elena, Salta
 - 23 Quines, San Luis
 - 24 Minas Gerais
 - 25 Aracuai
 - 26 Leinster
 - 27 Gonçalo
 - 28 Galicia
 - 29 Echassieres
 - 30 Varutrask

- 31 Elba
- 32 Volodarsk-Volinskiy
- 33 Bougoni/Kenieba
- 34 Issia
- 35 Taghouaji complex
- 36 Central Nigeria pegmatites
- 37 Rubicon
- 38 Bikita
- 39 Gravelotte
- 40 Marropino / Morrua

- 41 Anjanabonoina
- 42 Kibaran belt pegmatites
- 43 Kenticha
- 44 Ekaterburgskaya
- 45 Orenburga
- 46 Aqshatau
- 47 Kalesay
- 48 Laghman
- 49 Mingora
- 50 Koktokay, Xinjiang

- 51 Andhra Pradesh
- 52 Kamataka
- 53 Tamil Nadu
- Jo Tanin Ivadu
- 54 Yermakovskoye
- 55 Nerchinsk Mines
- 56 Huya, Pingwu, Sichuan
- 57 Mogok
- 58 Dajishan, Jiangxi
- 59 Wodgina
- 60 Greenbushes
- 61 Mount Cattlin


Be – extraction methods

Mining

- **Beryl** ores are extracted by **manual process** or simultaneous extraction. Beryl can be concentrated by various novel **flotation** processes.
- Bertrandite ores are extracted both in open pit and underground mines.

Materion Brush open-pit mining at Spor mountain, Utah.

Be – processing: hydroxide production

Figure 5.9 Beryllium hydroxide production from bertrandite and beryl. (Source: Materion Corp.)

Be - processing: oxide production

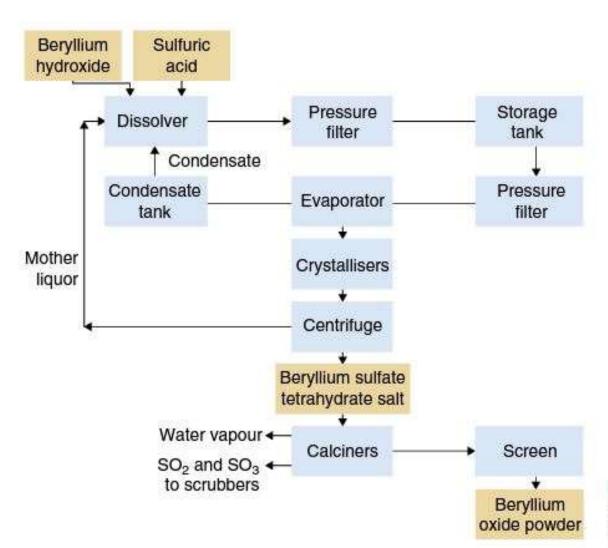
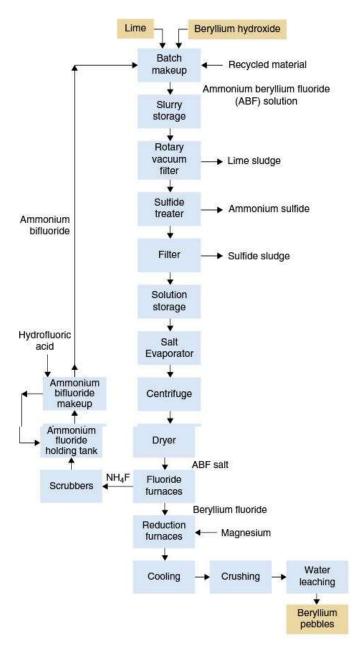
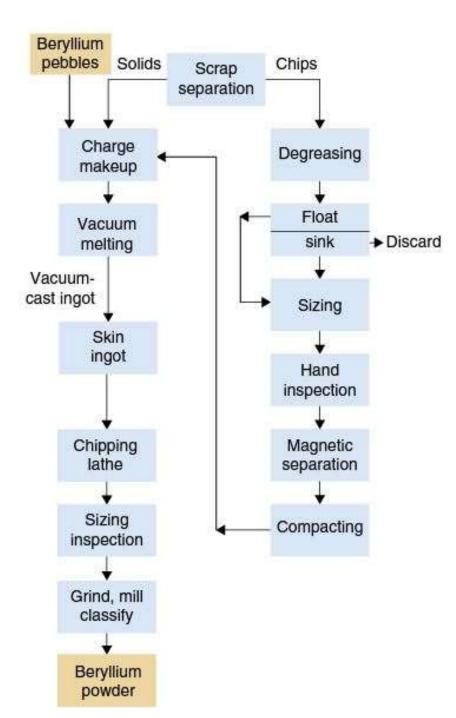




Figure 5.12 Flow sheet for production of beryllia or beryllium oxide. (Source: Materion Corp.)

Be – processing: metal production

Production of beryllium metal (Source: Materion Corp.)

Be – processing: final purification, grinding and sizing of Be powders

Figure 5.11 Final purification, grinding and sizing of beryllium powders. This is also a starting point for beryllium recycling. (Source: Materion Corp.)

Be – specifications and uses

The three primary forms of Be used commercially are:

Alloys containing small amounts of Be, especially Cu-Be (Cu-Be alloys contain < 2% Be). Smaller Be quantities are also used to make alloys of Al and Ni → 75% Be consumption.

USES

- **Connector terminals** for high-reliability electrical and electronic connections between circuit boards (e.g. ABS, ESP, airbag, telecommunications).
- Relays for industrial, domestic and automobile electrical equipment.
- Electromagnetic radiation shielding spring strips.
- Diaphragms for P sensing in aircraft altimeters, medical stethoscopes, barometers and automobile timing sensors (e.g. crankshaft, camshaft).
- Long service-life springs (e.g. sprinkler water-control valves).
- Non-magnetic equipment components used in oil and gas exploration and production.
- Undersea cable signal amplification "repeater" housing.
- Low-friction, high-strength aircraft landing gear, flap-bearing bushes.
- Non-sparking, high-strength tools (anesthetic gas controls, petrol refinery, etc.).
- Plastic injection and blow-moulding moulds.

Be – specifications and uses

2. Pure Be metal (> 99.5% and alloys containing > 60% Be) \rightarrow 20% Be consumption.

USES

- High technology equipment (structures to be launched into space, astronomical telescope mirrors).
- Window for X-ray tubes and detectors.
- Wall-lining material for high-T gas plasma of fusion processes.
- With the addition of **AI** (up to 62% wt.), lightweight **high-strength components of aerospace** and **electronic systems** (aerospace and munitions guidance systems).
- 3. <u>Beryllia (BeO) ceramics</u>, high electrical insulation, hardness slightly lower than diamond, thermal conductivity an order of magnitude greater than that of alumina → 5% Be consumption.

USES

• **Electrical insulator** for heat sinks for radio-frequency and radar equipment, automotive electrical systems, laser bores and microwave waveguides.

Be – uses and consumption

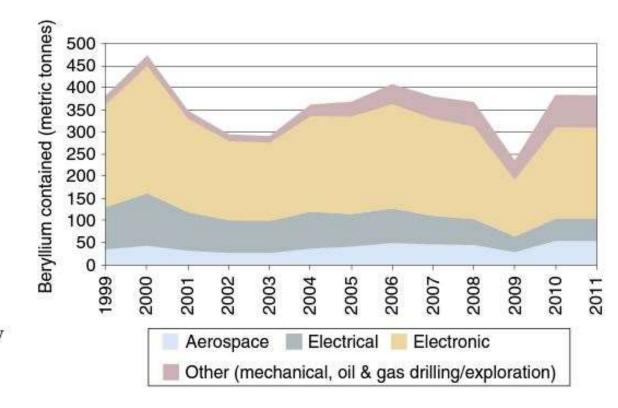


Figure 5.1 Consumption of beryllium by end-use sector, 1999–2011. (Data from BeST, 2012a.)

Be – resources

Table 5.3 Published beryllium resources (as beryllium oxide, BeO). (After Sabey, 2006.)

Deposit(s)	Location	Resource, tons BeO	Grade, % BeO	
Various	North Carolina, USA	122,800	0.05	
Spor Mountain	Utah, USA	72,315*	0.71	
McCullough Butte	Nevada, USA	47,000	0.027	
Various	Brazil	42,000	0.04	
Strange Lake	Canada	42,000	0.08	
Aqshatau	Kazakhstan	16,000	0.03-0.07	
Thor Lake	Canada	13,300	0.76	
Various, Black Hills	South Dakota, USA	13,300	na	
Sierra Blanca	Texas, USA	11,300	>2.0	
Lost River	Alaska, USA	>10,000	0.3-1.75	
Yermakovskoye	Russia	>10,000	1.3	
Seal Lake	Canada	6800	0.35-0.40	
Gold Hill	Utah, USA	>5000	0.5	
Tanco	Canada	1800	0.20	
Boomer	Colorado, USA	<1000	2.0-11.2	
Hellroaring Creek	Canada	<1000	0.10	
Iron Mountain	New Mexico, USA	<1000	0.2-0.7	
Mount Wheeler	Nevada, USA	<1000	0.75	

^{*}Remaining reserves 2004

Be - recycling and substitution

Recycling

- Pure Be metal components have extremely long lifetimes.
- Some applications (space, military) do not return at all.
- Due to its hardness, it is a difficult metal to machine.
- Cu-Be and Ni-Be alloys are directly recycled to produce new alloys.
- It is not economic to recover Be from Cu-Be alloys used in electronic components.

Substitution

- Substitution is difficult where its specific properties are crucial.
- Be metal or Be composites (non-critical purposes): composite materials, high-strength grades of Al, pyrolytic graphite, Si carbide, steel or Ti may substitute.
- Be oxide: Al nitride or B nitride.

Be – environmental issues

• Chronic beryllium disease (CBD) or berylliosis has been known since the 1930s. Most reports were derived from the nuclear weapon industry and from the manufacture of fluorescent lamps containing Be-bearing phosphors. In order to contract CBD, an individual must be exposed to airborne Be in the form of a dust, mist or fume. Present exposure limit: 0.2 µg/m³ 8 hours TWA.

• There has been considerable debate as to whether Be should be regarded as carcinogenic to humans → this is unlikely.

• Be intake from air and dust can be increased by 2-3 orders of magnitude in the vicinity of a point source, such as a **coal-fired power plant**. It is estimated that within the USA about 45% of airborne Be is due to **anthropogenic releases**.

Be - outlook

- Since the early 1990s much of the world's Be raw material supply has been derived from a single source in **North America**. **China** has developed substantial production capacity for the production of Be hydroxide and Cu-Be hydroxide from imported beryl and domestic ores.
- **Cu-Be alloys** are widely used to provide an unmatched physical properties set to electronic and electrical components.
- The by mixing U oxide with Be oxide increases fuel rod utilization efficiencies.
- Russia, Kazakhstan and China will respond to future market demands.

Cobalt

Co – definitions and characteristics

Property	Value	Units	
Symbol	Co		
Atomic number	27		
Atomic weight	58.93		
Density at 25°C	8800	kg/m³	
Melting point	1493	°C	
Boiling point	3100	°C	
Electrical resistivity at 25°C	5.81	$\mu\Omega$ m	
Specific heat capacity at 25°C	0.42	J/(g °C)	
Latent heat of vaporisation	6490	J/g	
Latent heat of fusion	263	J/g	
Hardness (Mohs scale)	5.0	源 福	
Thermal conductivity	100	W/(m °C	

Co has been utilized since the **Bronze Ag**e, mainly to impart a rich **blue color**to glass, glazes and ceramics.

It was isolated as a pure metal in 1735.

The demand for Co increased after the Second World War (jet engines and gas turbines).

Co demand has further accelerated in the past 30 years, reflecting the increased use of Co as an essential constituent of materials used in hightechnology industries including rechargeable batteries, superalloys and catalysts.

Co – abundance in the Earth and mineralogy

Mineral name	Chemical formula	Cobalt content (wt %)
Cobaltpentlandite	Co _q S ₈	67.40
Heterogenite-2H	Co3+O(OH)	64.10
Heterogenite-3R	Co3+O(OH)	64.10
Linnaeite	Co ²⁺ Co ³⁺ ₂ S ₄	57.95
Sphaerocobaltite	CoCO ₃	49.55
Cattierite	CoS ₂	47.89
Cobaltite	CoAsS	35.52
Erythrite	$Co_3(AsO_4)_2.8(H_2O)$	29.53
Carrollite	Cu(Co,Ni) ₂ S ₄	28.56
Glaucodot	(Co,Fe)AsS	26.76
Safforite	(Co,Fe)As,	21.25
Willyamite	(Co,Ni)SbS	20.78
Skutterudite	(Co,Ni)As _{3x}	17.95
Kolwezite	(Cu,Co) ₂ (CO ₃)(OH) ₂	17.84
Siegenite	(Ni,Co) ₃ S ₄	14.51

- Co is a *d-block* **transition metal**, silver in colour.
- Co has 2 main oxidation states (2⁺ and 3⁺), and one naturally occurring isotope (⁵⁹Co).
- Co shows siderophile and chalcophile tendencies, has a high melting point (1493 °C) and is ferromagnetic.
- Clarke: 15 30 ppm. Co is most abundant in ultramafic rocks (110 ppm). Seawater: < 10 ppt.
- It preferentially bonds with Fe, Ni, Cu and S rather than with O, in a number of sulfide and sulfarsenide phases.

Co – major deposit classes

- The majority of Co production is achieved through recovery as a by-product of Cu and Ni mining in 4 principal geological settings:
- Hydrothermal
- 2. Magmatic
- 3. Lateritic
- 4. Fe-Mn nodules (unexploited)
- Hydrothermal deposits: derived from fluids which have interacted with a variety of mafic and/or ultramafic basement rocks or are substantially derived from within sedimentary basins (e.g. Morocco, Idaho, Katangan Copperbelt).
- IOCG deposits (magmatic hydrothermal)
- Magmatic deposits: concentrations of Ni and Cu with recoverable by-product Co (0.04 0.08 % Co) from mafic ultramafic magmas (Kambalda, Sudbury).

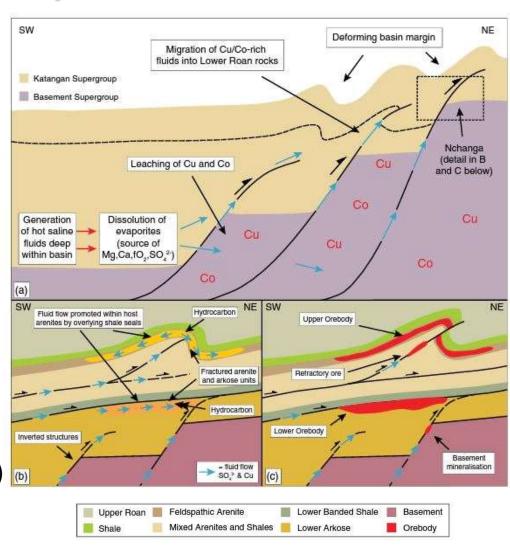


Figure 6.4 Schematic diagrams illustrating the development of the copper-cobalt deposit at Nchanga, Zambia. (a) Shows basinal brines migrating up reactivated faults at the margins of the Zambian Basin; (b) Shows migration of brines into gas-filled hydrocarbon traps, with overlying shales acting as seals; (c) Shows final distribution of orebodies at Nchanga. (Cu, copper; Co, cobalt; Mg, magnesium; Ca, calcium; SO₄²⁻, sulfate; fO₂, oxygen fugacity.) (After McGowan et al., 2006.)

Co – bearing Ni laterite profiles

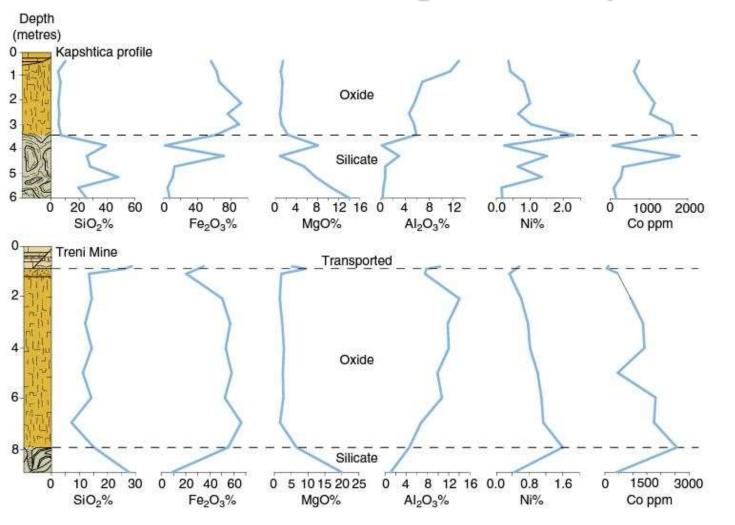


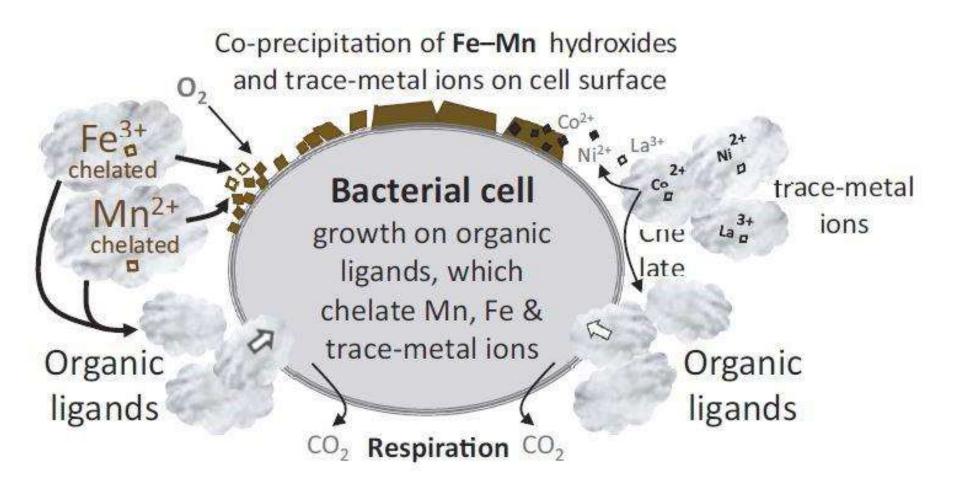
Figure 6.5 Geochemistry of a cobalt-bearing nickel laterite profiles. The profiles show the significant loss of SiO₂ and MgO at the silicate/oxide boundary and concomitant increases in Ni and Co. The profiles also indicate that the highest concentrations of Ni and Co within the profiles occur in close proximity to the silicate/oxide boundary. (SiO₂, silica; Fe₂O₃, iron oxide; MgO, magnesium oxide; Al₂O₃, aluminium oxide; Ni, nickel; Co, cobalt.) (After Thorne et al., 2012a.)

Ni-Co laterite deposits contain about 70% of world Ni resources, but they also contain appreciable concentrations of Co (0.025 - 0.18% Co). The deposits are the product of pervasive weathering of ultramafic rocks, which initially contain between 0.06 and 0.09% Co. Ni-Co laterite deposits can be grouped in 3 main categories:

- Hydrous silicate deposits
- 2. Clay silicate deposits
- 3. Oxide deposits

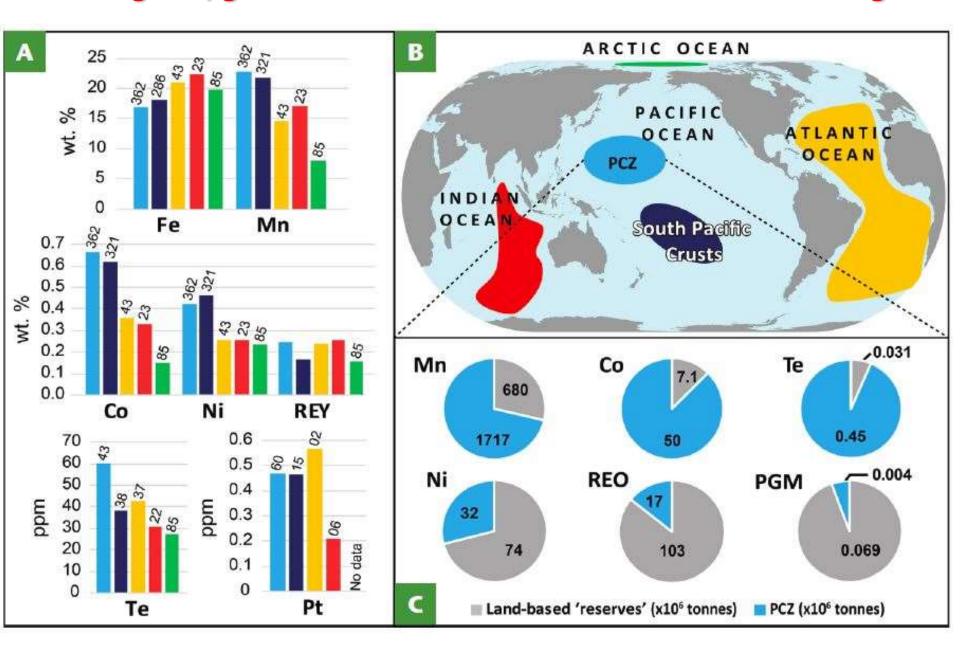
Mn nodules and Co-rich ferromanganese crusts on the seafloor

Ferromanganese nodules from the Clarion–Clipperton Zone (CCZ) in the Pacific Ocean. (A) Nodules on the sediment-covered abysall plain in the northeastern 'Area of Particular Environmental Interest' encountered on the RRS James Cook cruise JC120 using the autonomous underwater vehicle Autosub6000. (B) Upper surface of a large, 11 cm wide nodule. The rough botryoidal surface results from hydrogenetic growth.

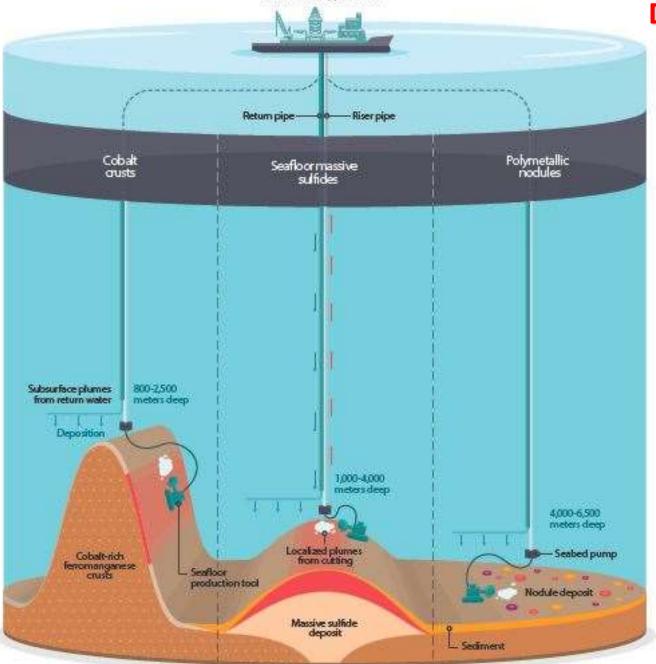

(C) Side view of the same nodule, showing the flattened shape and smoother base produced by diagenetic growth. Copyright British Geological Survey, National Oceanography Centre ©UKRI 2018.

Mn nodules and Co-rich ferromanganese crusts on the seafloor

Sample 35D193 Laye	Layers	Thickness (mm)	Mineralogy		Eleme	ent cond	entratio	on (%)	
HERE AND AND REAL PROPERTY.				Mn	Fe	Ni	Cu	Co	P ₂ O ₅
	Ш	0–20	Fe-vernadite, Mn-ferroxyhyte, quartz, buserite, goethite, haematite, feldspars	20.0	18.9	0.33	0.10	0.57	1.4
	П	20–50	Fe-vernadite, Mn-ferroxyhyte, goethite, clayey materials, feldspars, apatite, quartz, calcite, haematite	16.9	16.2	0.38	0.18	0.38	2.0
	1-2	50–65	Fe-vernadite, Mn-ferroxyhyte, apatite	16.8	13.3	0.31	0.17	0.30	9.3
	1-1	65–105	Fe-vernadite, Mn-ferroxyhyte, goethite, apatite, asbolane, calcite, quartz, feldspar	14.6	11.9	0.33	0.09	0.25	8.2
400	R	105–165	Asbolane, vernadite, todorokite, ferrihydrite, apatite, calcite, quartz	8.9	5.8	0.47	0.11	0.13	14.0

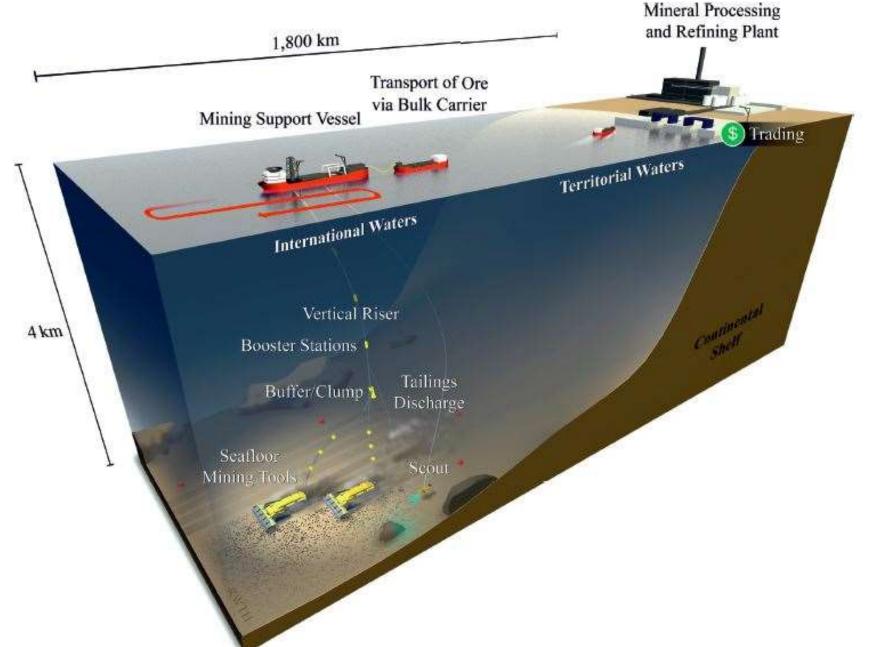

Figure 6.6 Thin section through a ferromanganese crust showing the mineralogical and geochemical variations within the sample. (Mn, manganese; Fe, iron; Ni, nickel; Cu, copper; Co, cobalt; P₂O₅, phosphorus pentoxide.) (After Glasby et al., 2007.)

Mn nodules and Co-rich ferromanganese crusts on the seafloor



Schematic illustration of the microbial ligand consumption hypothesis for the formation of Fe–Mn encrustations. Diagram: Nina Kamennaya

Metal grade, global resource distribution and estimated tonnages



Deep sea mining

Production support vessel

Deep sea mining of Mn-Co nodules

Deep sea mining - impact

Environmental Impacts of Seabed Mining

- permanent removal of hard substrate required by certain organisms/faunal communities
- effects of sediments, wastes, and other effluents (at bottom, mid-water and surface)
- noise
- vibration
- light
- leaks, spills, the effects of infrastructure corrosion
- operational discharges from the surface vessels*
- slow and different biological regeneration (especially of sessile communities)
- uncertain remediation potential
- vessel traffic for ore transport to shore* for land-based processing
- vessel-source air pollution*
- surface and mid-water marine community disturbance, especially if mining vessels remain on location for many months

Deep sea mining - advantages

Environmental Advantages of Seabed Mining (Contrasted with Terrestrial Mining)

- little or no overburden to remove (e.g. overlying rock, soil, vegetation cover)
- ore grades can be significantly higher than on land, meaning that less ore is required to provide the same amount of metal
- multiple metals can be obtained from a single site due to polymetallic nature of deposits
- no local human populations to be disrupted
- no permanent infrastructure

Co – major mines and districts

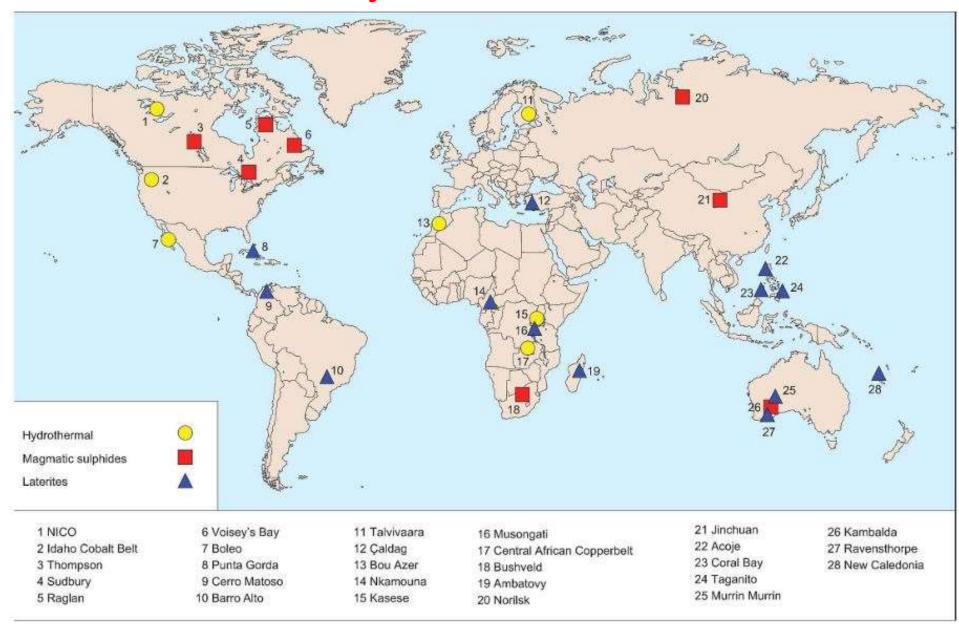


Figure 6.2 Major cobalt-producing mines and districts. The majority of new production is anticipated to be from laterite deposits.

Co – production by flash smelting of Ni sulfide ore and high-pressure acid leaching of laterite ore

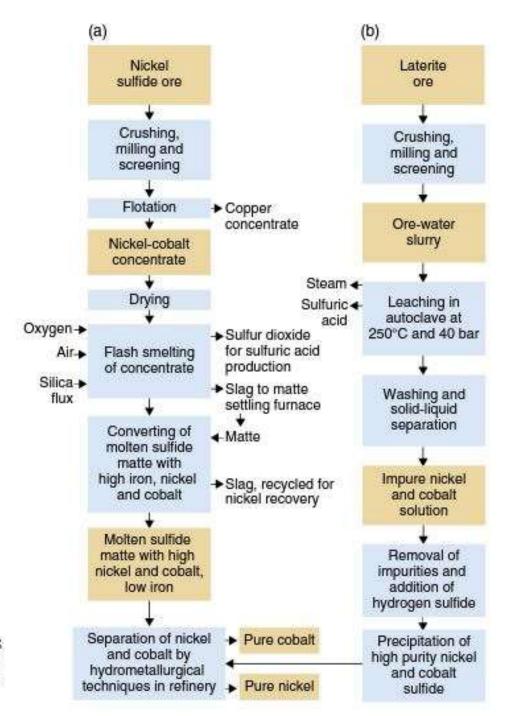


Figure 6.7 Generic flowsheet for the production of cobalt by [a] flash smelting and converting of nickel sulfide ore; and [b] high-pressure acid leaching of laterite ore.

Co – extraction from Cu-Co sulfide ores

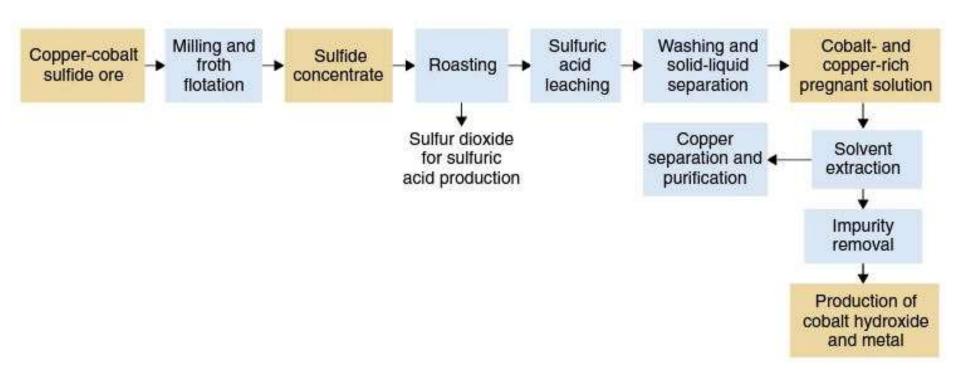


Figure 6.8 Schematic flowsheet for the extraction of cobalt from copper-cobalt sulfide ores.

Co – extraction from weathered Cu-Co ore using whole ore leach (WOL)

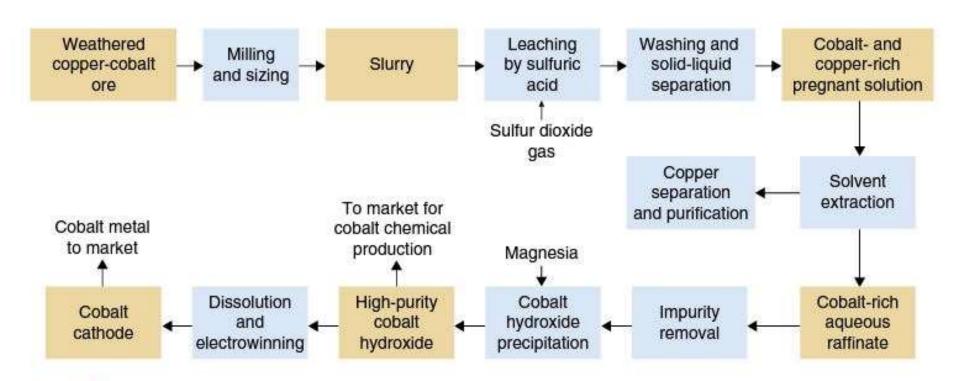


Figure 6.9 Schematic flowsheet for the extraction of cobalt from weathered copper-cobalt ore using whole ore leach (WOL).

Co – specifications and uses

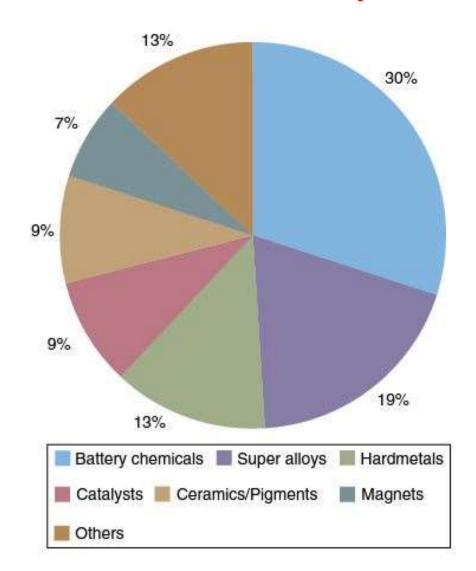


Figure 6.16 Estimated cobalt demand by end-use in 2011. (Data from Cobalt Development Institute, 2012a.)

- Co continues to have few applications in its pure form and is most commonly used as an alloy constituent or chemical compound, where its chemical and wear resistance, magnetic properties and high T strength are used.
- Batteries: Li-ion (up to 60% Co as Li-Co oxide); NiMh (hybrid electric vehicles); Co oxide in Ni-Cd batteries.
- Superalloys and magnet alloys: jet engines and turbines, Sm-Co and Al-Ni-Co magnets.
- Catalysts: catalytic processes account for 10% of all Co consumption. Polymerization of plastic resins, GTL (gas-to-liquid, Shell®).
- Binder material in hard materials, diamond tool applications, HSS, pigments, cancer treatment.

Co – recycling and substitution

Recycling

- Price volatility, geopolitics of supply and potential cost and environmental benefits drive the recycling of Co.
- Scrap metal, spent catalysts and rechargeable batteries are the most readily amenable Co-bearing products for recycling.
- It is not possible to recycle Co from **pigments**, **glass** and **paint**.
- Recycling of alloy and hard metal scrap is generally operated by and within the superalloy and metal carbide sector.

Substitution

- Magnets: Ba or Sr ferrites, Nd-Fe-B or Ni-Fe alloys.
- Paints: Ce, Fe, Pb, Mn or V.
- Jet engines and petroleum catalysts: Ni and Ni-based alloys.
- Li-ion batteries: Fe-P-Mn, Ni-Co-Al or Ni-Co-Mn alloys.

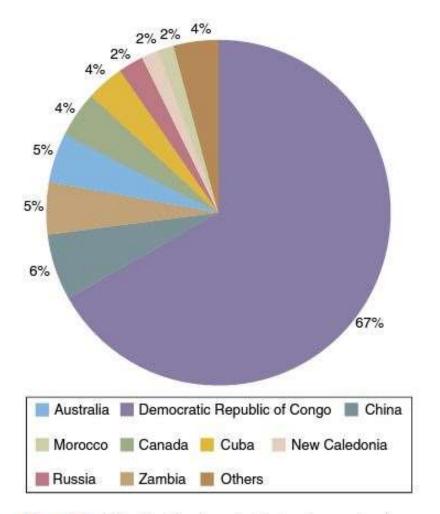
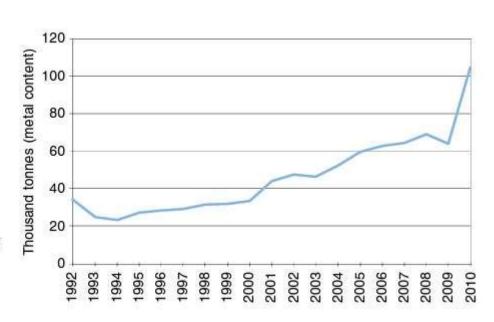



Figure 6.11 The distribution of global mine production of cobalt in 2010 by country. (Data from British Geological Survey, 2012.)

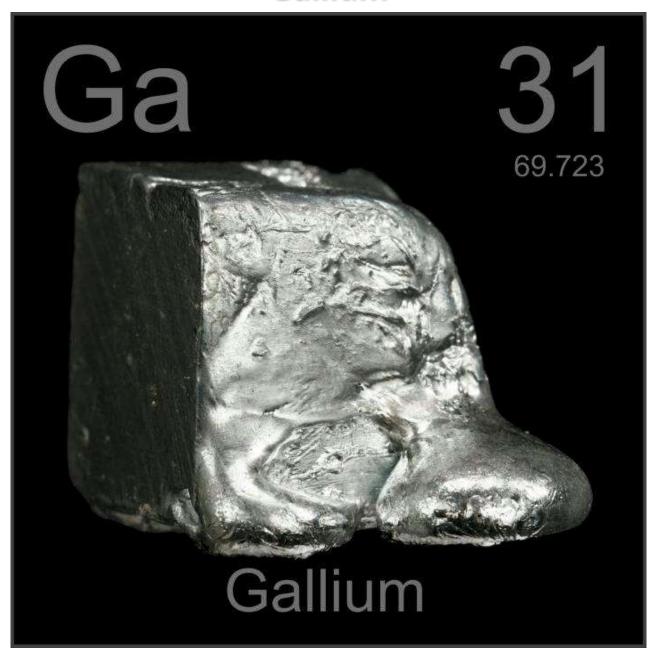
Figure 6.10 Global mine production of cobalt from 1992 to 2010. (Data from British Geological Survey World Mineral Statistics database.)

Co – global mine production

Co – environmental issues

- Co in the environment is derived from both **natural** and **anthropogenic sources** (mining and processing of Co-containing ores, agricultural application of Co-containing fertilizers, combustion of fossil fuels).
- The average concentration of Co in **soils** is **8 ppm**.
- Co is an essential component of **vitamin** B_{12} , cobalamin. Co overexposure includes reduced food consumption, decreased body weight, blood disorders, debility.

• Inhalation of high concentrations of Co is linked to **lung diseases** such as asthma and pneumonia (only workers exposed to high levels of Co).


Co – outlook

- There are many potential new sources of Co, both onshore, in Canada, Western Australia, the DRC, Zambia and Madagascar, and offshore in deep sea nodules.
- Since 2002 Co consumption in Asia has increased significantly (rechargeable batteries and catalysts).
- The use of Co in superalloys is expected to increase in response to continuing expansion of the global aerospace market.

Gallium

Ga – definitions and characteristics

Property	Value	Units	
Symbol	Ga		
Atomic number	31		
Atomic weight	69.72		
Density at 25°C	5905	kg/m³	
Melting point	30	°C	
Boiling point	2204	°C	
Hardness (Mohs scale)	1.5		
Electrical resistivity at 25°C	approx. 14.00	$\mu\Omega\text{m}$	
Thermal conductivity	29	W/(m °C)	

Ga was discovered in **1875** by Paul Émile Lecoq de Boisbaudran: he named the new element "gallia" after the Latin name for France.

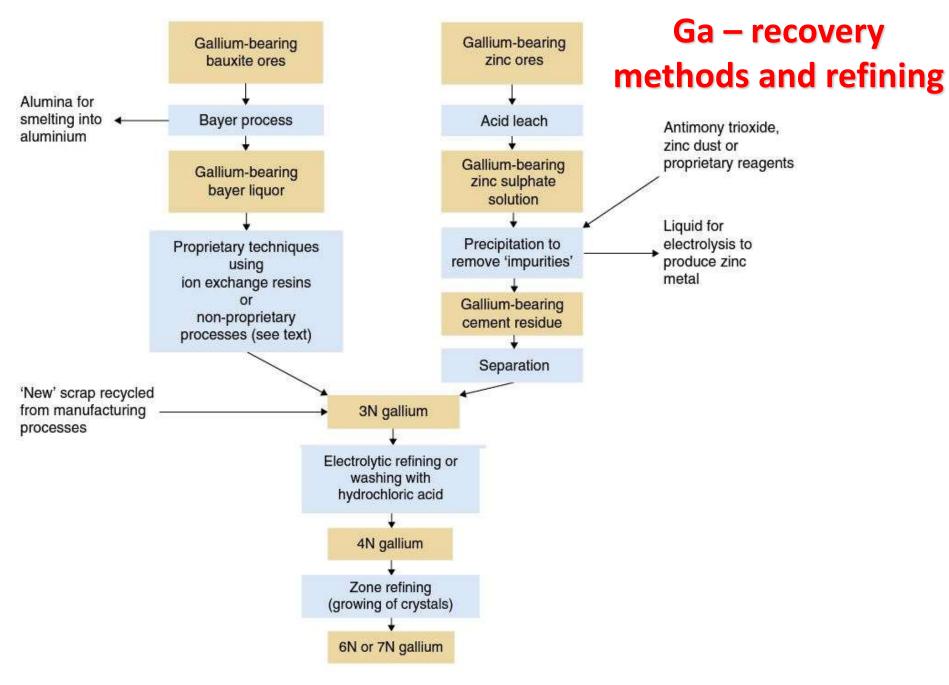
As a pure metal, Ga is silvery-white. It is a relatively soft metal, with a low melting point but a comparatively high boiling point. Combined with a low vapor pressure, even at high temperatures, this gives the longest liquid range of any metal.

As a liquid it will wet glass and skin, and will readily contaminate other metals by diffusing into their lattice structure.

Ga – abundance in the Earth and mineralogy

Table 7.2 Known minerals in which gallium forms a significant part.

Mineral name	Chemical formula	Ga content (%)	Locality
Gallite	CuGaS,	35.3	Tsumeb, Namibia and Lubumbashi, DR Congo
Sohngeite	Ga(OH),	57.7	Tsumeb, Namibia
Gallobeudantite	$PbGa_3[(AsO_4),(SO_4)]_2(OH)_6$	14.6	Tsumeb, Namibia
Carnevallite	Cu ₃ GaS ₄	20.9	Tsumeb, Namibia


• Ga is magnetic and a good conductor of both electricity and heat. It exhibits a noticeable anisotropy in electrical resistivity dependent upon the orientation of crystals within its structure.

• Clarke: 19 ppm. It does not occur in nature as a native metal, but instead it substitutes for other elements in certain minerals.

• The main Ga-bearing mineral is **gallite**. Currently there are no mines worked primarily for Ga, because it is recovered as a **by-product** of processing **bauxite** or **sphalerite**.

Sources of Ga

- **BAUXITE**: the ratio of Ga to Al, and therefore the concentration of Ga, in bauxite increases with **greater intensity of weathering**. Ga also appears to be more abundant where the bauxite was derived from **alkali source rocks**. The average Ga content in bauxite is ≈ **50 ppm**, although it can vary from 10 to 160 ppm.
- SPHALERITE (ZnS): Ga concentrations in the zinc ore are known to increase as the T of deposition decreases (e.g. MVT), although it can still be present in intermediate and higher-T deposits. The composition of sphalerite from each metallogenic region is distinctive (e.g. no Ga in European MVT deposits).
- Ga also occurs in other **aluminosilicate minerals**, **geothermal fields** in volcanic zones, in association with **phosphate ores** and some **coal deposits**. Ga concentrations of 149 320 ppm have been reported in **fly ash** from the combustion of coal (not commercially viable).

Schematic diagram of the processes involved in extracting gallium.

Ga – specifications and uses

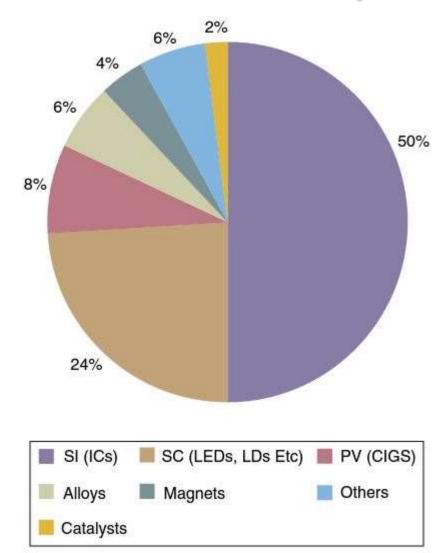


Figure 7.7 Estimated demand for gallium in 2010. Notes: SI, semi-insulating; SC, semiconducting; PV, photovoltaic.

Ga is used in a number of different forms:

- •Ga metal: eutectic alloys, magnets (Nd-Fe-B), molecular beam epitaxy, nuclear weapon pits (alloyed with plutonium), thermometers, thin-film deposition.
- •Ga antimonide: infrared FLIR systems for night—time navigation, LEDs, missile homing guidance systems, thermal imaging, high-speed electronic circuits.
- •Ga arsenide: compound semiconductors, cell phones, military applications, Infrared Emitting Diodes (IREDs), Laser Emitting Diodes (LEDs); wireless communications.

Ga – uses

Military radars using GaAs MMICs vary in shape and type, and have many purposes, including (Fisher and Bahl, 1995):

- air defence;
- altitude measurement;
- guidance (Doppler systems);
- mapping (synthetic aperture);
- missile defence;
- surveillance: battlefield and long-range;
- weather monitoring.
- •Ga chemicals: Ga nitrate (pharmaceutical), Ga trichloride, Ga trioxide, triethyl-Ga, trimethyl-Ga.
- •Ga nitride: laser diodes, LEDs.
- •Ga phosphide: LEDs, photovoltaics, thin-film solar cells (TFSC).

Table 7.3 Electron mobility in selected semiconductor materials, measured in centimetres squared per volt second. (Adapted from Tummala and Morris, 2001.)

Semiconductor	Mobility (cm ² /V-s)
Silicon (Si)	1500
Germanium (Ge)	3900
Gallium Arsenide (GaAs)	8500
Gallium Antimonide (GaSb)	4000
Indium Phosphide (InP)	4600
Indium Arsenide (InAs)	33,000
Indium Antimonide (InSb)	78,000

Table 7.4 Electron speed in selected semiconductor materials. (Adapted from Tummala and Morris, 2001.)

Semiconductor	Speed (kilometres per hour		
Indium Antimonide (InSb)	3000		
Gallium Arsenide (GaAs)	300		
Silicon Germanium (SiGe)	54-1400		
Indium Phosphide (InP)	180		
Germanium (Ge)	150		
N-type Silicon	60		
Gallium Phosphide (GaP)	10		

Ga - GaN LEDs

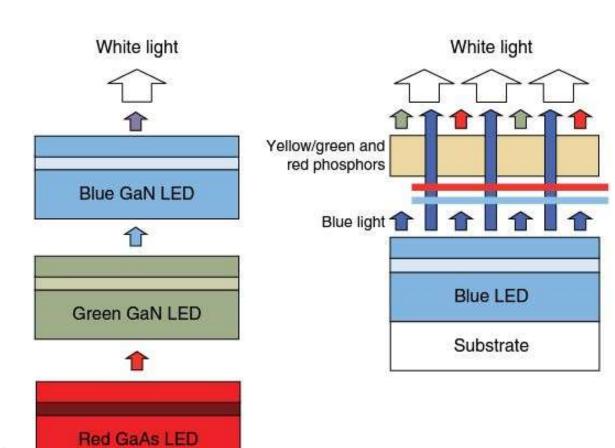


Figure 7.3 Two ways to produce white light from GaN LEDs (DenBaars, 2008).

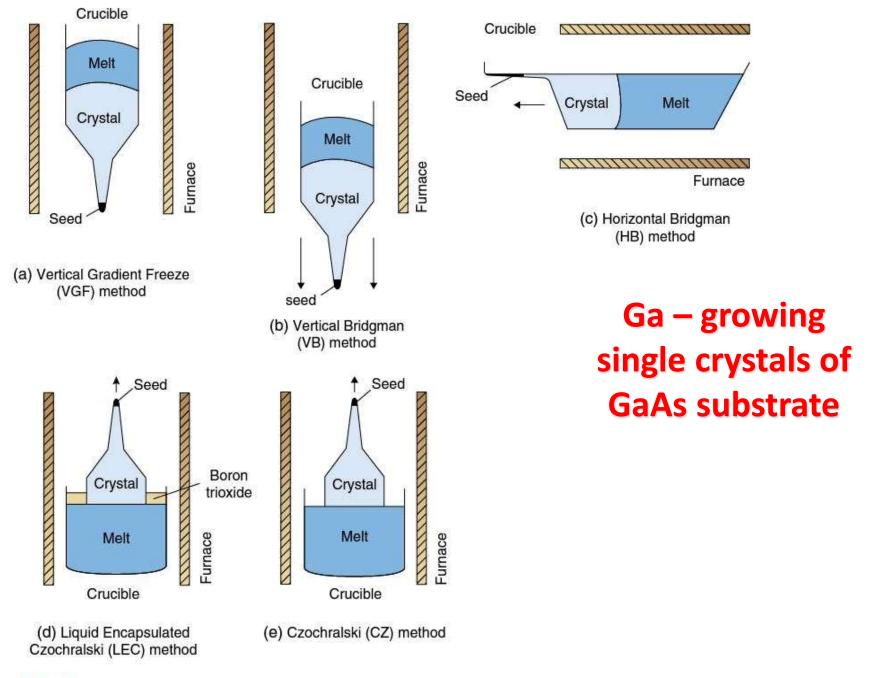


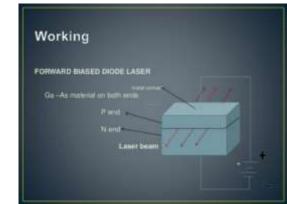
Figure 7.2 An illustration of most common manufacturing technologies for growing single crystals of GaAs substrate.

Ga – substitution

- Ga has some unique properties which make it difficult to substitute.
- Si can be used instead of GaAs in photovoltaic cells (reducing efficiency).
- **Ge** can be used as a substitute for GaAs in some electronics.
- Organic-based liquid-crystal displays can substitute for Ga in certain LED applications.
- **Indium phosphide** can be used for infrared laser diodes, and He-Ne lasers compete with GaAs in visible laser diode applications.
- GaN is the latest development in the field of semiconductors.

Ga – secondary recovery

• Since one of the main uses of Ga is in **compound semiconductor wafers**, and their fabrication typically generates around 60% scrap, recovered Ga from this waste is an extremely important source of the metal. The wastes from the manufacture of Ga arsenide (**GaAs**) and Ga nitride (**GaN**) wafers, are the metal's **most important** secondary source.


From compound semiconductor manufacture, the main sources of gallium scrap include (Burke, 2011):

- boule ends and chunks;
- broken wafers from all stages of fabrication;
- cutting and polishing sludges;
- defective devices;
- dust and residues in wastewater filters;
- epitaxial growth wastes;
- kerf generated during wafer slicing;
- liquids following etching;

- residues in GaAs single crystal reactors;
- substandard GaAs ingots.

The gallium content in such scrap can be between one per cent (for example, from wastewater filters) and 99.99 per cent (frozen metal) (Kramer, 2002), depending at which stage in the fabrication process the scrap is generated.

Typically the recovery and recycling of gallium is economically viable from throughout the production process of gallium-containing compound semiconductors.

Ga – virgin Ga production

Table 7.5 Estimated virgin gallium capacity and production in 2010 (Data from Roskill Information Services Ltd, 2011 and company accounts.)

Country	Capacity (tonnes per year)	Production (tonnes)		
China	141	118		
Germany	32	32		
Kazakhstan	25	18.7		
Ukraine	15	15		
South Korea	15-20	≥10		
Russia	10	4-7		
Hungary	8	4		
Japan	10	4		

Ga – secondary recovery

Table 7.6 Estimated secondary gallium capacity in 2010. (Data from Roskill Information Services Ltd, 2011 and authors.)

Country	Number of companies	Refining (U) Recycling (R)	Total capacity (tonnes per year		
Japan	2	R	≤20		
10 -	4	R/U	≈150		
	1	Ū	60		
USA/Canada	1	R/U	≤60		
100		R	≤30		
China	j	R/U	7/8N-15 and 6N-20		
-022 92 30 20-1	2	U	60		
Slovakia	1	R	8		
		U	25		
UK	1	R/U	20		
Germany	1	R	≤10		
TO TAME 1990 P. 2000 P.		U	≤10		
France	1	U	N/A		

Ga – prices

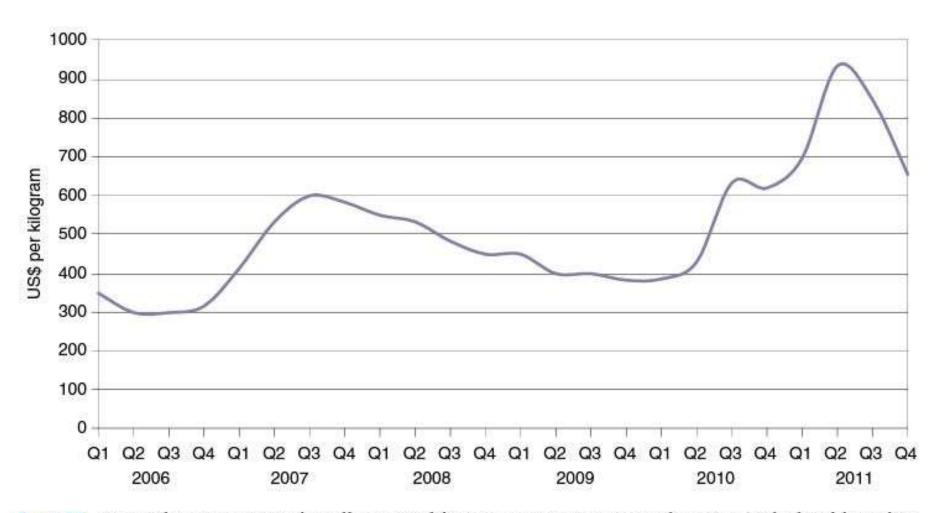


Figure 7.6 Quarterly average prices for gallium metal from January 2006 to November 2011. (Calculated from data quoted in Mining Journal, 2006–2011 and Metal Bulletin, 2011d.)

Ga – environmental issues

- Ga does not occur in nature as a pure metal. As a compound it occurs at trace levels in many areas of the natural environment, including watercourses.
- Acute exposures (ingestion) to certain rare compounds, e.g. **Ga (III) chloride**, can result in throat irritation, breathing difficulties and chest pains.
- GaAs is potentially more toxic to humans (As).
- GaN is non-toxic and potentially suitable for biomedical implant applications.
- Many chemicals used for the Bayer liquors associated with the production of alumina from bauxite.
- Ga is an essential component of **LEDs**, which are an alternative to traditional incandescent or fluorescent electric lamps.

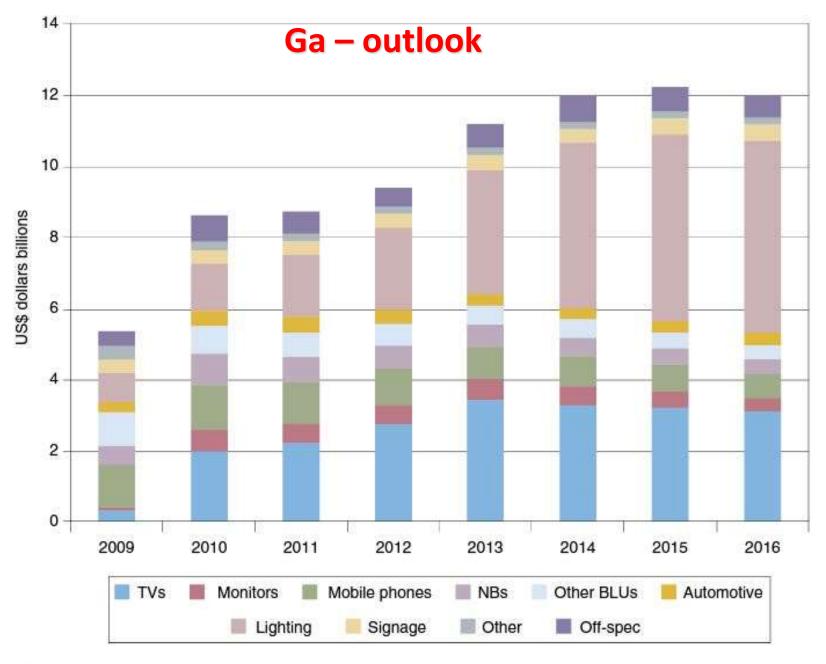
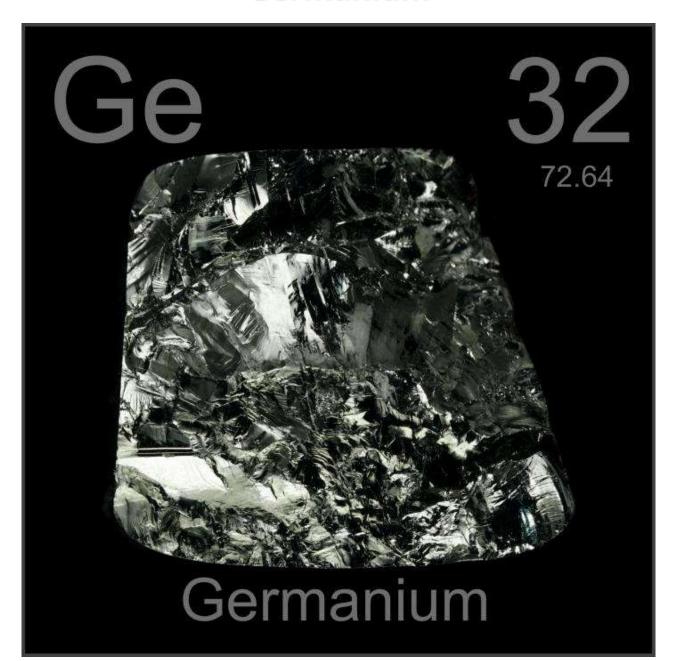



Figure 7.8 Forecast of packaged LEDs by application 2009–2016, revenue by segment. (Data from IMS Research, 2011c.) Notes: TVs, televisions; NBs, notebooks; BLUs, back-lit units.

Germanium

Ge – definitions and characteristics

Property	Value	Units
Symbol	Ge	
Atomic number	32	
Atomic weight	72.63	
Density at 25°C	5323	kg/m^3
Melting point	938	°C
Boiling point	2820	°C
Crystal structure	cubic, diamond	
Hardness (Mohs scale)	6.0	
Specific heat capacity at 25°C	0.32	J/(g °C)

Ge was discovered in **1886** as a component of the mineral argyrodite (Ag₈GeS₆) in silver ores.

Typically, Ge is recovered as a **by-product** from **Zn and Cu ores** and **coal**.

Ge is a greyish-white, brittle semi-metal (metalloid). Its electrical properties are those of a semiconductor, i.e. between a metal and an insulator, which makes Ge useful for many technical applications.

The oxidation states of Ge are +2 and +4, with a strong tendency towards quadrivalence.

Ge – abundance in the Earth and mineralogy

	ी पूर्व	ypical Ge cont	tent			
Name	Formula	(%)	Appearance	Crystal structure	Type locality	
Argyrodite Ag _B GeS ₆		5-7	steel grey with red tint, tarnishes black	orthorhombic, pseudocubic	Freiberg, Germany	
Canfieldite	$Ag_{B}(Sn,Ge)(S,Te)_{G}$	1-2	steel grey with reddish tint, tarnishes black	orthorhombic, pseudocubic	Colquechaca, Bolivia	
Briartite	Cu ₂ (Fe,Zn)GeS ₄	13-18	grey to grey-blue in reflected light	tetragonal	Kipushi, DR Congo	
Reniérite	$(Cu,Zn)_{11}Fe_{2}(Ge,As)_{2}S_{16}$	4-8	orange-bronze, tarnishes reddish	tetragonal	Kipushi, DR Congo	
Germanite	Cu ₁₃ Fe ₂ Ge ₂ S ₁₆	5-9	reddish grey, tarnishes dark brown	cubic	Tsumeb, Namibia	

- Ge has 5 naturally occurring isotopes, 70 Ge, 72 Ge, 73 Ge, 74 Ge (the most common isotope) and 76 Ge, the latter being slightly radioactive. 72 Ge, when bombarded with alpha particles, will generate stable 77 Se, releasing high-energy electrons \rightarrow used in combination with Rn for nuclear batteries.
- Clarke: 1.5 1.6 ppm (highest enrichment in deep-sea clays ≈ 2 ppm; coal and coal ashes ≈ 2.2 15 ppm). Siderophile, lithophile, chalcophile and organophile characters. Considerable concentrations of Ge may be found in Cu-Zn-Fe-Ag sulfides (up to 3000 ppm in sphalerite) and sulfosalts, as well as in association with organic matter.



Figure 8.1 Photographs of germanium ores and minerals. (a) Solution collapse breccia cemented by different stages of sphalerite (different shades of brown) and galena (black) from the Bleiberg mine, Austria; grey colour is carbonate host rock, white colour is hydrothermal calcite. This represents a typical carbonate-hosted zinc-lead deposit of the 'Alpine type' grading 200–300 ppm Ge. (Courtesy of W. Prochaska, Leoben.) (b) Germanium ore from the Kipushi deposit, consisting of reniérite (Ren), tennantite (Tn), chalcopyrite (Cp) and gallite CuGaS₂ (Ga), forming myrmekitic intergrowth textures in chalcopyrite. Reflected light, oil immersion. (c) Banded Ge-rich sphalerite (grey to black with dark brown interlayers) at the Tres Marias mine, Mexico. Scale bar = 10 cm; photo taken in 2006. (d) Willemite (ZnSiO₄) carrying up to 1.5 wt% Ge from Tres Marias, Mexico, showing a bright blue luminescence colour in areas of low trace element concentrations, and weak colours in areas of high trace elements (Ge, Pb). Cathodoluminescence image. Scale bar = 0.5 mm.

Ge ores and minerals

Ge concentrations and potential in various deposit types

Table 8.3 High-grade germanium concentrations and germanium potential in various deposit types. (Based on Höll et al., 2007.)

Class	Deposit type	Germanium-bearing species	Past production	Potential*	Typical ore grade (ppm Ge)
	Sulfide ores				
1	Volcanic-hosted Cu-Zn(-Pb) (-Ba) (Kuroko-type)	Sphalerite (bornite, Ge-sulfides)	low	medium	<<100 (-300)
2a	Porphyry and vein-stockwork Cu-Mo-Au	Cu-As sulfides, bornite, sphalerite	low	low	10-100
2b	Porphyry and vein-stockwork Sn-Ag	Argyrodite, sphalerite	low	medium	10-100
3	Vein-type (Ag-Pb-Zn)	Argyrodite, sphalerite	high (until 1993)	low	100-1000
4	Sediment-hosted Zn-Pb-Cu (-Ba)	Sphalerite, wurtzite	high	high	10-100
5a-c	Carbonate-hosted Zn-Pb (MVT, IRT, APT)	Sphalerite, wurtzite	high	high	100-1000
5d	Kipushi-type (KPT) polymetallic	Ge-sulfides (sphalerite)	high (until 2000)	medium	10-1000
6	Sediment-hosted stratiform Cu deposits	Sphalerite, pyrite, rare Ge sulfides	low	medium	1-20

Ge concentrations and potential in various deposit types

Table 8.3 High-grade germanium concentrations and germanium potential in various deposit types. (Based on Höll et al., 2007.)

Class	Deposit type	Germanium-bearing species	Past production	Potential*	Typical ore grade (ppm Ge)
	Oxide ores				
5e	Oxidation zones of KPT ores	Fe oxides/hydroxides, sulfates, arsenates	medium	low	100-1000
5f	Non-sulfide Zn-Pb	Fe hydroxides, willemite, hemimorphite	low	low	10-100
2c	Oxidation zones of Sn sulfides	Secondary Sn hydroxide, Sn oxide	low	low	10-100
7	Iron oxide ores	Fe oxides/hydroxides	none	low	10-50
	Coal and lignite deposits				
8a	Coal and lignite	Organic matter	medium	high	100-1000
8b	Coal and lignite ash	Section (Control of the Control of t	high	high	10-1000

^{*}estimated future potential difficult to assess for many deposit types due to a lack of data on germanium grade in concentrates, recovery and reserves/resources.

Ag, silver; Au, gold; Ba, barium; Cu, copper; Fe, iron; Mo, molybdenum; Pb, lead; Sn, tin; Zn, zinc. APT, Alpine-type; IRT, Irish-type; KPT, Kipushi-type; MVT, Mississippi Valley-type.

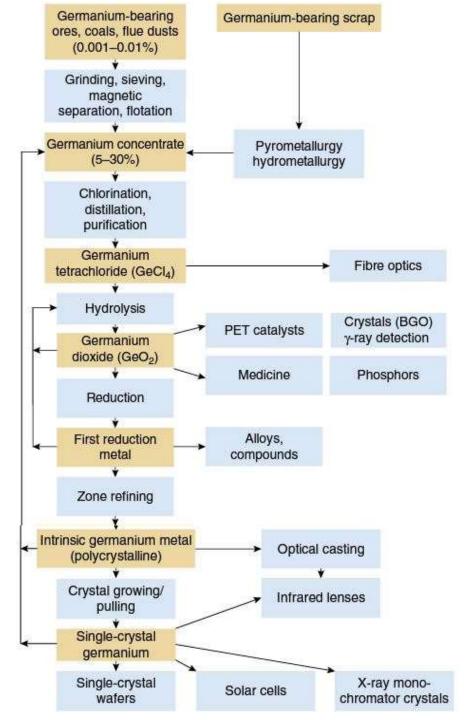

Ge – global distribution of mines and major occurrences Dormant mines Producina Deposit type and mines projects Carbonate-hosted Zn-Pb Carbonate-hosted base metal 1 Red Dog 11 Kidd Creek * 21 Eastern Rhodopes 31 Huize 2 Ruby Creek 22 Kirki 32 Jinding 12 Sayapullo Sediment-hosted 13 Potosi * 3 Andrew 23 Lugansk 33 Lincang massive sulfide 14 Capillitas 24 Kipushi 34 Fankou 4 Lang Bay Volcanic-hosted 25 Tsumeb, Otavi 5 Sullivan 15 Irish-type * 35 Wumuchang massive sulfide 6 Pend Oreille 16 Saint-Salvy 26 Angrensk 36 Bikinsk 7 Apex 17 Barquilla 27 Kas-Symskaya 37 Shkotovsk Porphyry and 8 Tres Marlas 18 Bleiberg 28 West Darangiri 38 Novikovsk vein-stockwork 9 Sentinel 19 Freiberg 29 Tarbagataisk 39 Kuroko-type 10 Gordonsville 20 Bor * 30 Wulantuga Vein-type Coal and lignite

Figure 8.2 The global distribution of mines, deposits and major occurrences from which germanium may be produced. Locations marked * are producing mines where the deposit contains germanium, but which are not currently recovering the germanium.

Ge – extraction methods and processing

• Ge is a by-product in some sulfide ores and in some coals (surface and underground mining methods).

Figure 8.3 Simplified germanium processing flow diagram. (BGO, bismuth germanium oxides (Bi₄Ge₃O₁₂); PET, polyethylene teraphthalate.) (Based on Butterman and Jorgenson, 2005 and Naumov, 2007.)

Ge – specifications and uses

Ge is used and traded in a variety of forms:

- **GeCl**₄: optical fibres.
- GeO₂: catalyst for PET, phosphors.
- **Ge single crystals:** optical components in infrared optical systems and electronics.

USES:

- Ge is an intrinsic semiconductor, particularly effective at high frequencies and low voltages;
- It is transparent to infrared light;
- It is a glass-former;
- It has a high refractive index;
- It has low chromatic dispersion;
- It has an ability to catalyse the polymerization in the production of plastic.

Gamma ray detectors, X-ray monochromators, thermo-photovoltaics, medical and metallurgical applications.

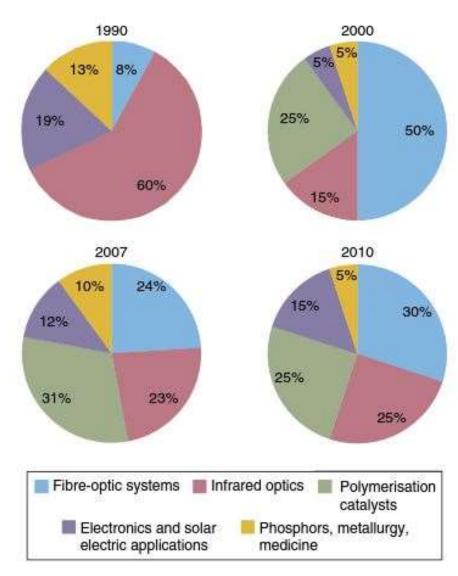


Figure 8.4 Comparison of global end-uses of germanium in 1990, 2000, 2007 and 2010. (Data from Guberman, 2011.)

Ge – major uses

Table 8.5 Summary of the major end-use markets of germanium. (Data from Guberman, 2011.)

Market sector	End use (2010)*	Usage	Germanium product
Fibre optics	30%	Communication networks	GeO ₂ dopant within the cores of optical glass fibres; Ge is deposited with silica on the inside of a pure quartz tube that is drawn into fine fibres
Infra-red optics	25%	Night vision systems; optical instruments such as camera lenses, IR spectroscopy; military, active car safety systems, satellite systems, fire alarms	Polycrystalline and single crystals; n-type Ge doped with P or Sb; Ge lenses and windows; GeO ₂ is used as a component of glasses in wide-angle camera lenses and microscope objectives
Polymerisation catalysts	25%	Plastics (polyethylene terepthalate, PET) for water bottles	GeO ₂ is used to make PET heat resistant (Asia)
Electronics and solar electrical applications	15%	Wireless devices, optical communication systems, hard disk drives, GPS	SiGe-based chips compete with GaAs and Si chips (since 1997)
Semiconductors		Transistors, rectifiers, lasers	Germanium doped with Sb, As, P (n-type semiconductor), Ge doped with Al, B, Ga, In (p-type semiconductor); amorphous semiconductors
Diodes		Light-emitting diodes (LEDs)	Ge substrate for high brightness LEDs
Transistors		Supercomputer	Si-Ge heterojunction bipolar transistors; silicon-on-insulator technology

Ge – major uses

Table 8.5 Summary of the major end-use markets of germanium. (Data from Guberman, 2011.)

920			
Market sector	End use (2010)*	Usage	Germanium product
Solar cells		Space-based photovoltaic solar cells	Polished Ge wafers for multilayer solar cells (improved efficiency compared to silicon)
Radiation detectors	5%	Detection of gamma radiation, e.g. air traffic control	Single crystals of ultra-pure Ge
Superconductors			Melting Ge and other metals to produce superconducting alloys, e.g. Nb ₃ Ge; vacuum sintering and annealing; thermal dissociation; electrolysis; chemical vapour deposition methods
Medicine		Chemotherapy, dietary supplement, antioxidant, super nutrient, diagnosis of diseases	Ge-organic compounds (Ge-132) found in medicinal plants; Bis-beta carboxyethyl Ge sesquioxide (Ge-Oxy 132); colloidal Ge

^{*}estimated share of global annual sales volumes of germanium.

Al, aluminium; As, arsenic; B, boron; Ga, gallium; GeO2, germanium dioxide; In, indium; Nb, niobium; P, phosphorus; Sb, antimony; Si, silicon.

Ge – recycling and substitution

Recycling

- Due to its **dispersion** in most products and application in very low quantities, little Ge is recovered from post-consumer scrap ("old scrap"). Recycling from "new scrap", however, is more widespread in the production of **Ge-containing fibre-optic** cables and **infrared imaging devices**.
- Most of the scrap is sent to Ge processors for recycling which are able to recycle material containing a minimum of 2% Ge.
- On a global scale, about **25-35%** of the total Ge used is processed from recycled scrap, mainly "new scrap".

Substitution

- **Fibre-optic applications**: Zr-In-based fluoride glass (research at an early stage).
- Electronic applications: Si, ZnSe, GASIR (infrared-transmitting chalcogenide glass).
- **PET**: Ti, Sb and Al-based catalysts.
- Solar cells: Inverted Metamorphic Cells, GaAs, GaP.

Ge – active and potential producers from sulfide ores

Table 8.6 Active and potential producers of by-product germanium from sulfide ores and selected projects under development. Annual germanium production capacity is the installed capacity, except where the value is in parentheses when it is potential capacity.

Deposit	Country	Mining Company ¹	Туре	Ge resources (tonnes)	Ge grade (ppm)	Annual Ge production (maximum capacity) in tonnes per year	Status of operation
Huize	China	Yunnan Huize Lead and Zinc Mine ²	Sulfide ore	500-600	40	10 (30)	production
Jinding (Lanping)	China	Sichuan Hongda Co., state ³	Sulfide ore	3000	10-100	10	production
Fankou	China	Zhongjin Lingnan Nonfemet, Guangdong state ⁴	Sulfide ore	600	100	15	production
Red Dog	AK, USA	Teck Resources ⁵	Sulfide ore (SMS)	1200	15	40 (200)	production
Lubumbashi	DR Congo	GTL ⁶	Slag	2250	100-250	2 (20)	production
Kipushi	DR Congo	Unclear ⁷	Sulfide ore (KPT)	1500	68		care and maint (1993)
Andrew and Darcy Zn deposits	Yukon, Canada	Overland Resources Ltd.8	Sulfide ore (SMS)	88	18		exploration
Tres Marias	Mexico	War Eagle Mining Company ⁹	Sulfide and oxide ore (MVT)	150	150	(10)	exploration
Pend Oreille	WA, USA	Teck Resources ¹⁰	Sulfide ore (MVT)	300	10-100	(50)	care and maint (2009)
Gordonsville/ Elmwood	TN, USA	Nyrstar, Tennessee Valley Resources ¹¹	Sulfide ore (MVT)	800	20	(35)	care and maint.
Kolwezi	DR Congo	ENRC ¹²	Slag		500?		development, suspended 09/2009
Tsumeb	Namibia	Emerging Metals Ltd. ¹³	Slag	530	260	(10)	exploration
Current production						ca. 80	
Potential future production						ca. 380	

Ge – producers from Ge-rich lignite and coal

Table 8.7 Active and potential producers of by-product germanium from germanium-rich lignite and coal, and selected projects under development.

Deposit	Country	Company	Туре	Ge resources (tonnes)	Ge grade in coal (ppm)	Ash content %	Status of operation
Lincang	China		Lignite	1060	850	5-20	production 1
Wulantuga	China	Tongli Ge Refine Co., Ltd.	Lignite	1700 ²	240 ²	21	production ¹
Wumuchang	China		Lignite	4000 (?)	30-50		exploration
Novikovsk (Central and Southern)	Russia	SUEK ³	Lignite	1665	700		closed; produced 850 tonnes Ge from 1960 to 1980s
Luchgorsky/Bikinsk	Russia	CJSC ⁴	Lignite	2600	300	42	exploration
Tigninskiy/ Tarbagataisk	Russia	SUEK ³	Lignite	340	53		closed
Pavlovsk (Spetzugli + Luzanovsk)	Russia	SUEK ³	Lignite	1015	450	18-27	production
Smolianinovsky/ Shkotovsk	Russia	SUEK ³	Lignite	880	1043	21	exploration
Rakovsk	Russia		Lignite	380	230		
Kas-Symskaya	Russia	Krasnoyarskaya mining co.	Lignite	11,000 5	205 5	17	exploration
Angren	Uzbekistan	JSC Uzbekugol	Hard coal	180	30	2-6	currently no Ge extraction
Church deposit, Sentinel project	ND, USA	Entrée Gold ⁶	Lignite	165	40-70		exploration

Ge – world production

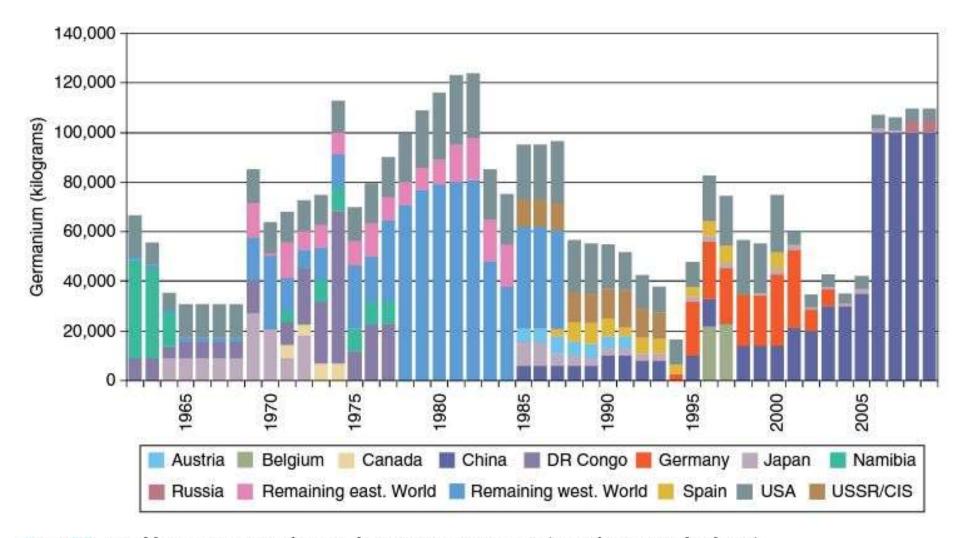


Figure 8.5 World germanium production, by country, 1962–2009. (Data from BGR database.)

Ge – prices

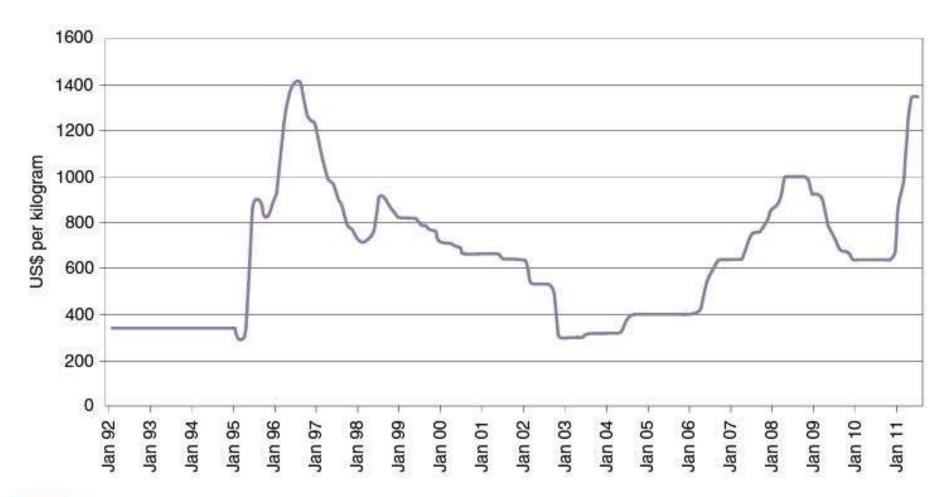


Figure 8.6 Germanium dioxide price (minimum 99.99%, monthly averages), 1992–2011. (Data from BGR database, 2012.)

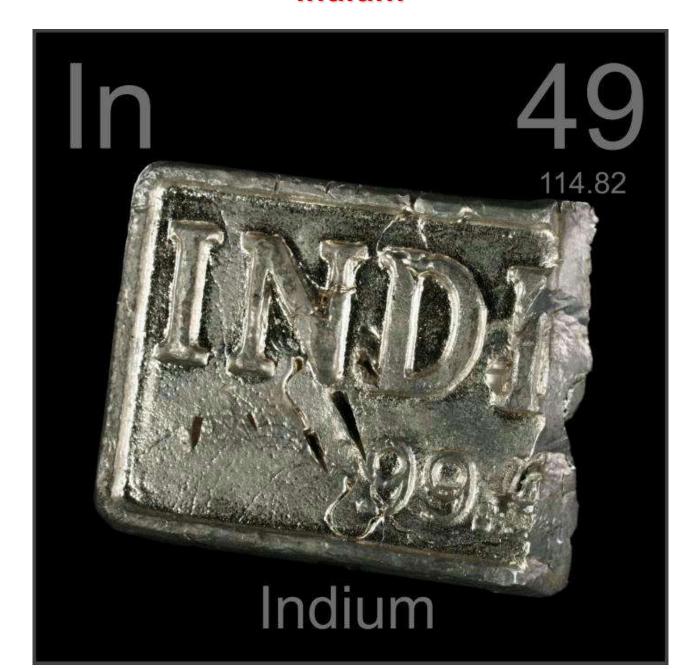
Ge – environmental issues

- Ge has little or no effect upon the environment (trace element in rocks).
- During processing of Ge-bearing materials, **As** and **Cd** may present potential problems.
- Ge compounds also have a low order of toxicity, except for **Ge tetrahydride**, which is considered toxic.

Major Germanium Applications

- Infrared Optics
- Optical Fibre
- 3. PET Catalyst
- Solar Cells

Major Germanium Producers


- 1. China
- 2. USA
- Canada

Ge – outlook

- Supply challenges: major Ge supply will be driven by primary Zn mine production, and by extraction from coal ashes. Recycling of old scrap will not be a significant contribution to world supply.
- **Demand drivers**: **fibre optics**, future **infrared optic applications** (e.g. car safety systems), **electronics** (detectors, transistors and semiconductors), high-end **LEDs**, GeSbTe optical discs.

Indium

In – definitions and characteristics

In was discovered in **1863** by two German chemists, who were testing zinc ores. They named it "indium" from the indigo blue colour seen in its spectrum.

In 1924, In was found to have a valuable ability to **stabilize non-ferrous metals**.

The early applications of In were in **light-emitting diodes** and in coating **bearings** in aircraft engines.

In-containing **semiconductors** became important from the 1950s onwards, while the widespread use of In-containing **nuclear control rods** increased during the 1970s.

Since 1992 the major application of In has been in the form of In-Sn oxide (ITO) in **liquid-crystal displays**.

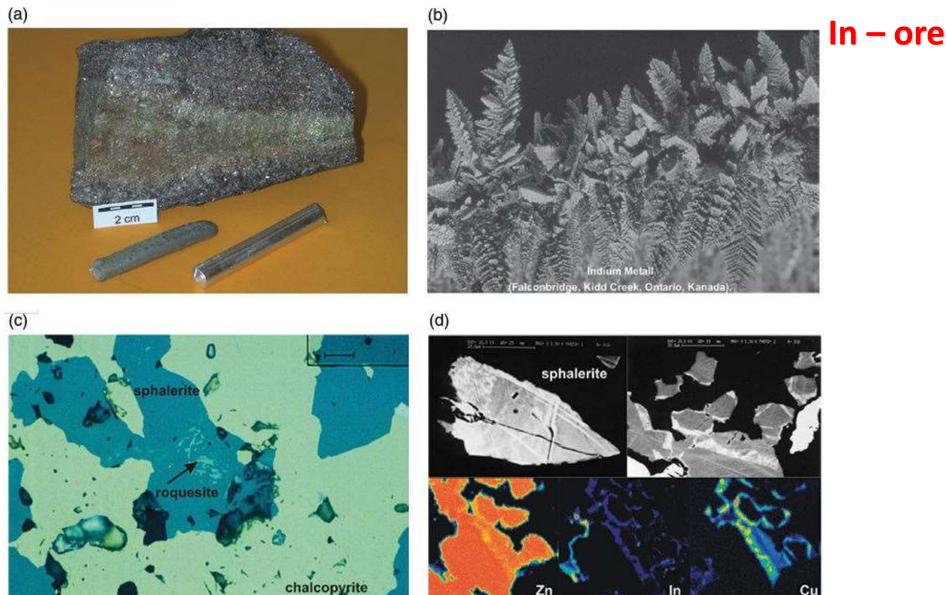
Property	Value	Units
Symbol	In	
Atomic number	49	
Atomic weight	114.82	
Density at 25°C	7290	kg/m³
Hardness (Mohs scale)	1.5	10700
Melting point	157	°C
Boiling point	2072	°C
Specific heat capacity at 25°C	0.23	J/(g °C)
Electrical resistivity at 25°C	0.08	μΩ m
Thermal conductivity	82	W/(m °C)

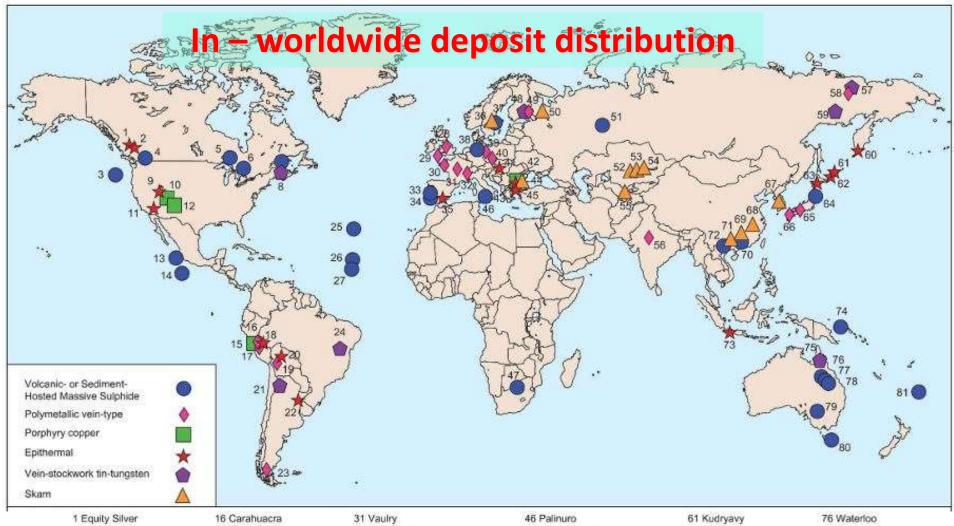
- In is a soft, lustrous, silver-white metal, very malleable and ductile and retains these properties at very low T approaching absolute zero, making it ideal for cryogenic and vacuum applications. In does not workharden and is easily cold-welded.
- On heating, In reacts directly with metalloids (As, Sb, Se, Te) ad with halogens, S and P.

In – abundance in the Earth and mineralogy

Mineral	Formula	Indium content (%)	Specific gravity	Appearance (colour, lustre
Roquesite	CulnS	47.35	4.80	bluish-grey, metallic
Laforetite	AgInS,	40.03	4.92	brown, metallic
Indite	Feln,S,	55.50	4.59	iron-black, metallic
Sakuraiite	(Cu,Zn,Fe,Ag) ₃ (In,Sn) S ₄	24.35	4.34	greenish-grey, metallic
Petrukite	(Cu,Fe,Zn) ₃ (Sn,In) S _A	6.05	4.07	grey, brown, metallic
Abramovite	Pb,SnInBiS,	11.41	9.0	silver-grey, metallic
Cadmoindite	Cdln ₂ S ₄	49.58	4.85	black, dark brown, adamantine
Dzhalindite	In(OH),	69.23	4.37	yellow brown
Yanomamite	InAsO ₄ · 2H ₂ O	39.62	3.92	blue green, light yellow green, vitreous
Yixunite	Pt ₃ In	16.40	18.33	white, metallic
Damiaoite	Ptĺn,	54.07	10.94	white, metallic
Native indium	In ²	100	7.29	yellow grey, metallic

- In is a post-transition metal of Group 13 falling between Ga and Tl. The geochemical properties are such that it tends to occur in nature with **base metals** (Cu, Ag, Zn, Cd, Sn, Pb and Bi).
- In has two main oxidation states, +3 (III) and +1 (I).
- Clarke: 0.05 ppm (continental crust) 0.072 ppm (oceanic crust). Seawater: 0.2 0.7 ppb.
- In is a highly volatile chalcophile element which behaves in a moderately to highly incompatible manner during mantle melting.
- In minerals are rare, **roquesite** is the most important (trace component in ore minerals like bornite, chalcopyrite and sphalerite). **Sphalerite** is the most important In-bearing mineral.




Figure 9.1 (a) Example of indium-rich ore (600 ppm In), Maranda J volcanic-hosted massive sulfide (VHMS) deposit, South Africa and indium rods (99.95% In); (b) Native indium metal from the former Kidd Creek processing plant, Canada (courtesy of Falconbridge Ltd); (c) Chalcopyrite-sphalerite ore with roquesite inclusions in sphalerite; Kidd Creek, Canada; (d) Sphalerite-roquesite solid solution series as light zonal enrichments in sphalerite grains from the Vai Lili hydrothermal vent field, southern Lau basin, south-west Pacific.

In – major deposit classes

- In occurs in **different types** of ore deposits of **all ages**.
- In deposits are most commonly associated with **base-metal hydrothermal** ore-forming systems enriched in Zn, Cu, Pb and Sn, accompanied by trace metals such as Bi, Cd and Ag.
- The most important deposits are volcanic- and sediment-hosted base-metal sulfide deposits, characterized by high metal abundance and large tonnages. The concentration of In in these ores is in the range 20 – 200 ppm.
- The majority of In-bearing ore deposits are associated with the **subduction-related** western Pacific plate boundaries.

Table 9.3 Size and grade of the major types of indium deposits (grades and tonnages are very variable between deposits and figures given are indicative only).

Deposit type	Deposit size range (tonnes)	Typical grade (indium g∕t)	Estimated indium metal content of known deposits (tonnes)	% of total
Volcanic-hosted massive sulphide	10 ⁶ -10 ⁸	20-200	13,750	43
Sediment-hosted massive sulphide	10 ⁶ -10 ⁸	20-200	11,750	37
Epithermal	10 ⁴ -10 ⁶	10-800	4500	14
Tin-tungsten porphyry	10 ⁵ -10 ⁷	10-400	1250	4
Vein-type	10 ⁴ -10 ⁶	10-350	520	2
Total			31,770	100

- 2 Silver Queen 3 Axial seamount 4 Sullivan 5 Geco 6 Kidd Creek 7 Brunswick Camp 8 Mount Pleasant 9 Crypto 10 Bingham 11 McLaughlin 12 Central District 13 East Pacific Rise 21°N 14 East Pacific rise 13°N 15 Cerro de Pasco
- 17 Sayapullo
- 18 Morococha
- 19 Bolivia (9 locations)
- 20 Malku Khota
- 21 Pirquitas 22 San Roque, Rio Negro
- 23 Pinguino, Santa Cruz
- 24 Mangabeira
- 25 Broken Spur
- 26 TAG, Mid Atlantic Ridge
- 27 Snake pit
- 28 West Shropshire 29 Cornwall (2 locations) 30 Telhaie

- 32 Charrier (2 locations)
- 33 Lagoa Salgada 34 Neves-Corvo
- 35 Cartagena
- 36 Gásborn, Bergslagen
- 37 Längban, Bergslagen 38 Rammelsberg
- 39 Freiberg (2 locations) 40 Bohemian Massif (7 locations)
- 41 Nagyborzsony 42 Elacite/Asarel, Sredna Gora
- 43 Sredna Gora (5 locations) 44 Malko-Tamovo (6 locations)
- 45 Kirki

- 47 Murchison (2 locations)
- 48 Getmossmalmen (4 locations)
- 49 Jungfrubergen
- 50 Kitel
- 51 Southern Urals (6 locations)
- 52 Kansay
- 53 Kyzyl Espe (4 locations)
- 54 Sarykan (3 locations)
- 55 Karamazar
- 56 Tosham 57 Deputaskoe
- 58 Lifudsin
- 59 Pravoumiiskoe 60 Mutnovsky

- 62 Prasolov
- 63 Toyoha (8 locations)
- 64 Kuroko
- 65 Akenobe (6 locations)
- 66 Kyushu (5 locations)
- 67 Ulsan
- 68 Qibaoshan
- 69 Dachang
- 70 Dachang 71 Gejiu
- 72 Laochang
- 73 Merapi 74 Manus Basin

75 Baal Gammon

- 77 Dry River South 78 Balcooma 79 Broken Hill
- 80 Rosebery
- 81 Lau Basin

In - extraction methods and processing

The mining methods employed to extract In are related to the recovery of other base metals in massive sulfide deposits.

The strict coenrichment with Zn and Cu makes Cubearing Zn ores the most favorable for In recovery.

In can be recovered also from **Cu** and **Sn ores**.

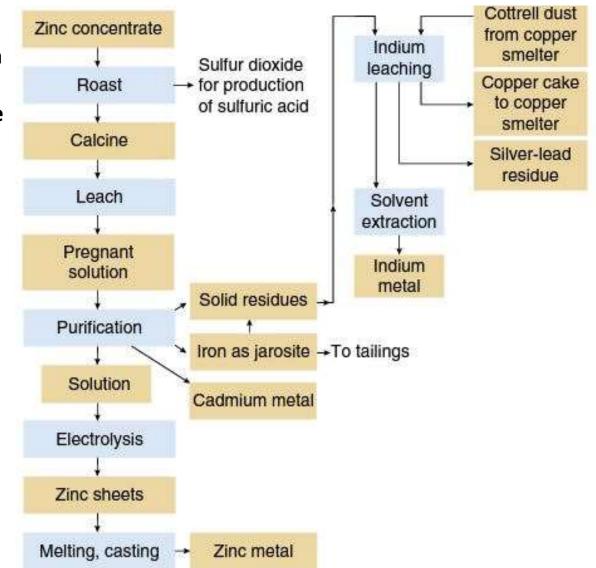
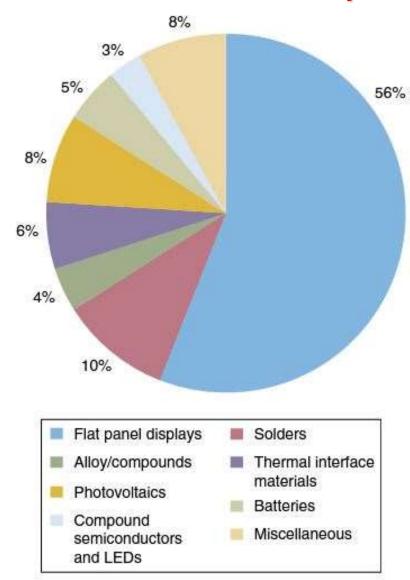
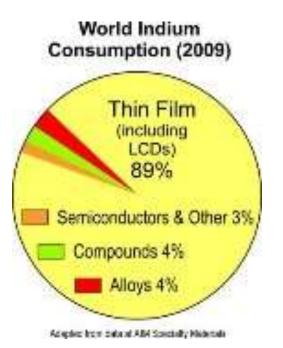


Figure 9.3 Generalised beneficiation flow diagram, based on the Kidd Creek operations. (Modified after http://www.mining-technology.com/projects/kidd_creek/kidd_creek7.html.)

In – specifications and uses




Figure 9.4 The main end-uses of indium in 2010. (Modified after Mikolajczak and Harrower, 2012, courtesy of Indium Corporation.)

In is traded as **In metal** in a wide variety of forms including pellets, powder, plates, sheets, wires and foils. The standard quality is 99.99% (termed "4N"), but higher purities up to 5N and 7N (99.99999%) are also standard specifications.

- Low melting point;
- Workability at very low T (-273 °C);
- Suppleness, softer than Pb;
- Tight adhesion to other metals;
- Dissolution in acids;
- Amphoteric character;
- No reaction with H₂O, B, Si or C;
- Reaction with O only at higher T;
- Oxidation by halogens or oxalic acids, to give In (III) compounds.

In – specifications and uses

- The first large scale application for In was as a coating for bearings in high-performance aircraft engines during WW II.
- Fusible alloys, solder and electronics.
- Indium-tin oxide (ITO): glass coatings, solar collectors, streetlights, electrophoretic, plasma and electroluminescent displays.
- Alloys and solder: low melting point alloys with Bi, Sn, Pb and Cd; solders and fusible alloys in the electronic industry. Alloys of Au and Pd used in dentistry often include In. In the nuclear industry an alloy of Ag, In and Cd is used in nuclear control rods.
- Semiconductors: photovoltaic industry (CuInSe₂, CuInGaSe₂ [CIGS], CuInS₂ [CIS], CuInGaS₂), LEDs, laser diodes, photodetectors.
- Surface coating: engine bearings, plating, electrodeless lamps, thermal interface material in PCs.

In – recycling and substitution

Recycling

- The recovery of In from production waste ("new scrap") and, to a lesser extent, from recycling of In-bearing electronic scrap have become increasingly important in the last decade. About 2/3 (1000 t) of global In supply comes from recycling.
- Most ITO producing countries have increased their recycling rates significantly.

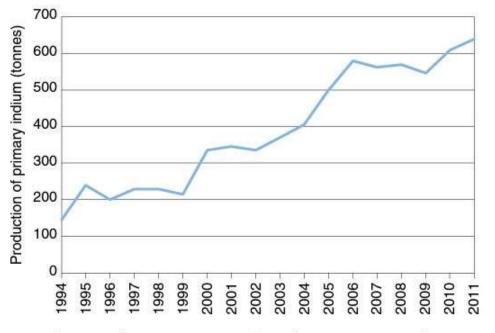
Substitution

- **ITO**: Sb-Sn oxide, Zn oxide with Al doping (AZO), carbon nanotube, poly(3,4-ethylene dioxythiophene).
- Semiconductors: Ga arsenide.

In – resources and reserves

Table 9.5 Estimated global resources and reserves of indium (tonnes) calculated from global zinc and copper resources and reserves reported by USGS (2012a and 2012b).

	tonnes	
Resources in zinc ores ¹	95,000	
Reserves in zinc ores ²	12,500	
Resources in copper ores ³	30,000	
Reserves in copper ores4	6300	
Total indium resources	125,000	
Total indium reserves	18,800	


¹calculated from global zinc resources with indium concentration of 50 g/t

²calculated from global zinc reserves with indium concentration of 50 g/t

³calculated from global copper resources with indium concentration of 10 q/t

⁴calculated from global copper reserves with indium concentration of 10 g/t

In – production

Global primary indium production, 1994-2011. (Data from USGS, 2012c.)

Table 9.6 Estimated indium mine production in 2009 from base metal zinc deposits. (Data from Roskill, 2010.)

Country	Zinc mine production	Mine production zinc concentrate	Estimated inc and quantity	Share	
	(million tonnes contained zinc)	(million tonnes sphalerite)	(ppm)	(tonnes)	%
Australia	1.3	1.9	15	29	6.2
Canada	0.7	1.1	37	40	8.6
China	2.8	4.2	50	210	45.0
Mexico	0.5	0.8	20	16	3.4
Peru	1.5	2.2	20	44	9.4
USA	0.7	1	20	21	4.5
Other countries	3.6	5.4	20	107	23.0
Total	11.1	16.6	29	467	100

In – producers and prices

Table 9.7 Important global indium producers. (Data from Roskill, 2010 and USGS, 2009.)

	Country	Refinery capacity (tonnes)	Secondary capacity (tonnes)			
Nanjaing Germanium Factory	China	150				
Huludao Zinc	China	50				
Zhuzhou Smelter Group	China	?				
Dowa Metals & Mining Co	Japan	70	150			
Asahi Pretec Corp	Japan		200			
Mitsubishi Mat. Group	Japan		96			
Korea Zinc	Rep. of Korea	100				
Umicore SA	Belgium	30				
Teck Resources Ltd	Canada	~75				
Xstrata plc	Canada	?				

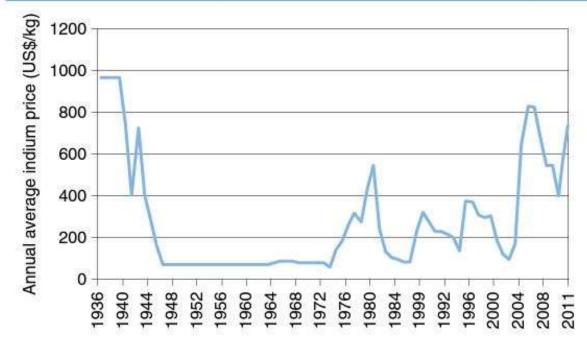
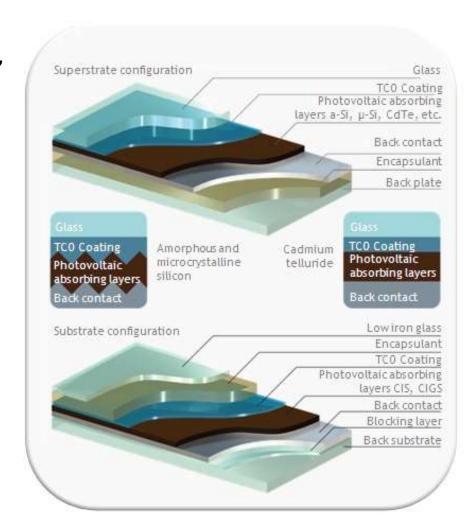
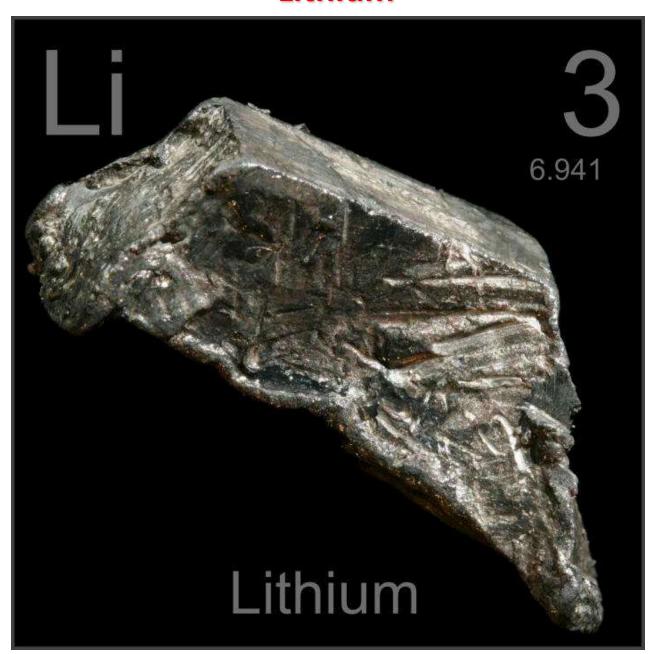


Figure 9.6 Annual average indium prices between 1936 and 2011. (Data from BGR database.)


In – environmental issues

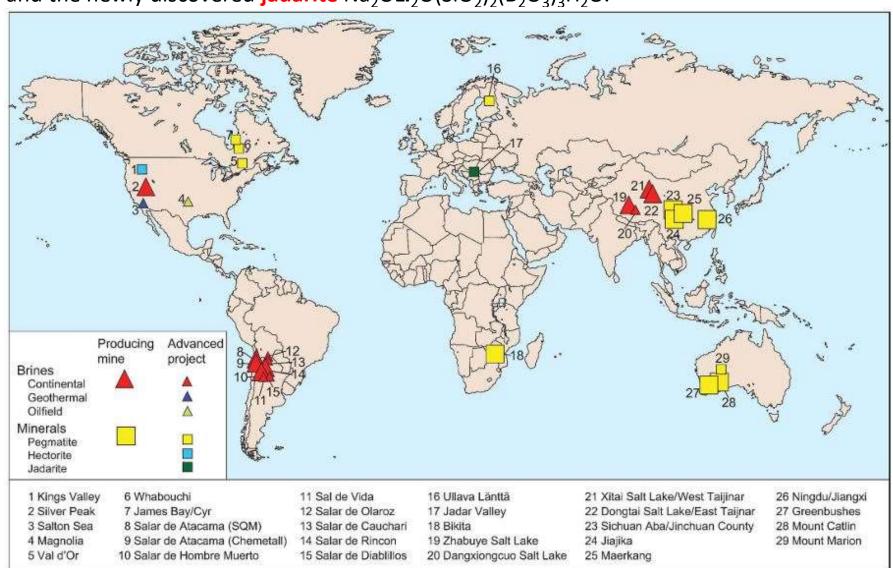
- The environmental impacts of the mining and processing of **sulfide-rich In-bearing ores** are dependent on a wide range of factors: **ARD** (acid rock drainage); **tailing ponds** containing high abundances of Pb, Zn, Cd, Bi, Sb.
- Although the toxicity of In metal is low and harmful effects are not reported, some In compounds are toxic (In phosphide is carcinogenic in animals).
- **ITO** is the predominant form in which In is currently used: it can potentially cause a several type of **lung damage**, as well as **systemic toxicity** in mammals (kidneys, liver, blood, lungs, reproductive and developmental systems).
- Much remains unknown about In natural and anthropogenic cycling and toxicity!


In - outlook

- The outlook for the In market is healthy,
 with demand predicted to grow at a rate
 of 5 10% per annum.
- Demand for **LCD panels** may increase more slowly, but it will continue as the main use of In.

 Another market area with significant potential to growth is in thin-film photovoltaic cells [In-Ga-selenide alloy (CIGS)].

Lithium


Li – definitions and characteristics

Property	Value	Units	Li was discovered in 1817 by Johan Arfvedson, when he analyzed a sample
Symbol	Li		of petalite. However, it was a year later
Atomic number	3		when the pure metal was isolated.
Atomic weight	6.94		
Density at 25 °C	533	kg/m³	Its name is derived from the Greek word
Hardness (Mohs scale)	0.6	220	"lithos", which means "stone".
Melting point	181	°C	Due to its high reactivity , Li only occurs
Atomic radius	145	pm	in nature in the form of compounds
Ionic radius of Li*	90	pm	(silicates, clay minerals, chloride in
Electrical conductivity	11.7×10^{6}	S/m	brines).
Electric potential	3.04	V	
Specific heat capacity at	3.58	J/(g °C)	Clarke: 17 ppm, ranging from 30 ppm
25 °C	929-924-0-5-5-Y	400 (0.00	(igneous rocks) to 60 ppm (sedimentary rocks). Seawater: 0.18 ppm.

- Concentration levels of Li in pegmatites and ore concentrates are reported as percentage lithia (Li₂O).
- Brine grades are reported as ppm, mg per liter (mg/l) or weight % Li (wt.% Li).
- Because a great range of chemicals are produced, production tonnages are often expressed as tons of Li carbonate equivalents (LCEs). Li carbonate contains 0.188 Li.

Li – mineralogy and deposit types

Commercially viable concentrations of Li are found in pegmatites, continental brines, geothermal brines, oilfield brines, the clay mineral hectorite Na_{0.33}(Mg, Li)₃Si₄O₁₀(F, OH)₂ and the newly discovered jadarite Na₂OLi₂O(SiO₂)₂(B₂O₃)₃H₂O.

Li – major deposit classes

- PEGMATITES: Li-containing pegmatites are relatively rare and frequently also contain Sn and tantalite. Spodumene LiAlSi₂O₆ is the most common mineral (7.9% Li₂O). Petalite LiAlSi₄O₁₀ is less common (4.2% Li₂O), and lepidolite (group name for trioctahedral Li-rich micas) is equally rare.
- **CONTINENTAL BRINES**: the term refers to brines in **enclosed (endorheic) basins** where inflowing surface and sub-surface waters contain modest quantities of Li which has been released from surrounding volcanic rocks as a result of **weathering**. Li becomes concentrated along with other elements of economic interest, particularly **K** and **B**, as a result of **high evaporation rates**.
- GEOTHERMAL BRINES: Li-containing geothermal brines are known at Wairakei in New Zealand (13 ppm), at the Reykanes Field in Iceland (8 ppm) and El Tatio in Chile (47 ppm).
- OILFIELD BRINES: the Smackover Formation (Texas, Arkansas, Oklahoma, Wyoming and North Dakota) contains brines grading up to 700 mg/l Li (also a major source of Br).
- **HECTORITE**: a clay mineral $Na_{0.33}(Mg, Li)_3Si_4O_{10}(F, OH)_2$ containing 0.53% Li. Western Lithium USA Inc. is developing the northern Nevada hectorite deposit.
- JADARITE: a newly discovered mineral LiNaSiB₃O₇(OH) containing Li₂O 7.3%.

Li – Andean brines

Table 10.2 Partial analysis of Andean brines. All figures are wt%. (Compiled by the author from published information.)

Salar name	Salar de Atacama	Salar de Atacama	Salar de Atacama	Salar de Hombre Muerto	Salar de Hombre Muerto	Salar de Rincon	Salar de Olaroz	Salar de Cauchari	Salar de Uyuni''	Salar de Diablillos
Company	Chemetall	SQM	SQM	FMC	Lithium One	Rincon Lithium	Orocobre	Lithium Americas Corp	Comibol	Rodinia
		(MOP)*	(SOP)*							
K	1.8	2.97	1.49	0.617	0.62	0.656	0.477	0.57	0.72	0.517
Li	0.147	0.305	0.11	0.062	0.057	0.033	0.057	0.064	0.045	0.046
Mg	0.96	1.53	0.82	0.085		0.303	130 CM		0.65	933
Ca	0.031	0.04	0.02	0.053	-	0.059	175	=	0.046	5 18
SO ₄	1.46	0.88	2.19	0.853	-	1.015	200	99	0.85	334
В	0.058	0.065	0.068	0.035	25	0.04	227	550	0.02	122
Mg/Li	6.53	5.02	7.45	1.37	2.19	9.29	2.4	2.34	18.6	3.68

K, potassium; Li, lithium; Mg, magnesium; Ca, calcium; SO_a, sulphate; B, boron.

Notes:

^{*}MOP & SOP analyses are in respect of the feed to the potassium chloride/lithium chloride pond system and the potassium sulfate/boric acid pond systems

^{**}Initial production from the Salar de Uyuni will probably commence from an area with a lithium grade of approximately 0.15% Li containing an estimated 400,000 tonnes Li

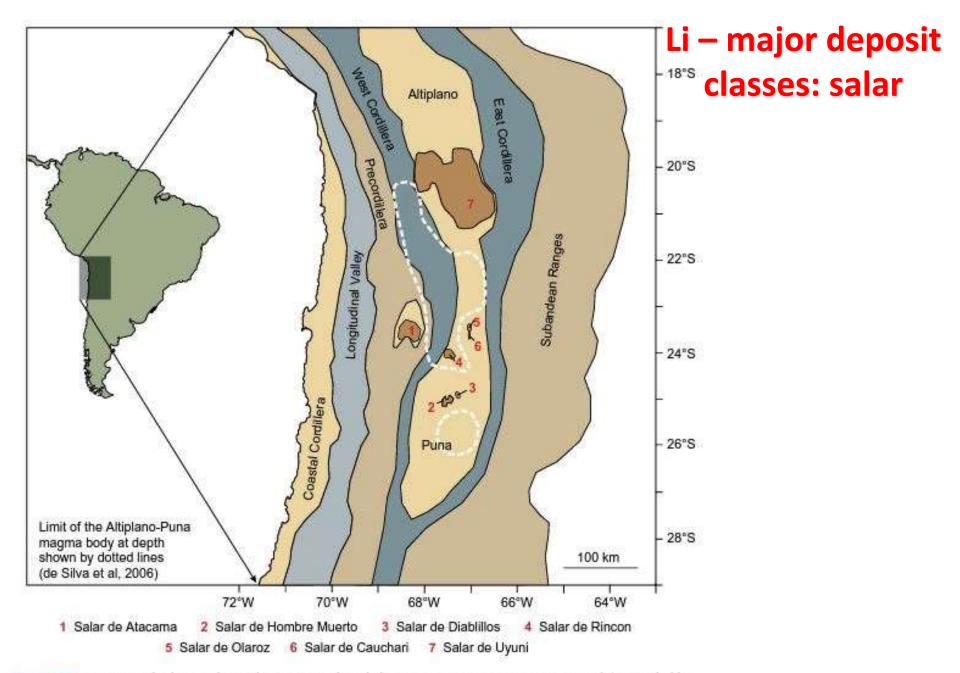


Figure 10.2 Location of salars in the Andean region where lithium extraction is active or proposed. (Compiled by John Houston.)

Li – major deposit classes: hectorite-rich clay lenses

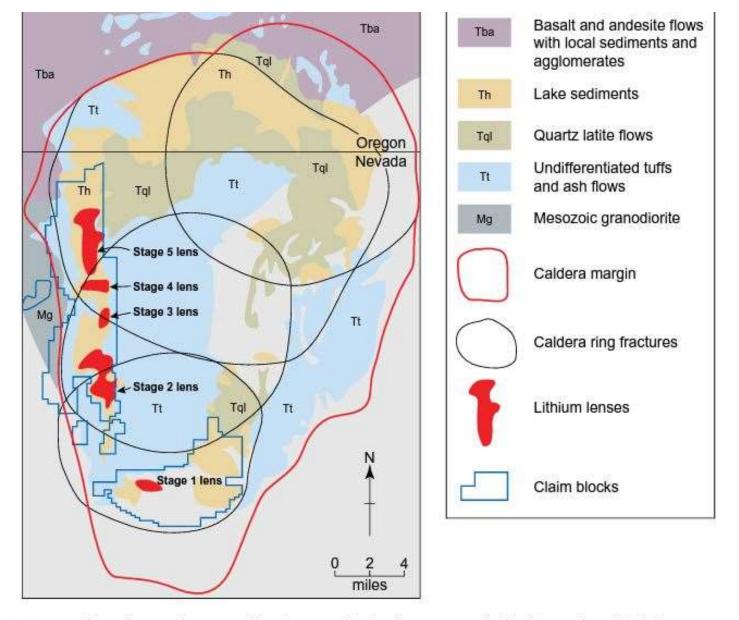
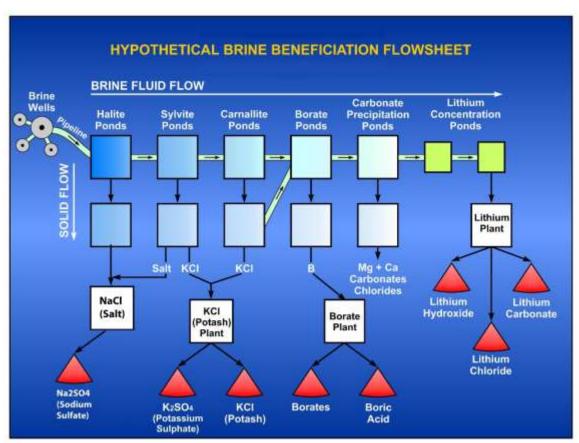


Figure 10.10 Geological map of Kings Valley showing the five hectorite-rich clay lenses. (Modified from Chmelauskas, 2010.)


Li – extraction methods and processing

• Currently Li is produced from **pegmatite** and **continental brine** sources. Most **spodumene**-based pipeline projects will use an acid leach process to produce **Li carbonate**.

• Methods of processing **continental brines** vary considerably depending on the overall chemistry. The basic aim is to concentrate the brines by **solar evaporation**: this involves the precipitation of unwanted elements such as NaCl, excess Ca, sulfate and Mg. Another process is ion-exchange (Hombre Muerto).

C3 Pit at the Greenbushes pegmatite in W. Australia, the world's leading source of spodumene.

Li – specifications and uses

The market of Li is divisible into two major segments:

- Mineral concentrates with spodumene with minor petalite and lepidolite;
- Large range of Li chemicals and metal.
- Non-chemical demand: glasses, ceramics and glass-ceramics (lithia reduces melting T and provides thermal shock resistance).
- Chemical demand: > 200 Li-containing products are marketed.
 - Li carbonate: glass and ceramics, glass ceramics, enamel and glazes; Al electrolysis, cathodes for Liion batteries (mobile phones require 3 g Li carbonate for their batteries).
 - Li hydroxide: lubricating greases, CO₂ adsorbent (e.g. submarines and spacecraft).
 - Li chloride: used as a flux (Al), as a solution for controlling humidity.
 - Li bromide: large scale absorption-refrigeration systems.
 - Li metal: primary (non-rechargeable) battery anodes, organolithium compounds (butyllithium for synthetic rubber), Li-Al alloys (aircraft).

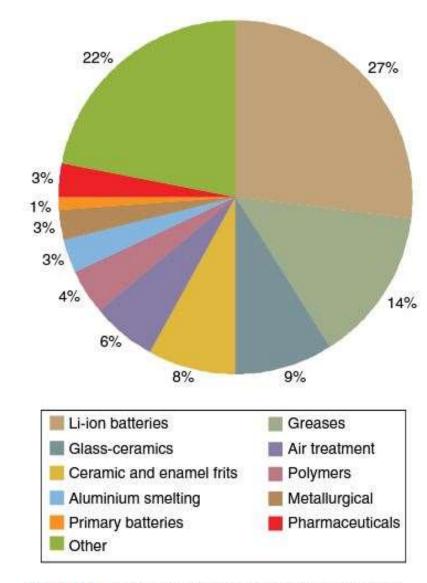
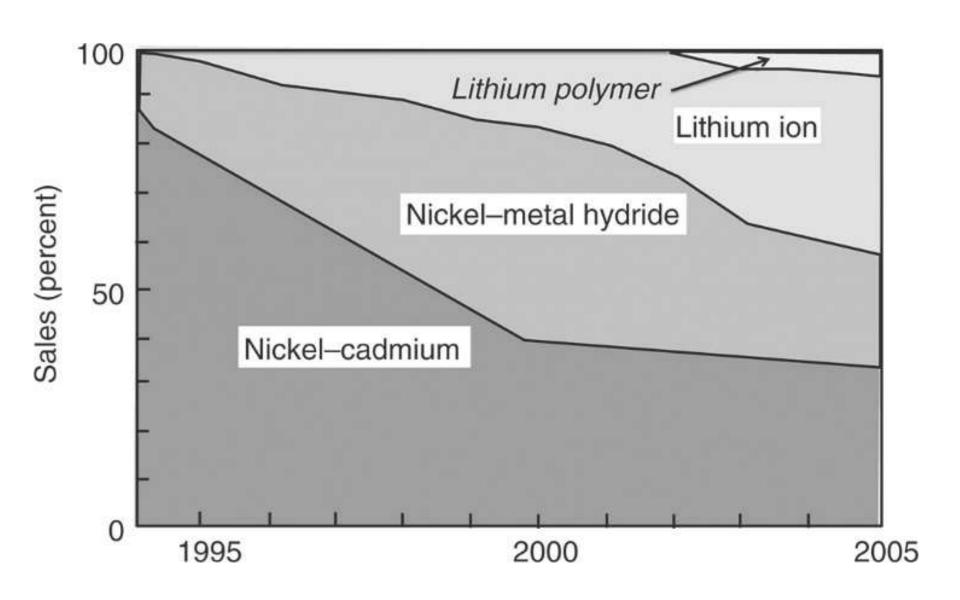
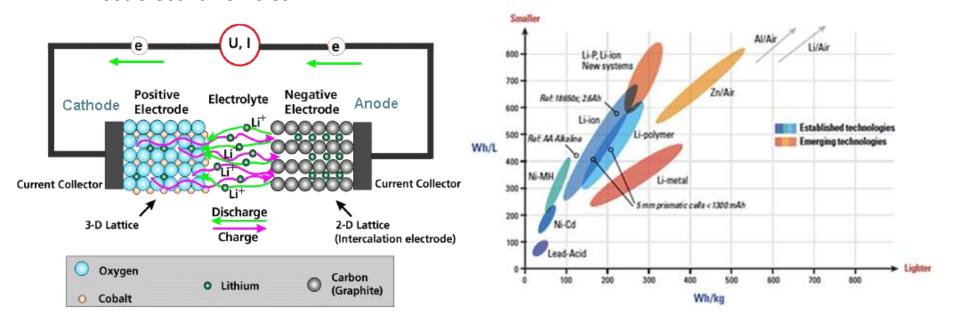



Figure 10.6 Lithium chemical uses, 2010. (Data from Roskill Information Services Ltd, personal communication.)

Li – metals in rechargeable batteries


Li – recycling and substitution

Recycling

• Electric vehicle (EV) batteries differ significantly from existing batteries, and two recycling processes are applicable: pyrometallurgical and hydrometallurgical. The recycling chain for EV batteries is fairly complex.

Substitution

- Primary batteries (non-rechargeable): alkaline cells.
- **Rechargeable batteries**: Pb acid, Ni-Cd, NiMH. There is no current competition for Li-ion in most electric vehicles.

Li – pegmatite resources

Table 10.3 Estimated world lithium resources compiled by the author based on previous work and published sources.

	Tonnes Li
Pegmatites	
North Carolina, USA *undeveloped	2,600,000
Manono, *D.R. Congo	2,300,000
Greenbushes, Australia (Talison)	1,500,000
Russia, numerous	1,000,000
China, numerous	750,000 ⁺
Canada, others	430,000
North Carolina, USA (Former Operations)	230,000
Quebec Lithium, Canada (Canada Lithium)	230,000
Whabouchi, Canada (Nemaska)	187,000
Karalpa, Austria (E. Coast Minerals)	134,000
Lithium One, Canada (James Bay)	130,000
Mibra, Brazil (CIF Mineracao)	100,000
Mount Marion, Australia (Reed)	93,500
Mount Cattlin, Australia (Galaxy)	90,000
Brazil, other	85,000
Bikita, Zimbabwe	56,700 ⁺
Lantiar, Finland (Keliber Oy)	14,000
Total Pegmatites	9,930,000

Salar de Uyuni, Bolivia (Comibol)	8,900,000
Salar de Atacama, Chile (SQM & Chemetall)	6,900,000+
China & Tibet, numerous	2,600,000+
Salar de Cauchari, Argentina (Lithium Americas)	1,520,000
Salar de Rincon, Argentina (Rincon Lithium)	1,400,000+
Salar de Olarez, Argentina (Orocobre)	1,200,000
Sal de Vida, Argentina (Lithium One)	1,020,000
Salar de Hombre Muerto, Argentina (FMC)	850,000 ⁺
Salar de Diablillos, Argentina (Rodinia)	530,000
Salar de Maricunga, Chile	200,000
Silver Peak, Nevada, USA (Chemetall)	40,000+
Total Continental Brines	25,160,000
Others	
Hectorite	
Kings Valley, U.S.A (Western Lithium)	2,000,000
La Ventana, Sonora, Mexico (Bacanora)	180,000
Geothermal Brines	
Brawley, California (Simbol)	1,000,000
Jadarite	
Jadar, Serbia (Rio Tinto)	950,000
Oilfield Brines	
Smackover Formation, U.S.A (Albermarle)	850,000
Total Others	4,980,000
Total Overall	40,070,000

Li – continental brines & others

Li – production

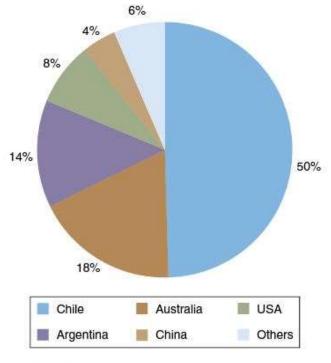
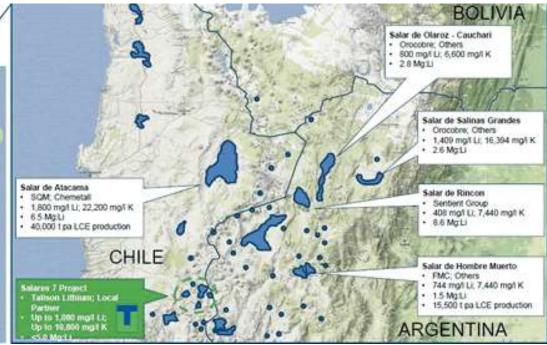



Figure 10.9 Lithium producing countries 2010 (based on tonnes Li content). (Data from British Geological Survey, 2012.)

Li – exporting countries

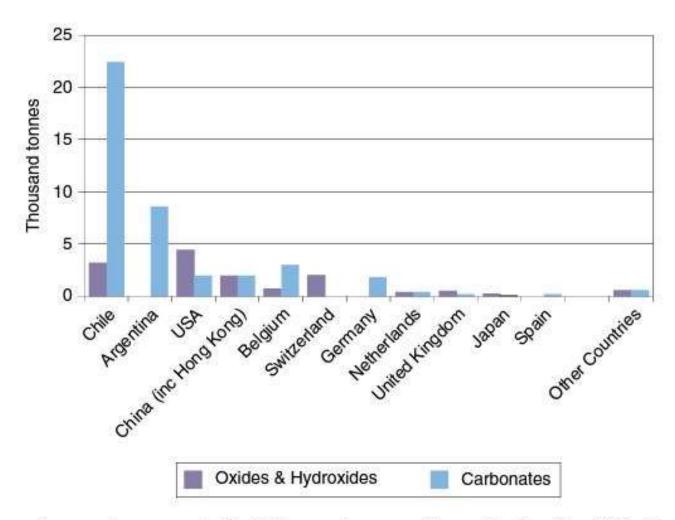


Figure 10.12 The main exporting countries for lithium carbonate, oxides and hydroxides, 2009. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)

Li – importing countries

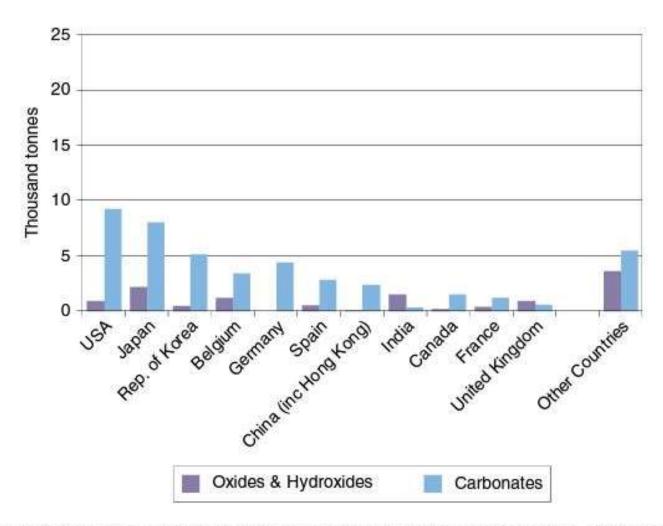


Figure 10.11 The main importing countries for lithium carbonate, oxides and hydroxides, 2009. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)

Li – production

Table 10.4 Lithium chemical production capacities in 2010. (Data from Solminihac, 2010.)

Company	Country	Source	Tonnes LCE
Continental			
Brines			
SQM	Chile	Atacama	40,000
Chemetall	Chile	Atacama	38,000
	Nevada	Silver Peak	
FMC	Argentina	Hombre Muerto	17,500
CITIC	China	Taijinaer L	5000
QLL	China	Taijinaer L	2000
Tibet	China	Zhabuye L	2500
Pegmatites			
ABA	China	Maerkang	2500
Jianxi	China	Ningdu	2000
Minfeng	China	Maerkang	2000
Ni & Co	China	Maerkang	5000
XLP	China	Kekeluhai / Talison	5500
Panasia	China	Talison	4000
Tianqi	China	Talison	9500
CBL	Brazil	Cachoeira	2300
Total			137,800

Figure 10.8 Worldwide annual production of lithium 1996–2010 (Li content). (Data from World Mineral Statistics Database, British Geological Survey.)

Li – environmental issues

- In conventional brine-based projects, the predominant waste product is NaCl.
- Any **pegmatite** development will require similar permits as with any new mining operation and when onward processing from concentrate to carbonate is proposed the operation of a **kiln** will have an impact on air quality.
- **Used batteries** containing Li in cell phones and computers should be collected along with other electronic waste.
- In **glasses**, **glass ceramics** and **ceramics**, the Li is entrained in the products from which it cannot be leached after disposal.
- Li products are used in the synthesis of many **drugs** (manic depression), as a **sanitizer** in food-manufacturing facilities, laundries, swimming pools and hospitals. It presents few environmental problems in these applications.

Li - recycling

Review

Recycling lithium-ion batteries from electric vehicles

https://doi.org/10.1038/s41586-019-1682-5

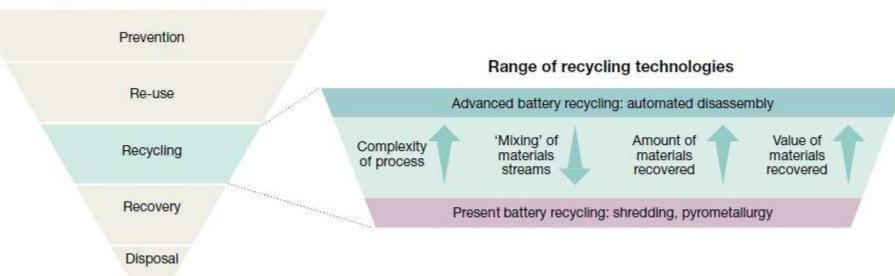
Received: 14 January 2019

Accepted: 23 July 2019

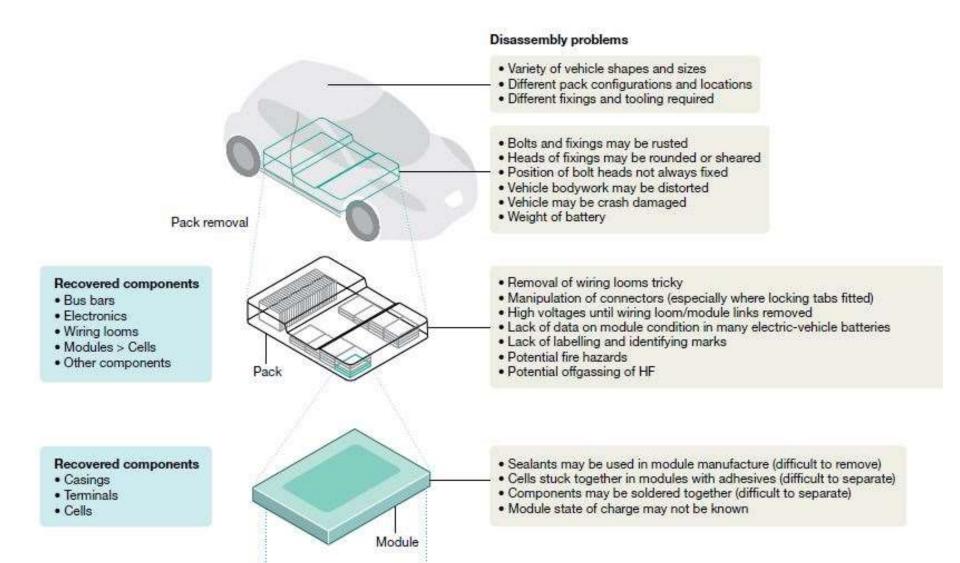
Published online: 6 November 2019

There are amendments to this paper

Gavin Harper^{12,3*}, Roberto Sommerville^{1,2,4}, Emma Kendrick^{1,2,3}, Laura Driscoll^{1,2,5}, Peter Slater^{1,2,5}, Rustam Stolkin^{1,2,3,6}, Allan Walton^{1,2,3}, Paul Christensen^{1,7}, Oliver Heidrich^{1,7,8}, Simon Lambert^{1,7}, Andrew Abbott^{1,9}, Karl Ryder^{1,9}, Linda Gaines^{1,0} & Paul Anderson^{1,2,5*}


Rapid growth in the market for electric vehicles is imperative, to meet global targets for reducing greenhouse gas emissions, to improve air quality in urban centres and to meet the needs of consumers, with whom electric vehicles are increasingly popular. However, growing numbers of electric vehicles present a serious waste-management challenge for recyclers at end-of-life. Nevertheless, spent batteries may also present an opportunity as manufacturers require access to strategic elements and critical materials for key components in electric-vehicle manufacture: recycled lithium-ion batteries from electric vehicles could provide a valuable secondary source of materials. Here we outline and evaluate the current range of approaches to electric-vehicle lithium-ion battery recycling and re-use, and highlight areas for future progress.

Li batteries – cathode type

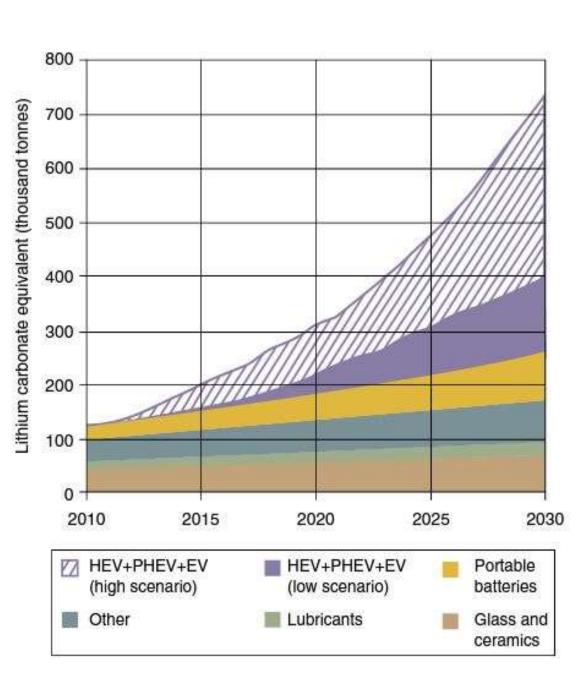

LIB cathode chemistries		Ideal	**		(F)	
Cathode types	LCO	LFP	LMO	NCA	NMC	
Chemical formula	LiCoO ₂	LiFePO ₄	LiMn ₂ O ₄	Li(Ni,Co,Al)O ₂	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂ LiNi _{0.5} Mn _{0.3} Co _{0.2} O ₂ LiNi _{0.6} Mn _{0.2} Co _{0.2} O ₂ LiNi _{0.8} Mn _{0.1} Co _{0.1} O ₂	(NMC111) (NMC532) (NMC622) (NMC811)
Structure	Layered	Olivine	Spinel	Layered	Layered	
Year introduced	1991	1996	1996	1999	2008	
Safety	dia.	0.000	1111			
Energy density	6238				0.000	
Power density		28.55(4)	****			
Calendar lifespan			***			
Cycle lifespan						
Performance	VALUE II					
Cost	-165	18.00	***			
Market share	Obsolete	Electric bikes, buses and large vehicles	Small	Steady	Growing (from NMC 11 NMC 811 to no-cobalt	11 > NMC 532 > NMC 622 > chemistries)

Li – recycling

Waste management hierarchy

Li – recycling: disassembly problems

Li – recycling


Comparison of d	lifferent LiB red	cycling meth	ods Best		16.00000	10 A.B	4.0	Worst	
J	Technology readiness	Complexity	Quality of recovered material	Quantity of recovered material	Waste generation	Energy usage	Capital cost	Production cost	
Pyrometallurgy		****	B.:	14.717	8.8	20.		0 0 0 0 0	
Hydrometallurgy				100000					
Direct recycling	**	200	(4)40	****	(ABBHEAN)		1000	300	
To the state of th	Presorting of batteries required	Cathode morphology preserved	Material suitable for direct re-use	Cobalt recovered	Nickel recovered	Copper recovered	Manganese recovered	Aluminium recovered	Lithium recovered
Pyrometallurgy	****	No	No			****	194	No	
Hydrometallurgy	0:0:0:0:0	No	No	N = 6:0 0	****		(1000)		16.00
Direct recycling			Limite .	****		****			

Li – outlook

Estimating future Li demand is complicated by the extreme difficulty in estimating future battery demand for **hybrid vehicles** (HEVs), **plug-in hybrids** (PHEVs) or **pure electric** (EVs).

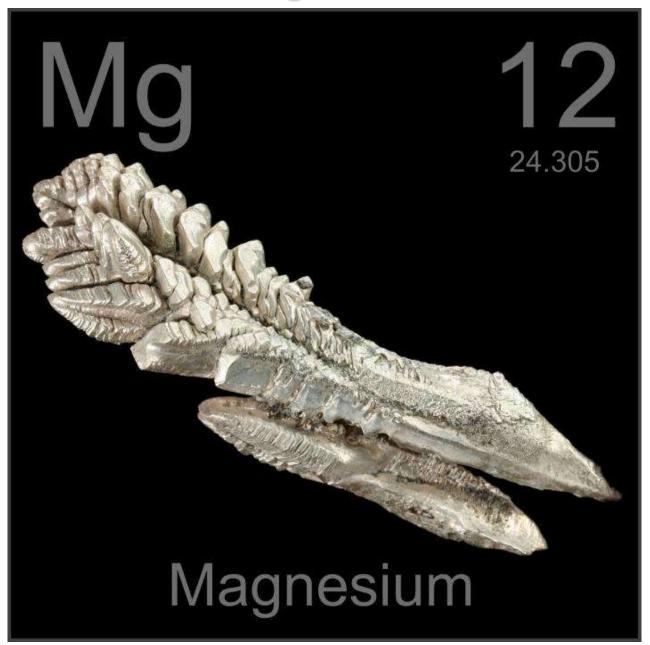

The requirement for the production of **fusion energy** is not included in any demand projections (any generating system will almost certainly employ a deuterium-tritium (DT) reaction, with the tritium obtained from Lithium's ⁶Li isotope.

Figure 10.13 Forecast of the demand for lithium to 2030, with two different scenarios relating to the uptake of electric vehicles. (Courtesy of Rockwood Lithium.)

Magnesium

Mg – definitions and characteristics

On account of its **high strength** (150 – 400 MPa tensile strength) and **light weight**, Mg is the most commonly used **structural metal** after steel and Al.

About half of the Mg used today is in the production of alloys, most commonly with Al, with important applications in the food industry and in the aerospace and military sector. Mg, in its structural applications, is typically used as an alloy casting or as a wrought alloy. Typical mechanical properties: tensile strength 150 – 400 MPa, where cast alloys have lower tensile strength (e.g. portable electronic devices).

Mg metal is also unique in that it can be used as the **reducing agent** in the production of several special metals, such as **Be**, **Zr**, **U** and **Ti**.

Mg is the only structural metal that can be obtained from both the **lithosphere** and **hydrosphere**: Mg can be produced from **oxide resources** or from **chloride raw materials** originating from saline water.

Property	Value	Units
Symbol	Mg	
Atomic number	12	
Atomic weight	24.31	
Density solid Mg at 25°C	1738	kg/m³
Density liquid Mg at 700°C	1584	kg/m³
Melting point	650	°C
Boiling point	1090	°C
Hardness (Mohs scale)	2.5	
Specific heat capacity at 25°C	1.05	J/(g °C)
Latent heat of fusion	368	kJ/kg
Latent heat of vaporisation	5251 ± 251	kJ/kg
Thermal conductivity	156	W/(m °C)
Electrical resistivity at 25°C	44.8	nΩ m
Young's modulus (at 20°C, 99.8% pure Mg)	44.7	GPa

Mg makes **strongly ionic compounds** with common halide, sulfate or phosphate anions as well as making weakly ionic compounds of Mg oxide and nitride.

Mg – abundance in the Earth and mineralogy

- Mg is the fifth most abundant element in the hydrosphere and the most abundant structural metal ion in the ocean. In contrast, Al is only sparingly soluble in the oceans, and is extracted from lithospheric resources only (bauxite).
- In the **upper crust** Mg is the **eighth** most abundant element (**2.5% MgO** wt.). It is an important constituent of major rock-forming minerals, such as pyroxenes and olivine.
- The solid mineral phases from which Mg is extracted from the **lithosphere** are:
 - Dolomite CaMg(CO₃)₂
 - Magnesite MgCO₃
 - Periclase MgO
 - Hydromagnesite 3MgCO₃·Mg(OH)₂·3H₂O
 - Brucite Mg(OH)₂
 - ...and various silicates of Mg, such as olivine, serpentine and biotite.
- The solid mineral phases of hydrospheric origin, found in evaporite deposits, are:
 - Epsomite MgSO₄·7H₂O
 - Kieserite MgSO₄⋅H₂O
 - Langbeinite K₂Mg₂(SO₄)₃
 - Kainite MgSO₄·KCl·3H₂O
 - Carnallite KMgCl₃·6H₂O
 - Bischofite MgCl₂·6H₂O

Mg – major deposit classes

- Of the potential lithospheric sources **dolomite** is the most commonly used. Alternative sources are **magnesite** and **Mg silicates**.
- In saline lake water or brines Mg is present at lower concentrations, typically < 0.7% wt., while in the sea the Mg content is 0.13% wt. Two major undesirable components, water and NaCl, must be removed from these sources before attempting to extract Mg.

Dolomite quarry (Pennsylvania)

Mg – extraction methods and processing

There are two main routes for making Mg metal:

1. The electrolytic method – Mg chloride is the feed material to this process. The Mg chloride is derived from Mg oxide sources (by chlorination of MgO or magnesite) or from chloride sources.

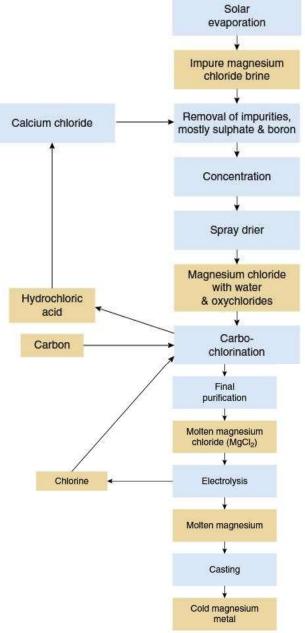
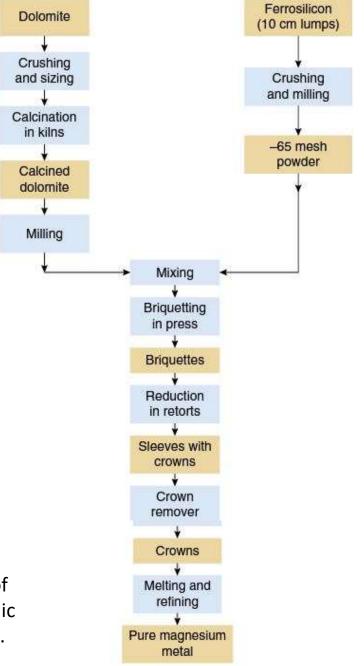



Figure 11.1 Schematic flowsheet for U.S. Magnesium's electrolytic process in Utah. (Modified from Holywell, 2005.)

Mg – extraction methods and processing

2. Metallothermic reduction – the dolomite feed material is calcined and then reduced, either by Si or one of its alloys, or by other metals such as Al.

Schematic flowsheet for the production of Mg by the **Pidgeon process** (metallothermic reduction using ferrosilicon as reductant).

Figure 11.2 Schematic flowsheet for the production of magnesium by the Pidgeon process.

Mg – specifications and uses

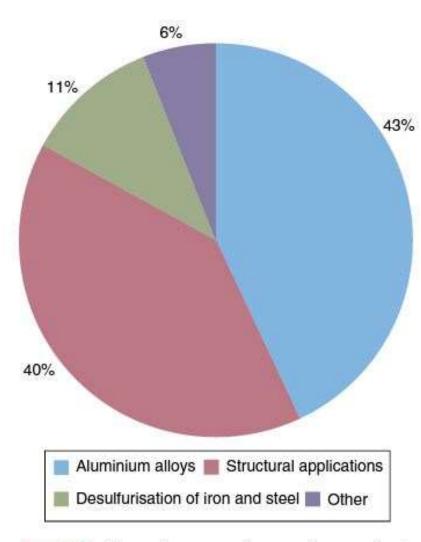
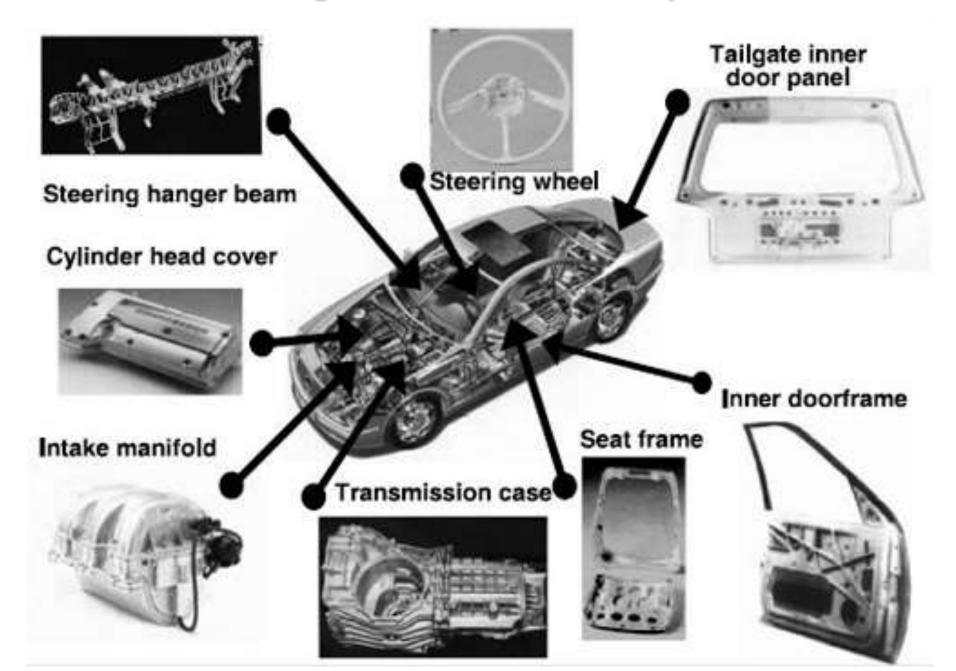


Figure 11.3 The main sectors of magnesium use in the USA in 2011. (Data from United States Geological Survey, 2012.)


For **structural applications**, Mg is alloyed with other metals to give suitable properties (A=**AI**, M=**Mn**, Z=**Zn**, etc.). Typical casting alloys, such as AM50, AM60 and AZ91 contain 5 to 9% AI, 0.5 to 0.7 Zn, and 0.2 to 0.5 Mn. In terms of volume the largest use of Mg has for many years been as an **additive to impart stiffness to AI alloys** (e.g. AI foil).

Automotive and 3-C (computers – cameras – communications) industries. E.g. VW Beetle Mg transmission and engine block, aircraft engine bearers (WW II).

Military applications: plates in military armour, signal system electronics, radio machinery. Mg powder → MRE (Mg ready to eat) food warming.

Mg powder for the **reduction of S content** of molten Fe (high electronegativity of Mg). Preferred **reducing agent** for Ti, Zr, U and Be from the respective chlorides or fluorides.

Mg – automotive industry

Mg – recycling

• **Recycling**: Mg is **easily recycled** in many of its primary forms, and is also capable of being recycled from secondary sources when it appears as an alloy with Al. production of primary Mg using an electrolytic process can consume up to 35 kWh/kg, whereas re-melting Mg metal scrap uses **less than 10%** of the energy used to make primary metal. The recycling of Al cans (Mg≈ 2% wt.) has become a highly technical and controlled process.

Table 11.2 Magnesium scrap classification. (After Fechner et al., 2009.)

Type of Scrap	Description			
Class 1: Sorted clean returns	Start up shots, gates, runners, sprues, biscuits, trimmings, rejected parts			
Class 2: Sorted clean returns with inserts	Rejected castings containing metal inserts			
Class 3: Sorted oily painted returns	Post-consumer parts or parts rejected after painting/coating operations, may contain non metallic inserts			
Class 4: Sorted clean chips	Generated during dry machining of magnesium products			
Class 5: Sorted oily/wet chips	Generated during machining of magnesium products using oil or oil/water emulsions			
Class 6: Dross	Salt free furnace cleaning products, mostly oxides from the melt surface, also residues from the bottom of the crucible			
Class 7: Sludge	Salt containing cleaning residues mostly from the bottom of the crucible			
Class 8: Mixed and off-grade returns	Mixed magnesium—including post consumer scrap—off grade magnesium and items not included above			

Mg – substitution

- Mg alloys are used in many applications including the aerospace, automotive and the 3-C industries. The properties of Mg, such as its strength-to-weight ratio, its low fabrication costs, electromagnetic shielding, thermal and electrical conductivity and damping characteristics \rightarrow difficult to find a direct substitute for Mg.
- Potential problems when Mg components are being joined by choosing fasteners with similar thermal expansion coefficients, such as Al and Mg. Steel fasteners → galvanic corrosion and creep issues.

Mg – production

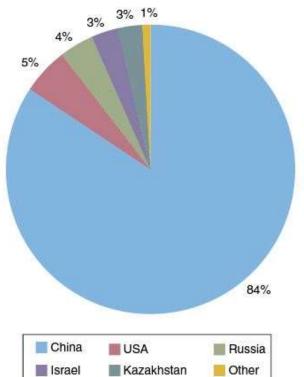


Figure 11.5 World production of magnesium metal by country in 2010. (Data from British Geological Survey, 2012.)

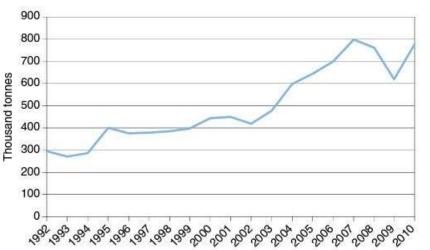
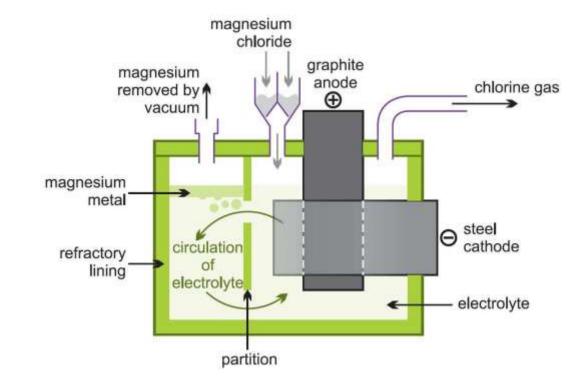



Figure 11.4 World production of magnesium metal, 1992–2010. (Data from British Geological Survey World Mineral Statistics database.)

Mg – prices

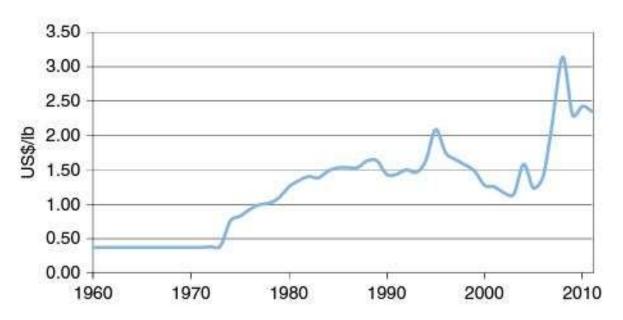


Figure 11.8 Year-end prices of magnesium in USA, 1960 – 2011. (Prices are U.S. spot Western price for 99.8%-pure magnesium ingot, compiled from United States Geological Survey (1999) for 1960–1998, and from United States Geological Survey Annual Mineral Commodity Summaries for 1999 to 2011.)

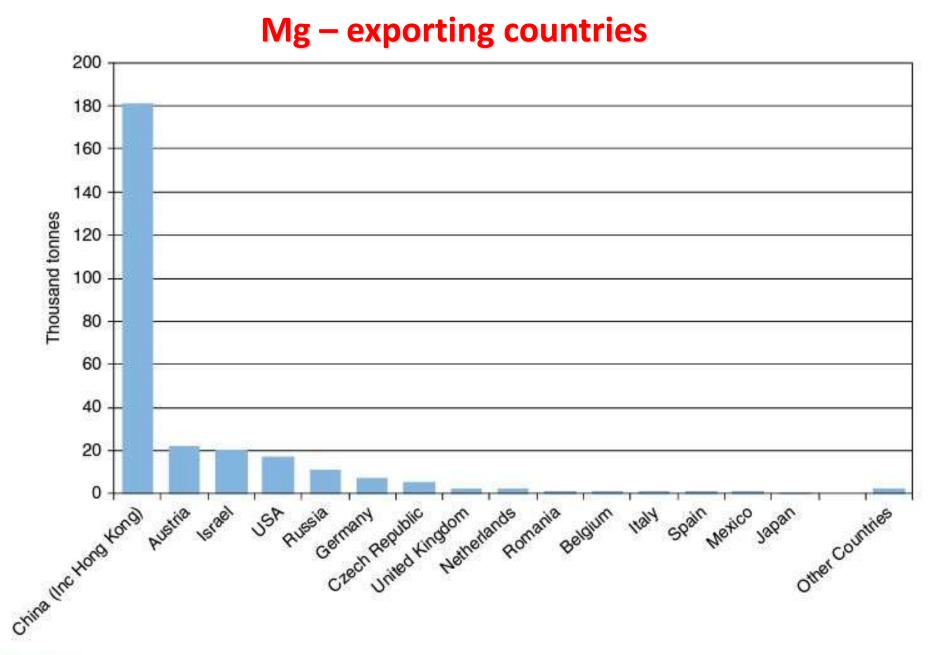


Figure 11.7 The top exporting countries of magnesium metal in 2009. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)

Mg – importing countries

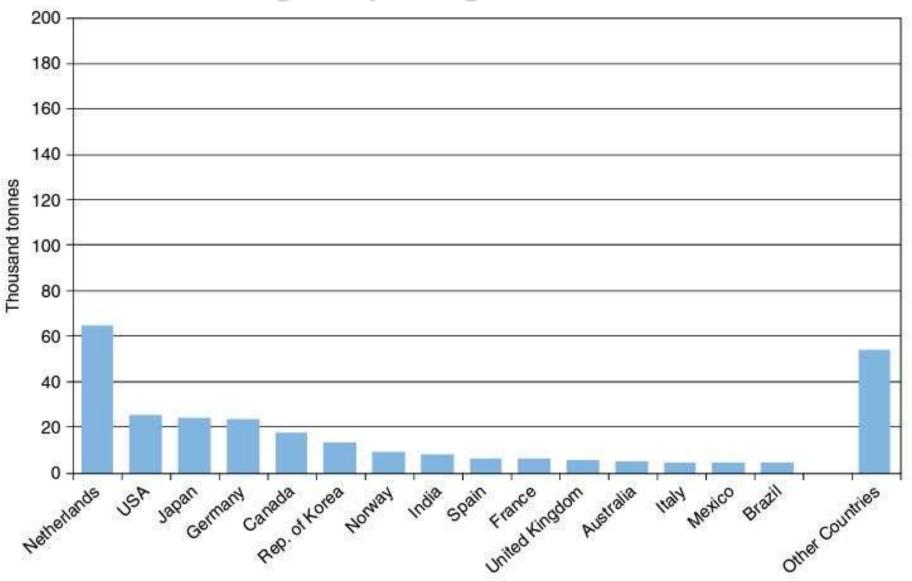


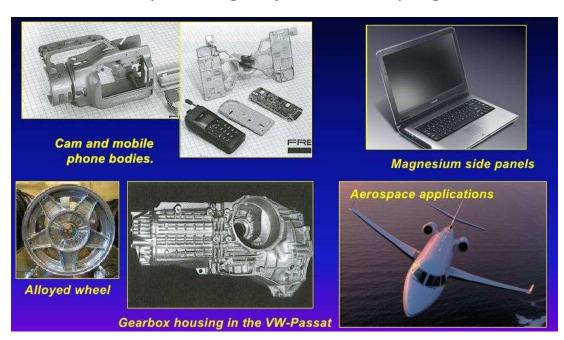
Figure 11.6 The top importing countries of magnesium metal in 2009. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)

Mg – environmental issues

- As the **lightest available structural metal**, the use of Mg provides the benefit of **reducing the weight** of automobiles and thereby **reduces fuel consumption**.
- Benefits from the use of Mg in reducing CO₂ emissions.
- The climate control aspects of GHG ("Greenhouse Gases") release to the atmosphere from metal production has already prompted producers to use sulfur dioxide and other reagents instead of **sulfur hexafluoride SF**₆ to provide the cover gas used in the production of Mg alloys.
- Raw materials used in making Mg (except chrysotile-bearing tailings) are non toxic.
- All plants have Mg in the center of the chlorophyll molecule, essential for the photosynthesis → Mg is a common additive to fertilizers.
- Mg is also important to all living cells where it plays a major role in the functioning of numerous enzymes.

Mg – life-cycle inventory

Table 11.3 Life-cycle inventory for magnesium production. (After Albright and Haagensen, 1997.)


Item	Pure Mg	Mg Alloy AZ91
Total energy (MJ/kg metal)	144	151
Global warming effect (kg CO ₂ eq/kg)	19	19
Acidification (kg/kg metal)	0.02	0.025
Winter smog (kg/kg metal)	0.015	0.017
Solid waste (kg/kg metal)	0.5	0.5
Dioxins to air (µg/kg metal)	0.24	0.21
Chlorinated hydrocarbon to air (mg/kg metal)	13.7	12.4

Mg – outlook


- There is continuing international research and development into reducing the GHG emissions associated with the production of Mg. In China, while the old Pidgeon process produced emissions of about 36 kg CO₂ per Kg of Mg, this is being reduced to abut 20 kg CO₂ per kg of Mg by better energy management. In contrast, the electrolytic Mg plant in Canada, which was operated with hydroelectric power and used magnesite as the starting material, produced 6.9 kg CO₂ per kg of Mg.
- Alternative raw materials, such as sulfate minerals are currently being investigated.

• Governments and industry worldwide are currently funding major research programmes into

developing **new uses of Mg**.

PGM – Platinum group metals

PGM – Platinum group metals

	Platinum			
	₄₄ Ru	₄₅ Rh	₄₆ Pd	
	hcp mp 2607 K	fcc mp 2237 K	fcc mp 1828 K	
75.RG	₇₆ Os	₇₇ lr	₇₈ Pt	₇₉ Au
hep mp 3459 K	hcp mp 3306 K	fcc mp 2739 K	fcc mp 2041 K	foc mp 1337 K

A portion of the periodic table containing the highly siderophile elements, which includes the platinum-group elements, rhenium, and gold. Elements are depicted with their atomic number, crystal structure, and melting point. Courtesy of H. Palme

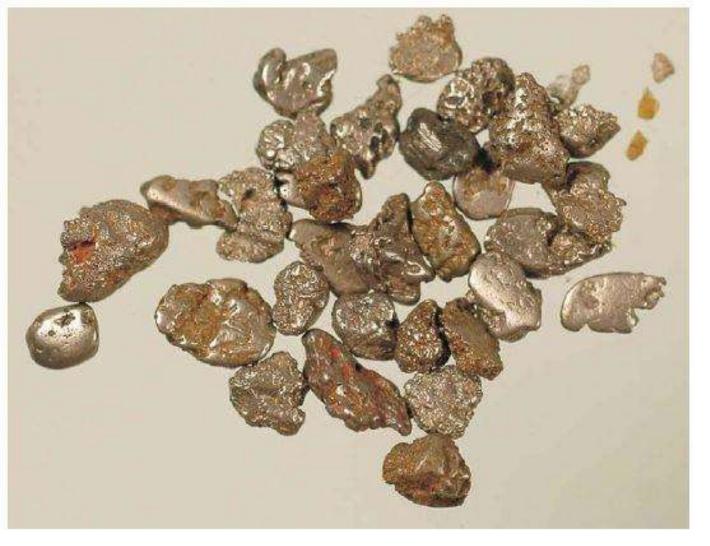

PGM – definitions and characteristics

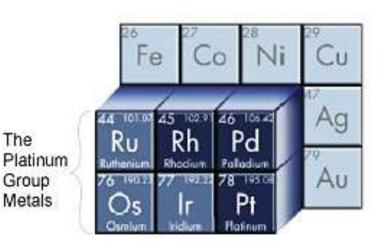
Table 12.1 Selected properties of the six platinum-group metals (PGM) compared with gold (Au).

Property			Value				Units	
Name	Platinum	Palladium	Rhodium	Iridium	Ruthenium	Osmium	Gold	
Symbol	Pt	Pd	Rh	lr	Ru	Os	Au	
Atomic number	78	46	45	77	44	76	79	
Atomic weight	195.08	106.42	102.91	192.22	101.07	190.23	196.97	
Density at 25 °C	21450	11995	12420	22550	12360	22580	19281	kg/m^3
Melting point	1769	1554	1960	2443	2310	3050	1064	°C
Electrical resistivity at 25 °C	106	105	45	51	71	92	22	$n\Omega$ m
Hardness (Mohs scale)	4-4.5	4.75	5.5	6.5	6.5	7	2.5-3	

- The **PGM** (**Platinum-group metals**) are rare precious metals, although unlike Au, they are used in a diverse range of **industrial applications** as well as in **jewelry**.
- Today, Pt and Pd are the most commercially important of the PGM, with their largest application being in the automotive industry (catalysts).
- Rh, which is also used in autocatalysts, is the third most important PGM. Ru and Ir are used in smaller
 amounts although they are becoming increasingly important in a variety of new technologies such as
 data storage, medical implants and renewable energy.
- The name platinum is derived from the Spanish "*platina*", meaning little silver. Archaeological evidence indicates that there is a very long history in of Pt working in South America.
- **Pd** was discovered in 1803 by the English chemist William Hyde Wollaston. It was named after the asteroid *Pallas*, identified in 1801, named after the Greek goddess of wisdom.

"Platina"

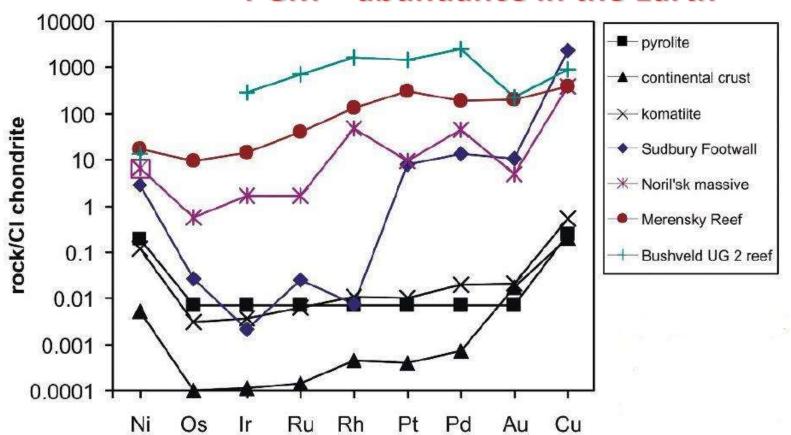
Samples of "platina" recovered from the placer deposits in the Choco district of Colombia. Similar material was described by William Lewis to the Royal Society of London in 1754 and served as the feedstock for the first purification of Pt, Pd, Ir, and Os by Smithson Tennant and William Wollaston. The field of view is 5 cm wide (each nugget is about 3–5 mm in length). Sample is from the mineralogy collection of the Museum National d'Histoire Naturelle (#4.283; Picture D. Brabant, MNHN). Photo Courtesy of Jean-Pierre Lorand


Palladium

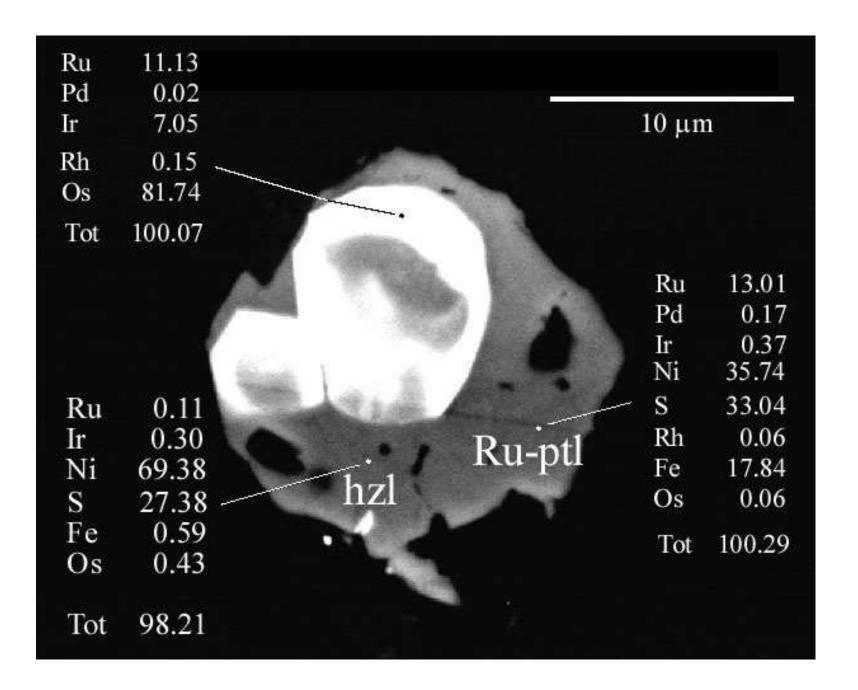
Front and back faces of the Wollaston Medal presented to Sir William Logan (first director of the Geological Survey of Canada) in 1856. The front of the medal depicts William Wollaston, the benefactor of the award. The medal is cast in palladium, which Wollaston discovered in 1805. The Wollaston Medal is the highest award bestowed by the Geological Society of London. NATURAL RESOURCES CANADA IMAGE NRCAN-4374, USED WITH PERMISSION OF NATURAL RESOURCES CANADA. HER MAJESTY THE QUEEN IN RIGHT OF CANADA

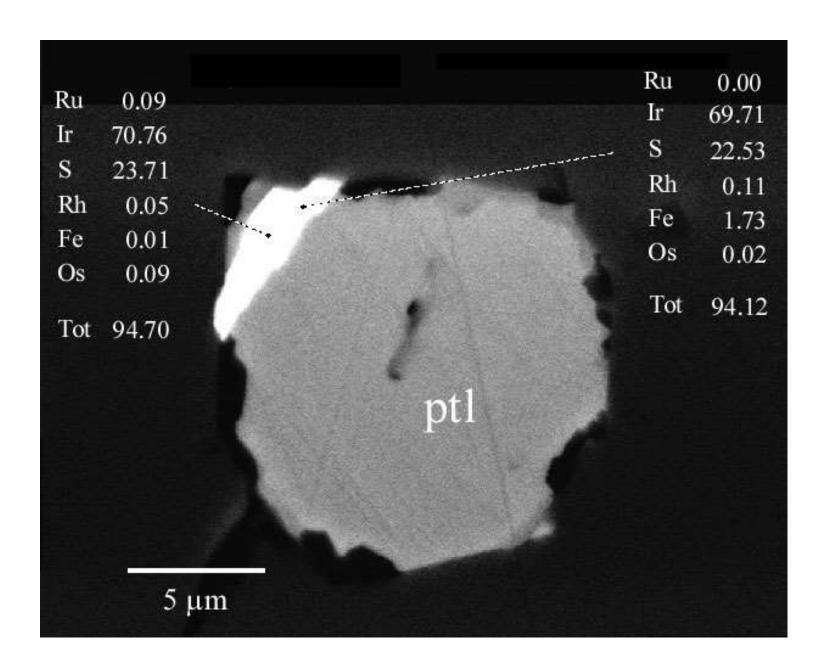
PGM – definitions and characteristics

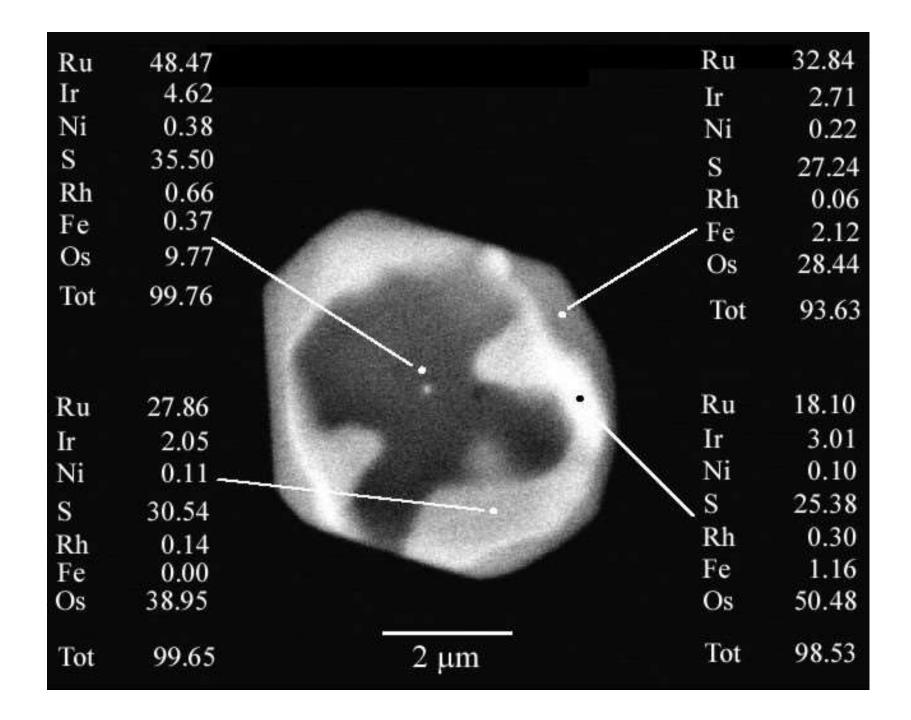
- The PGM are transition metals, which together with Fe, Co and Ni are found in Groups 8, 9 and 10 of the Periodic Table.
- Os, Ir and Ru are sometimes referred to as the IPGM (Ir sub-group), and Pt, Pd and Rh as the PPGM (Pd sub-group), on account of their similar geochemical behavior under magmatic conditions.
- All six PGM are chemically similar with strong siderophile and chalcophile tendencies, preferentially bonding with Fe, Ni, Cu and S rather than with O. The distribution of PGM in the Earth is thus controlled by the presence of metallic phases, being strongly concentrated in the Earth's core after planetary accretion.
- They do not dissolve in strong acids, but they do react with O at high T to form volatile oxides. The
 physical properties of the PGM vary considerably, but all display properties typical of metals, including
 the ability to form alloys, to conduct heat and electricity, and some degree of malleability and
 ductility.
- Pt, Ir and Os are the densest known metals. Pt and Pd are highly resistant to heat and to corrosion, and are soft and ductile. Rh and Ir are more difficult to work, Ru and Os are hard, brittle and almost unworkable.
- All PGM, commonly alloyed with one another or with other metals, can act as catalysts in a wide range of industrial applications.

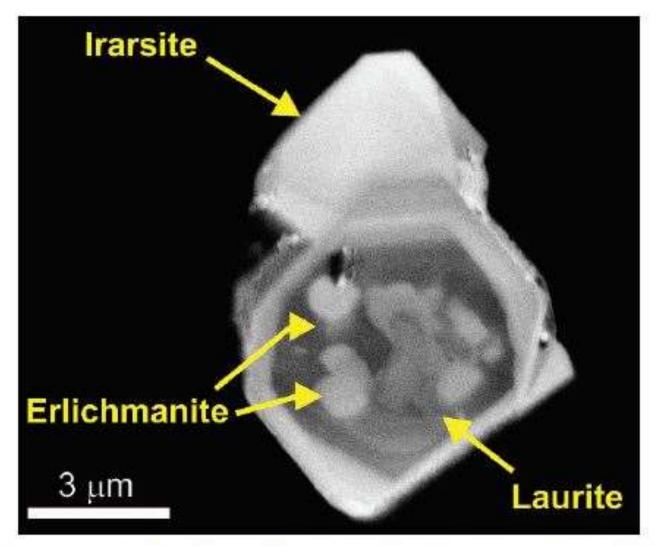


PGM – abundance in the Earth and mineralogy

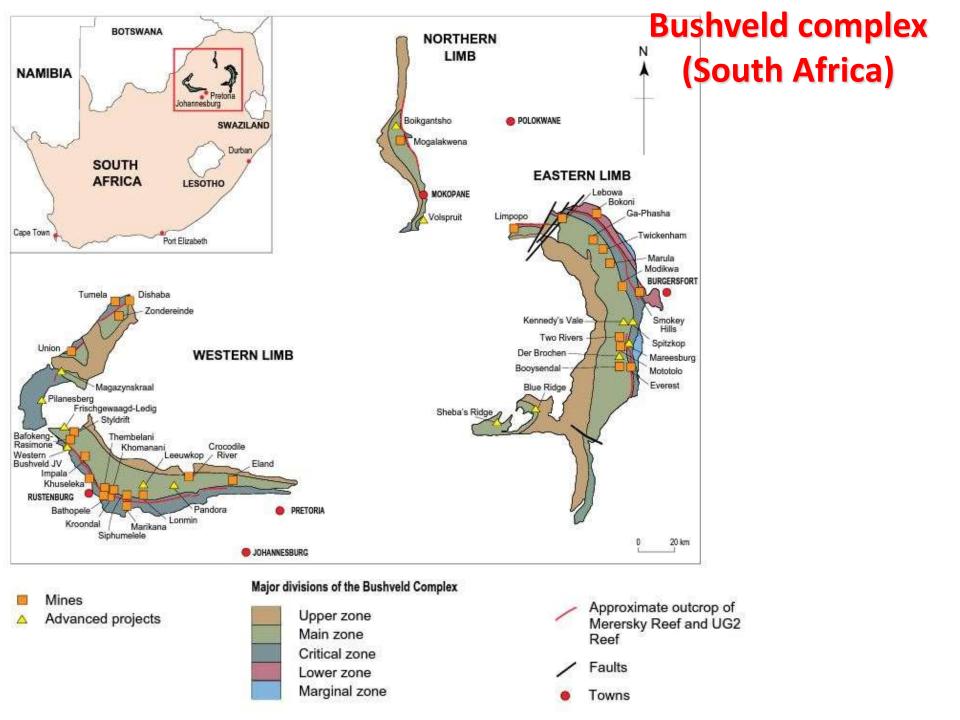

Group	Name	Formula	Group	Name	Formula
Alloys	Isoferroplatinum	Pt ₃ Fe	Arsenides	Sperrylite	PtAs ₂
	Osmiridium	Oslr		Stillwaterite	Pd ₈ As ₃
	Rustenburgite	(Pt,Pd) ₃ Sn	Antimonides	Genkinite	(Pt,Pd,Rh),Sb3
	Tulameenite	Pt ₂ FeCu		Isomertieite	Pd ₁₁ As ₂ Sb ₂
Sulfides	Braggite	(Pt,Pd)S		Stibiopalladinite	Pd _s Sb ₂
	Cooperite	PtS		Geversite	Pt(Sb,Bi),
	Hollingworthite	RhAsS	Tellurides	Kotulskite	PdTe
	Laurite	(Ru,Os)S ₂		Merenskyite	(Pd,Pt)(Te,Bi) ₂
Bismuthides	Froodite	PdBL ₂		Moncheite	(Pt,Pd)(Te,Bi),

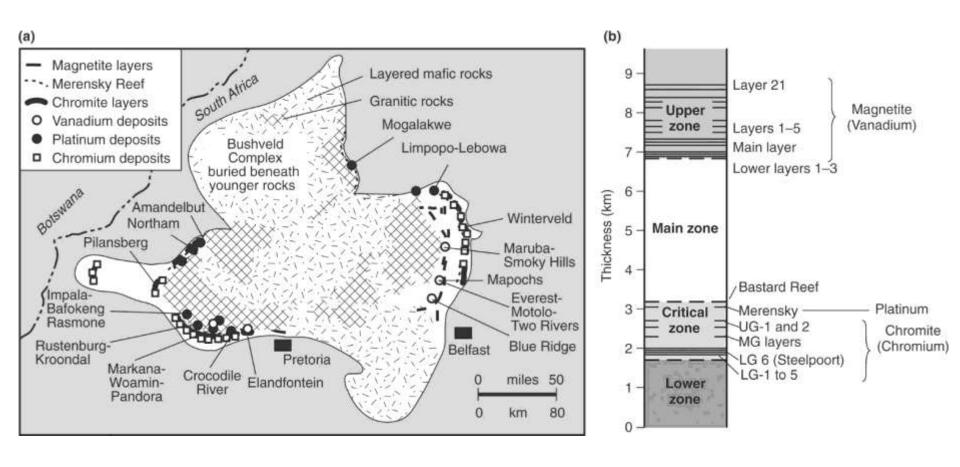

- The PGM are very rare in the Earth's crust, with **Pt** and **Pd** present at similar concentrations of approximately **5 ppb**. **Rh**, **Ir** and **Ru** are even scarcer at about **1 ppb**.
- Relative to other rock types the PGM are enriched in ultramafic lithologies, such as peridotite, in which
 Pt and Pd concentrations are commonly 10 20 ppb.
- In nature, the PGM are chiefly held either in base-sulfide minerals, such as pyrrhotite, chalcopyrite
 and pentlandite, or in PGM-bearing accessory minerals.
- The PGM rarely occur as native metal but commonly form a wide variety of alloys with one another or with other metals, notably with **Fe**, and less commonly with Sn, Cu, Pb, Hg and Ag. In other platinum-group minerals the PGM are bonded to **S**, **As**, **Sb**, **Te**, **Bi** and **Se**.


PGM – abundance in the Earth



Compositions of major Earth reservoirs and the principal ore deposits of PGE (recalculated to 100% sulfide) shown as the concentrations of chalcophile metals normalized to those in CI chondrites. Core formation has stripped most of the PGE from the mantle (pyrolite). The formation of continental crust from the mantle has led to even greater impoverishment; it is primarily by high-degree partial melting of mantle rock that PGE-rich magnesian magmas like komatiite can form. The Merensky Reef approaches the maximum possible PGE enrichment in sulfide melts; the sulfide in the UG-2 has probably been enriched by secondary processes. DATA FROM NALDRETT (2004) AND SOURCES THEREIN




Backscattered-electron image depicting an aggregate of platinum-group minerals included in a chromite grain from the Mayarí-Baracoa ophiolite belt of eastern Cuba. The inclusion consists of distinct grains of irarsite (IrAsS) and laurite (RuS₂). The laurite contains a core of Ru-rich erlichmanite (OsS₂) surrounded by a layer of Os-poor laurite grading to Os-rich laurite at the rim. Used with Permission FROM Springer Science+Business Media: Gervilla et al. (2005; Fig. 4g)

PGM – major deposit classes

- Enrichment of PGM occurs in deposits of several types developed in a **limited range of geological settings**, commonly associated with **Ni** and **Cu**.
- Magmatic PGM deposits, found in mafic and ultramafic igneous rocks, are of two principal types:
 - 1) <u>PGM-dominant deposits</u> which are associated with **sparse**, **dispersed sulfide** mineralization. Four classes of PGM-dominant deposits are recognized:
 - Merensky Reef type;
 - Chromitite reef type;
 - Contact type;
 - Dunite pipes
 - 2) Ni-Cu sulfide deposits in which the PGM occur in association with sulfide-rich ores. In simple terms PGM-sulfide deposits are derived from magmatic processes of crystallization, differentiation and concentration. The magma becomes saturated with S and an immiscible sulfide liquid separates from the magma as disseminated droplets. On account of their chalcophile behavior the PGM are concentrated strongly in the sulfide liquid and are, therefore, scavenged from the silicate liquid.

Bushveld complex (South Africa)


Bushveld complex (South Africa)

Bushveld chromite deposits, eastern Transvaal, South Africa. (a) Chromitite layers (black) at Dwars River. (b) Winterveld chromitite mine showing cumulate layers on hillside dipping downward to left. The mine enters at the base of the hill to the right.

Bushveld complex (South Africa) - potholes

Schematic sketch of a cross section of a pothole filled by Merensky Reef and overlying lithologies in the western Bushveld showing "undercutting" MR, including bounding chromitite seams, extending from the pothole walls into the surrounding layers. MODIFIED FROM LATYPOV ET AL. (2017).

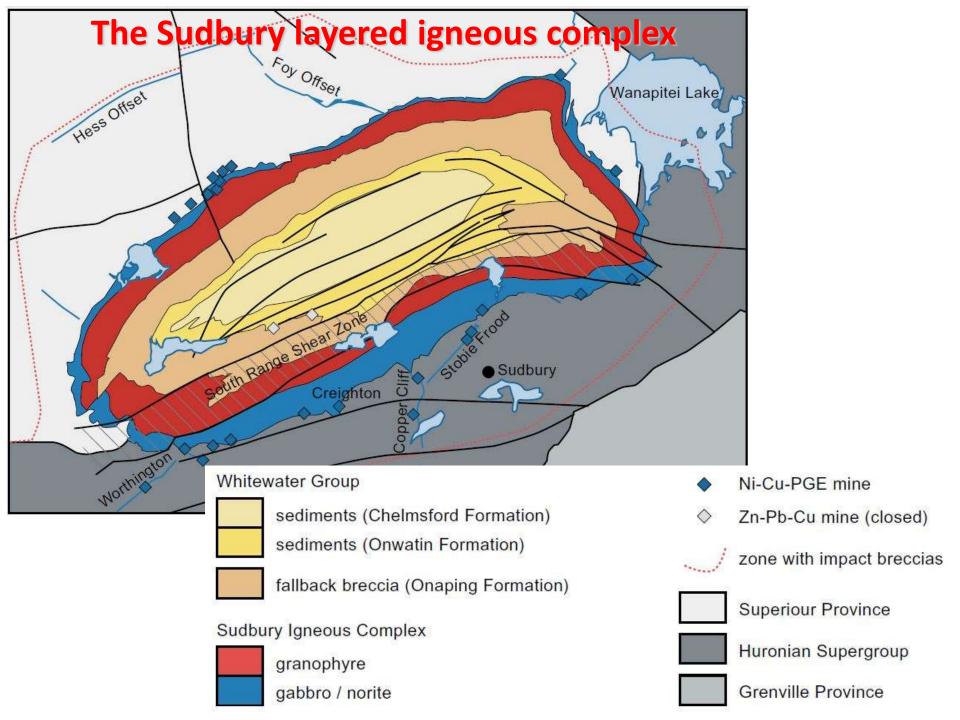
Paleoproterozoic maficultramafic intrusions of Fennoscandia

500 km Pechenga Kola Tsuomasvarri chatundra-Monchatundra Pyrshin Panski&Fedorov Imandra D Paumatunturi Norrbotten Zhemchutsnyl, White Sea Koilmaa Lainjaur Kärppäsuo Näränkavasa Kraften arc Lappyattnet / Römyrbergel Karelia Burakovsky Kolvusa arenneva Kauhajärvi Porrashiem 60°N-±∆* Hyvinkää Degslagen microcontinent >1 Mt Cr layered intrusion >100 Kt Ni, >1 Moz PGE (Ni-Cu, PGE, Cr-V, barren) >10 Kt Ni,Cr,V, > 100K oz PGE ▲ magma conduit O Small deposits, (Ni, PGE,Cr/ (Ni-Cu. PGE, Cr-V. barren)

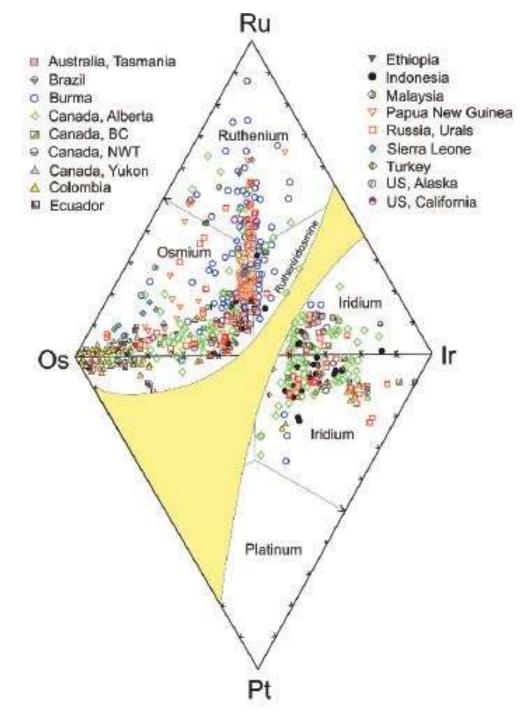
Precambrian mafic-ultramafic layered intrusions and magmatic feeder conduits of Fennoscandia.

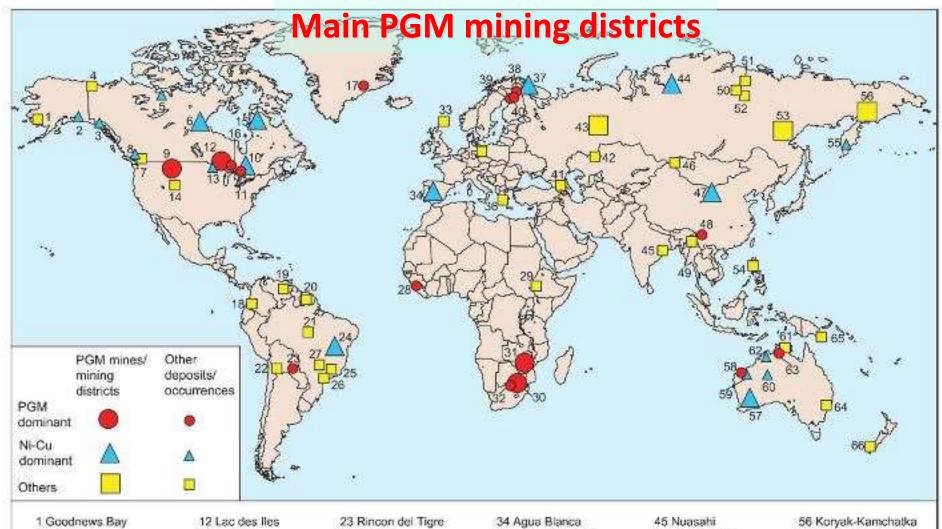
Highlighted dashed lines represent craton margins and suture zones. Abbreviation: PGE = platinum-group element(s). Modified AFTER MAIER AND GROVES (2011).

Paleoproterozoic mafic-ultramafic intrusions of Fennoscandia


MINERALISED FENNOSCANDIAN MAFIC-ULTRAMAFIC INTRUSIONS

Name	Age (Ga)	Commodity	Grade	Reserves ¹ Resources ²	Tectonic Setting	Deposit Style	Ref
Kemi	2.44	Cr	26% Cr ₂ O _{3,} Cr/Fe 1.6-1.7	50.1 Mt ¹	Rift - CLI	contact massive	1
Portimo	2.44	PGE (Ni–Cu)	1 ppm Pt+Pd	265 Mt ²	Rift - CLI	contact dissemi- nated + reef	2
Koillismaa	2.44	V, PGE (Ni-Cu)	1 ppm Pt+Pd	23.6 Mt ²	Rift - CLI	contact dissemi- nated + reef	2
			0.91% V	99 Mt ¹	Rift - CLI	reef	
Penikat	2.44	PGE (Ni–Cu)	4.6 ppm Pd, 3.2 ppm Pt	~15 Mt ²	Rift - CLI	reef	2
Monchepluton	2.5	Ni-Cu-PGE	na	na	Rift - CLI	contact dissemi- nated+ reef + veins	3
Kevitsa	2.058	Ni-Cu (PGE)	0.3% Ni, 0.41% Cu, 0.47 ppm PGE	240 Mt ²	Rift -conduit	conduit disseminated	5
Sakatti	~2.05	Ni–Cu (PGE)	na	na	Rift -conduit	conduit massive + disseminated	6
Pechenga	1.98	Ni-Cu (PGE)	1.18% Ni, 0.63% Cu, 0.3 ppm PGE	339 Mt ²	Rift -conduit	conduit massive	4
Kotalahti	1.85	Ni–Cu	0.66% Ni, 0.25% Cu	13.3 Mt	Arc - LI	contact massive	7
Hitura	1.85	Ni–Cu	0.61% Ni, 0.21% Cu	19.3 Mt	Arc - conduit	conduit massive	7


Notes: PGE = platinum-group elements, (C)LI = (continental) layered intrusion.


Ni-Cu dominant deposits

- Magmatic Ni-Cu deposits are the most important source of Ni worldwide. Cu, Co and the PGM, mainly Pd, are important by-products. Au, Ag, Cr, S, Se, Te and Pb are also recovered from some deposits.
- The dominant ore minerals are sulfides, pyrrhotite, pentlandite and chalcopyrite, which generally constitute more than 10% by volume of the host rock. Ni grades typically range from 0.5 3.0% Ni, with attendant Cu in the range 0.2 2.0%. PGM contents vary widely from a few ppb up to, exceptionally, 10 ppm.
- The **size** of the deposits ranges from a **few hundred thousand tonnes** of ore up to a **few of tens of million tonnes**.
- Magmatic sulfide deposits occur in **diverse geological settings** in rocks ranging in age **from Archean to Permo-Triassic**. Eckstrand and Hulbert (2007) recognized four principal classes:
 - 1. A meteorite-impact mafic melt with basal sulfide ores (Sudbury, Canada is the only known example).
 - 2. Rift- and continental flood basalt, with associated dykes and sills (Norilsk-Talnakh, Russia; Jinchuan, China).
 - 3. Komatiitic (Mg-rich) volcanic flows and related intrusions (Kambalda, Australia; Thompson and Raglan, Canada; Pechenga, NW Russia).
 - 4. Other mafic ultramafic intrusions.

Placer deposits

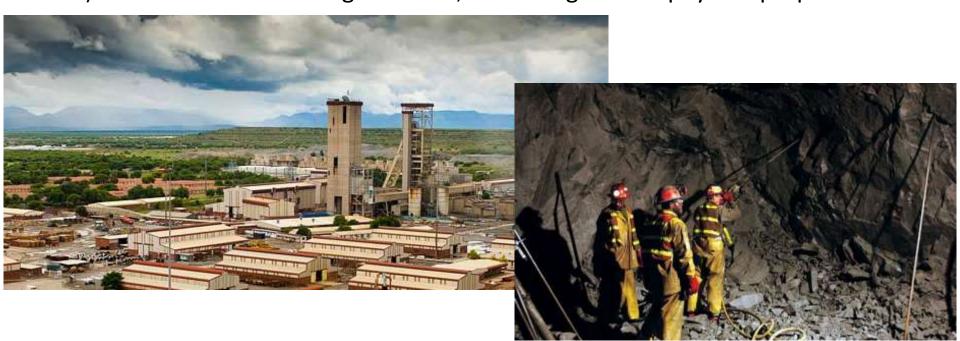
- 2 Weligreen
- 3 Nickel Mountain
- 4 Nick
- 5 Muskox Intrusion
- 6 Thompson
- 7 Tulameen Complex
- 8 Giant Nickel
- 9 Stillwater
- 10 Sudbury
- 11 East Bull Lake

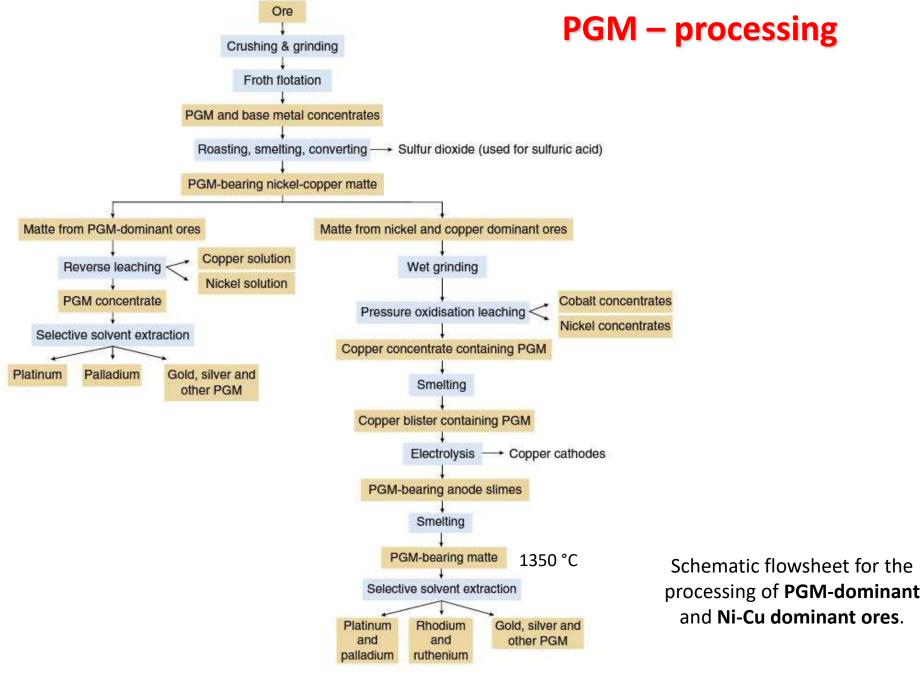
- 13 Duluth
- 14 New Rambler
- 15 Ungava
- 16 Marathon
- 17 Skaergaard
- 18 Choco River
- 19 Cerro La Pinto
- 20 Platina Creek
- 21 Serra Pelada
- 22 Pacajake

- h 24 Jacare
 - 25 Caue
 - 26 Ipanema
 - 27 Catalao
 - 28 Freetown
 - 29 Yubdo
 - 30 Bushveld Complex
 - 31 Great Dyke
 - 32 Stella Intrusion
 - 33 Unst

- 35 Kupferschiefer
- 36 Skouries
- 37 Pechenga District
- 38 Keivitsa
- 39 Penikat
- 40 Portimo
- 41 Kadzharan
- 42 Kempirsai

43 Urals


44 Norilsk-Talnakh


- 46 Ojut Tolgoi
- 47 Jinchuan
- 48 Dali
- 49 Chindwin Basin
- 50 Sukhoi Log
- 51 Inagli
- 52 Udokan
- 53 Kondyor
- 54 Zambales
- 55 Kvinum

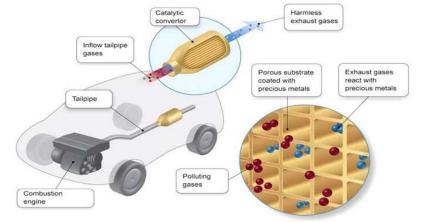
- 57 Eastern Goldfields
- 58 Munni Munni
- 59 Radio Hill
- 60 Nebo-Babel
- 61 Coronation Hill
- 62 Sally Malay
- 63 Panton
- 64 Fifield
- SE All D
- 65 Aikora River
- 66 Southland

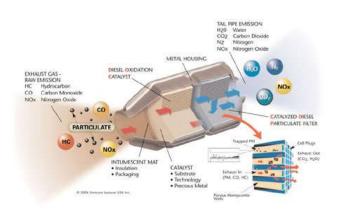
PGM – extraction methods and processing

- Extraction methods: dependent on size, morphology, grade and value of by-products. The deepest currently operating mine is Zondereinde (*Northam Platinum Ltd*, W limb of the Bushveld Complex), where mining takes place at a maximum depth of 2.2 km ("hydropower", water at 5 °C).
- **Processing**: crushing the ore and separating PGM-bearing and gangue minerals, using a range of physical and chemical processes. Different procedures are used for processing **sulfide-poor ore** (e.g. Merensky and UG2) and **sulfide-dominant ores** (e.g. Norilsk) due to their contrasting chemical, mineralogical and physical properties.

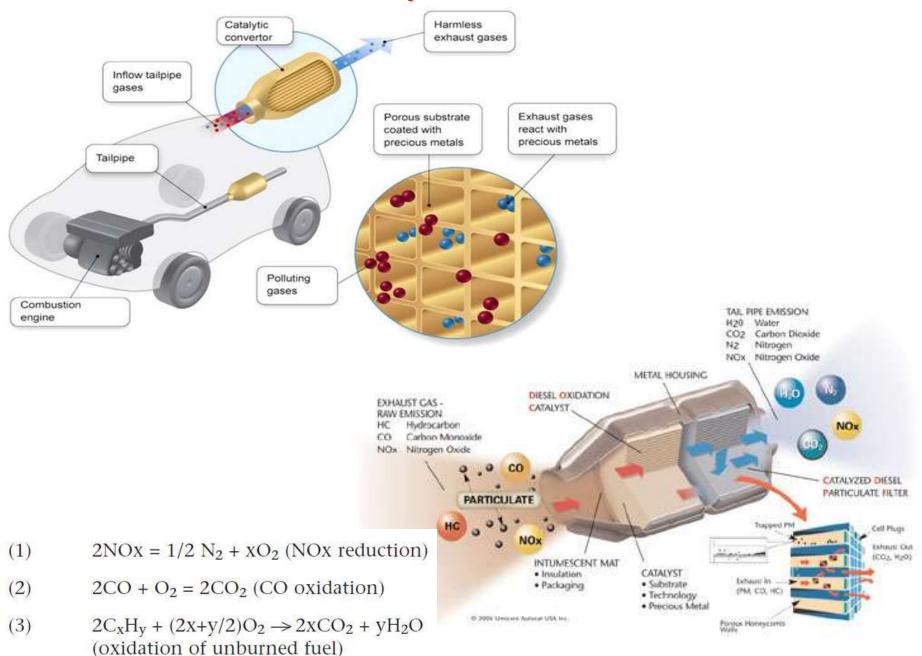
Schematic flowsheet for the processing of PGM-dominant and nickel-copper-dominant ores.

PGM – extraction methods and processing


KEY FEATURES OF PLATINUM-GROUP ELEMENT (PGE) EXTRACTION. The numbers in the orange highlighted boxes are the most crucial in terms of cost and profitability. Reproduced from Lonmin (2010).


Parameter	Mining	Milling & Flotation	Smelting & Converting	Base Metal Refining	Precision Metal Refining	Total
Percent of Total Cost (%)	65-75	9–12	6	7	4-5	100
PGE Grade	4-6 g/ton	100-600 g/ton	640-6,000 g/ton	30-65%	>99.8%	8-8
PGE Recovery (%)		80-90	95-98	>99	98-99	75-85
Concentration Ratio	225	30-80	20	75	2	200,000
Processing Time (days)	-	2	7	14	30-150	Up to 170

Pt and Pd – specifications and uses


Table 12.5 The main uses of platinum and palladium, and global consumption by sector in 2011. (Data from Johnson Matthey, 2012.)

	Platinur	n	Pallad	adium	
Sector	Main uses	Consumption (thousand troy ounces)	Main uses	Consumption (thousand troy ounces)	
Autocatalyst	Catalysts for vehicle exhaust emission control.	3105	Catalysts for vehicle exhaust emission control.	6030	
Investment	Exchange traded funds, ingots, bars, coins.	460	Exchange traded funds, coins.	(565)*	
Jewellery	Fabrication of of platinum jewellery.	2480	Fabrication of palladium jewellery, white gold.	505	
Chemical	Catalysts for production of nitric acid and other bulk and speciality chemicals.	470	Catalysts for production of nitric acid and other bulk and speciality chemicals.	445	
Electrical	Hard disk coatings, thermocouples.	230	Multi-layer ceramic chip capacitors, hybrid	1380	

Pt and Pd – specifications and uses

Pt and Pd – specifications and uses

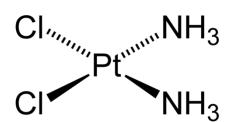
Table 12.5 The main uses of platinum and palladium, and global consumption by sector in 2011. (Data from Johnson Matthey, 2012.)

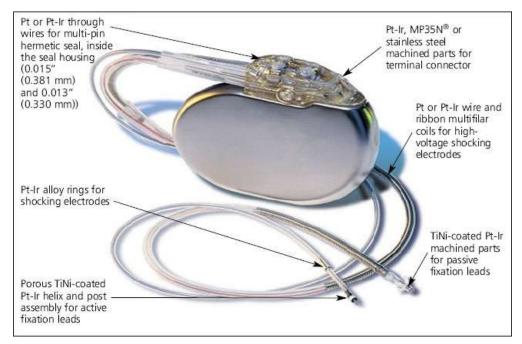
	Platinun	Platinum		Palladium		
Sector	Main uses	Consumption (thousand troy ounces)	Main uses	Consumption (thousand troy ounces)		
Petroleum	Catalysts for petroleum refining and production of petrochemicals.	210	154-17 <u>22</u> 0.1507 -00			
Glass	Vessels for glass manufacture, bushings for fibre glass production.	555	-	: -		
Dental, medical and biomedical	Anti-cancer drugs, implants such as heart pace-makers.	230	Alloying agent, mainly with minor platinum, gold, silver.	550		
Other	Spark plug tips, oxygen sensors for engine management, fuel cells.	355	Emission control catalysts in stationary applications.	105		
	Total global consumption	8095	Total global consumption	8450		

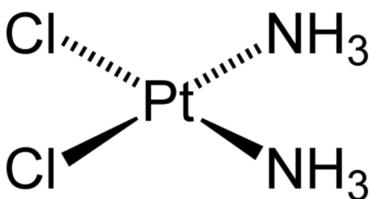
1000 troy ounces is approximately 31.1 kilograms.

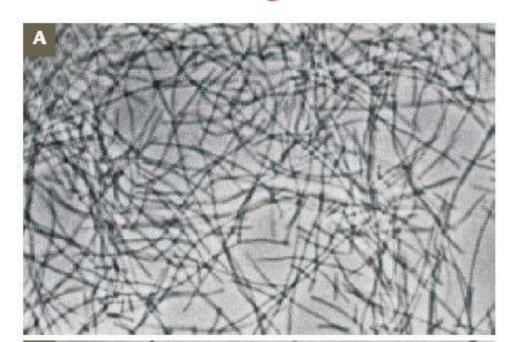
^{*}in 2011 palladium investment was negative and 565,000 ounces were supplied back to the market.

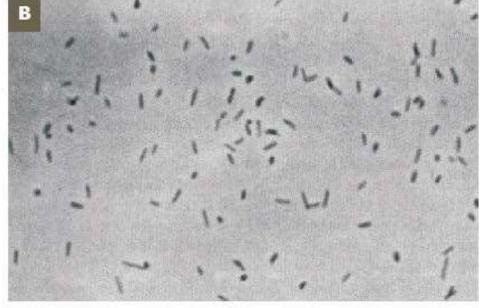
With Committee of the first of the committee of the commi


PGM – uses








Pt compounds as anti-cancer drugs

Phase contrast photomicrographs of *E. coli* cultured in growth medium containing (**A**) 8 ppm of platinum as the neutral species [PtCl₄-(NH₃)₂]⁰ and (**B**) less than 6 ppm of platinum as the doubly negative species [PtCl₆]²⁻. Magnified 600x. The image in (**A**) shows the development of filamentous forms, in contrast to the normal sausage shape shown in (**B**), indicating the inhibiting effect of [PtCl₄-(NH₃)₂]⁰ on cell division, but not on growth. From Rosenberg et al. (1967). Copyright 1967 by the American Society for Biochemistry and Molecular Biology. Used with Permission of American Society for Biochemistry and Molecular Biology in the format Magazine via Copyright Clearance Center

Pt and Pd – main applications

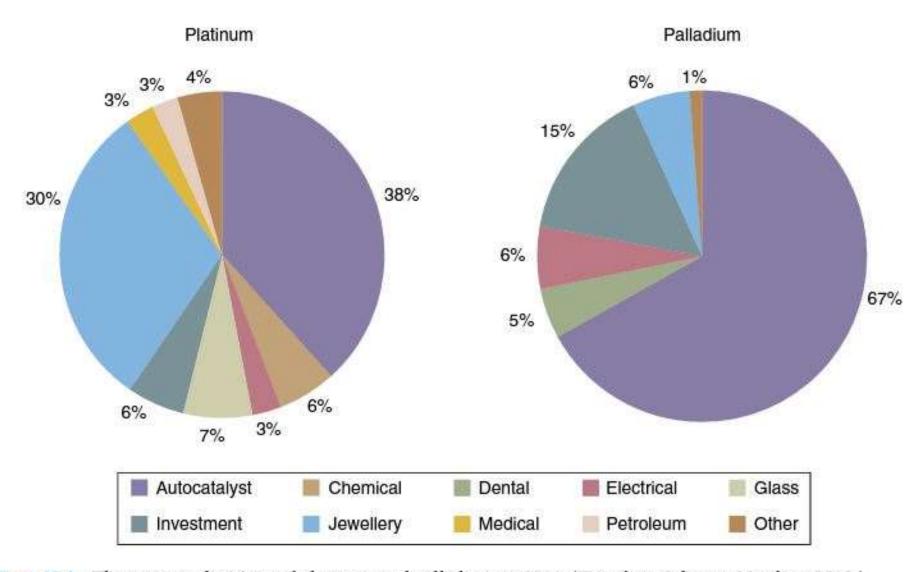
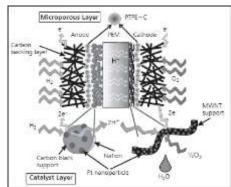
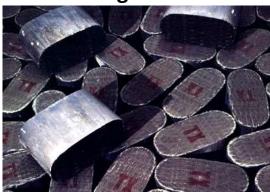


Figure 12.4 The main applications of platinum and palladium in 2011. (Data from Johnson Matthey, 2012.)


PGM – recycling and substitution


Recycling

- The durability of PGM in use, combined with their high prices, has ensured a growing interest in using them efficiently and recycling them whenever possible. For Pt, approximately 23% is derived from recycling, 19% for Pd and 27% for Rh. The largest contributions come from autocatalysts, jewellery and electronic scrap. High recycling rates are also achieved in the manufacture of chemicals and oil refining, where the spent catalysts are returned directly to a recycling company.
- Medical and biomedical uses, spark plugs, sensors and hard disks are dissipated.

Substitution

- In many applications one PGM can substitute for another (e.g. Pt and Pd in autocatalysts)
- Electronic applications: Ni and Cu (reduction in performance).
- There is considerable interest in reducing the amount of PGM used in fuel cells.

PGM – resources and reserves

• The Merensky, UG2 and Platreef in South Africa dominate world PGM resources (> 250M oz t, 800M oz t?). Proven and probable ore reserves in the Norilsk-Talnakh area (Russia) are about 55M oz tof Pd and 13M troy ounces of Pt.[1 oz t (troy ounce)=31.103 g].

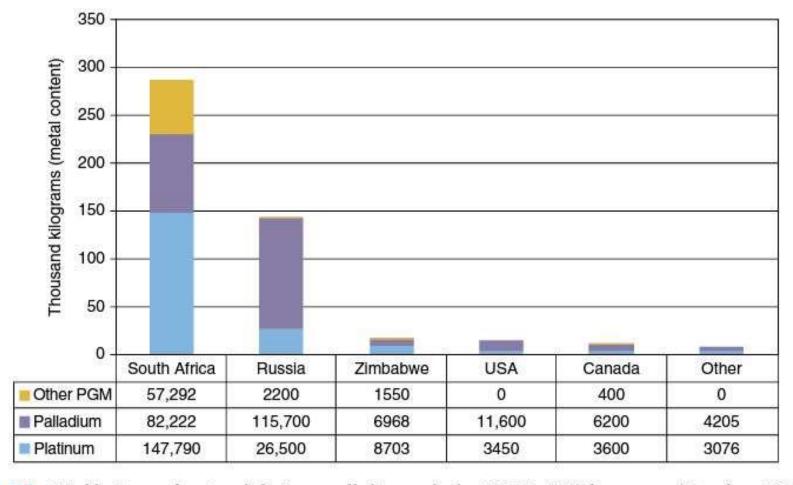


Figure 12.6 World mine production of platinum, palladium and other PGM in 2010 by country. (Data from British Geological Survey, 2012.) (1 kilogram equals 32.151 troy ounces.)

PGM – production

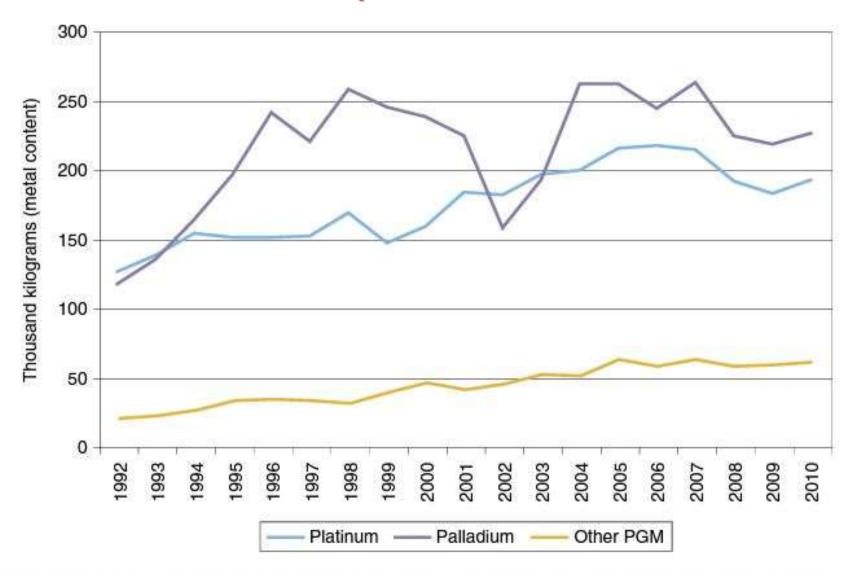


Figure 12.5 World mine production of platinum, palladium and other PGM, 1992–2010. (Data from British Geological Survey World Mineral Statistics database.) (1 kilogram equals 32.151 troy ounces.)

PGM – main exporters

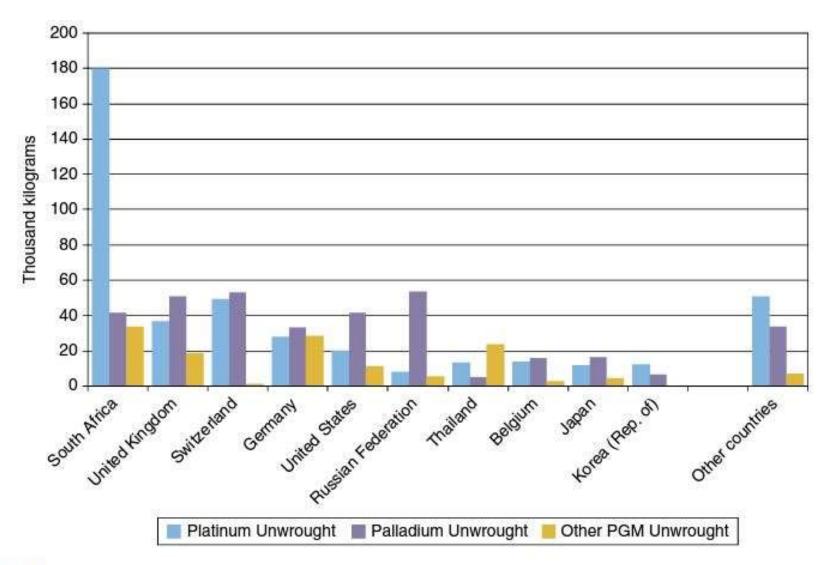


Figure 12.8 Major exporters of platinum metal, concentrates and intermediate products, 2009. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.) (1 kilogram equals 32.151 troy ounces.)

PGM – major importers

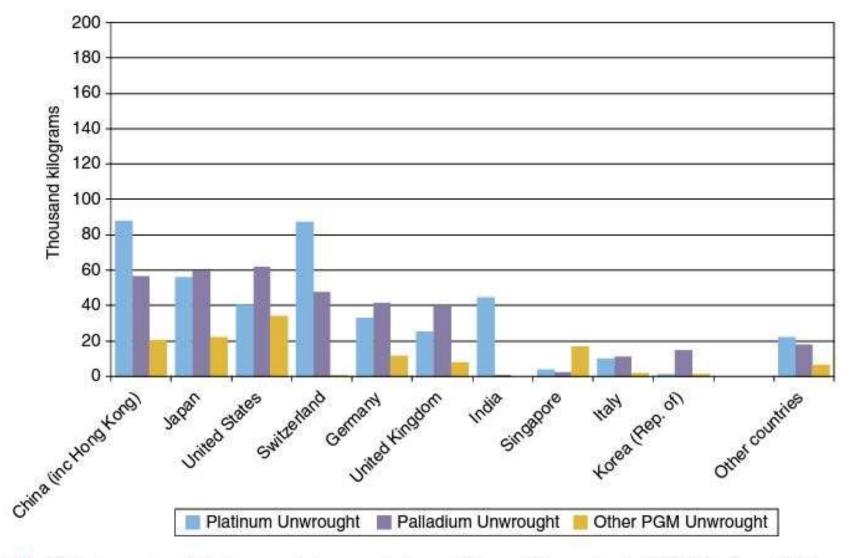


Figure 12.7 Major importers of platinum metal, concentrates and intermediate products, 2009. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.) (1 kilogram equals 32.151 troy ounces.)

PGM – prices

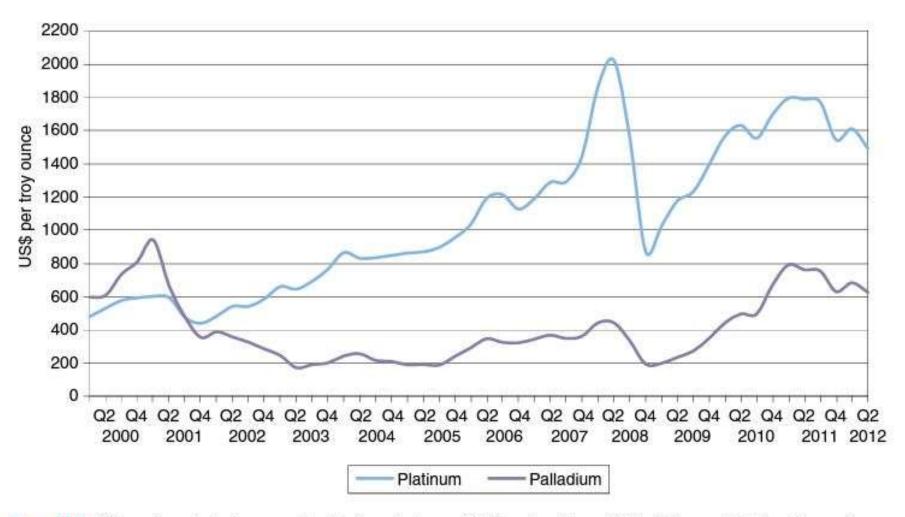
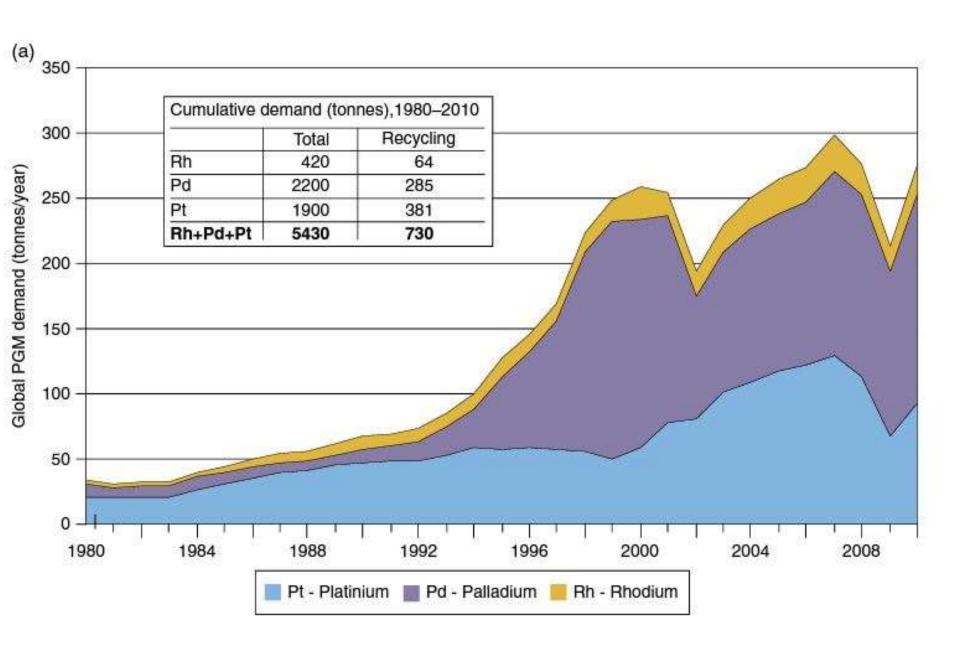
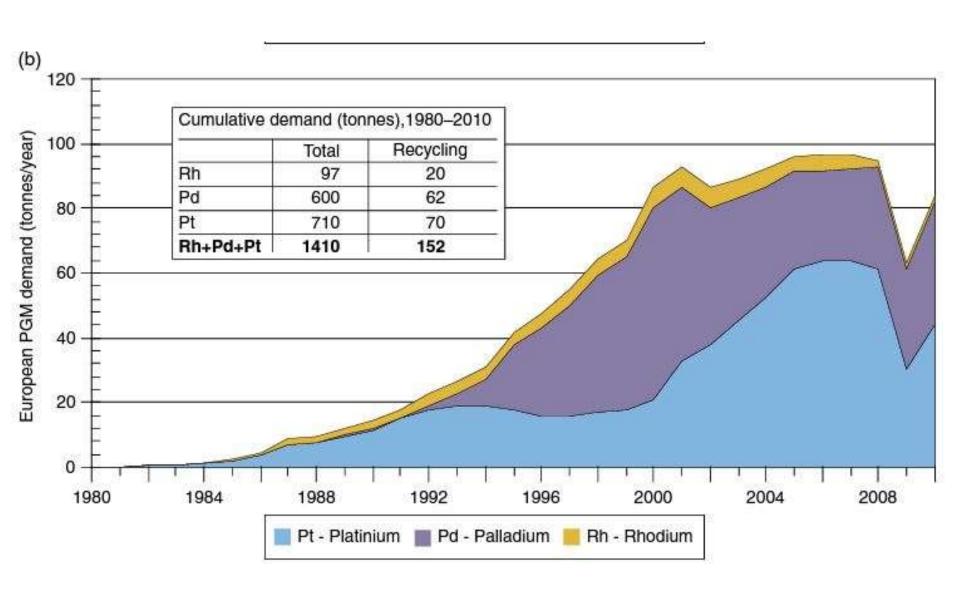
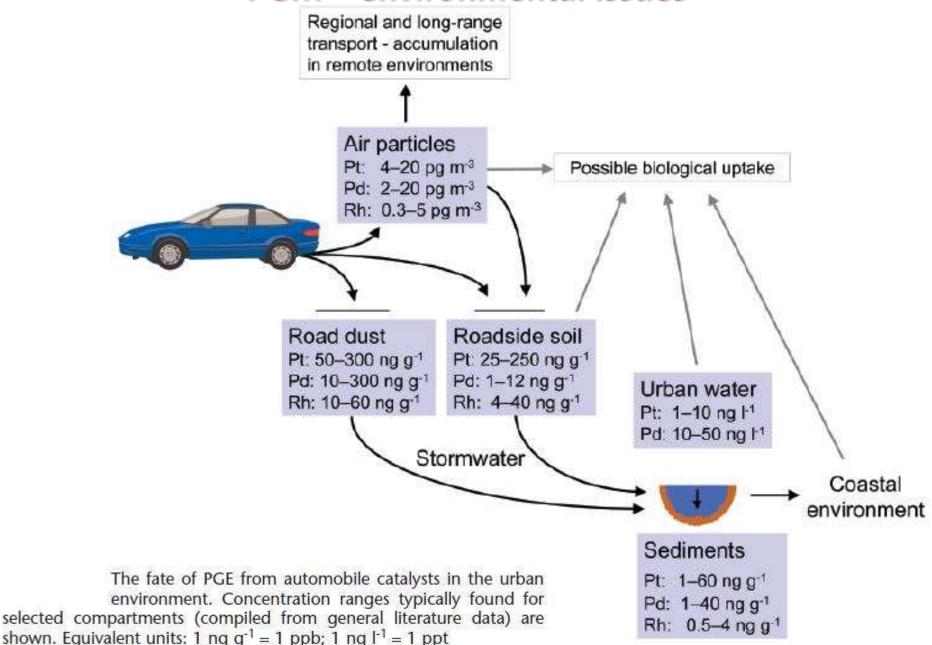




Figure 12.9 The prices of platinum and palladium between 2000 and end June 2012. (Johnson Matthey base price (unfabricated) US\$ per troy ounce, quarterly average prices from Metal Bulletin.)

PGM – global PGM demand

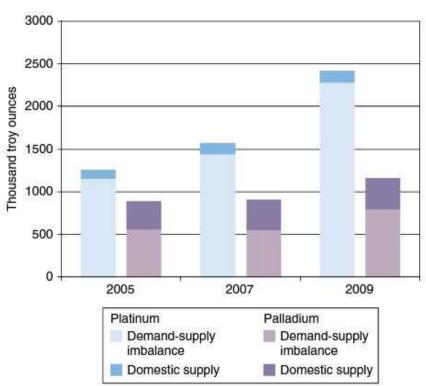

PGM – European PGM demand


PGM – environmental issues

- In metallic form the PGM are generally regarded as inert, non-toxic and non-allergenic. However, some of their compounds, particularly certain PGM-chlorinated salts, are both highly toxic and allergenic (platinosis), and DNA damage due to PGM exposure has been reported.
- The greatly increased use of PGM in recent years has raised the level of PGM emissions into the environment (especially autocatalysts). **High PGM concentrations** have been recorded in dust, silt, soils and waters close to major **highways** and in **urban areas**. Furthermore, **complexation of PGM** derived from autocatalysts has been shown to give rise to **mobile species** with possible associated increase in **bioavailability**.
- The main environmental issues associated with the mining and processing of sulfide-bearing ores of any type, including PGM ores, include: the generation of acid mine drainage, ore dumps, treatment plant and tailings release of associated trace elements (As, Pb, Sb).

PGM – environmental issues

PGM – airborne particles in urban air


Field-emission scanning electron microscope images of PGE-containing particles in urban air in Göteborg, Sweden. Particles A and C contain only traces of Pt, with main components being Al, Si, and C. Particles B and D are enriched in Pt and Rh, and particle B is also rich in C. (IMAGES A, C AND D REPRODUCED WITH PERMISSION FROM ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005, 39, 8156. COPYRIGHT AMERICAN CHEMICAL SOCIETY; PHOTOS COURTESY OF M. OWARI, UNIVERSITY OF TOKYO, JAPAN

PGM – outlook

• **China** uses large and increasing quantities of PGM to support its rapidly growing economy, the modernisation of its industries and the spread of prosperity among its population (Pd for gasoline-powered vehicle fleet, jewellery, glass electronics, fuel cells, biomedical applications, superalloys, photovoltaics).

 The high level of concentration of PGM production in South Africa and Russia has given rise to concerns about supply security.

- New supply could be derived from mining PGM-dominant ores in Canada, Greenland, Australia and Brazil, although bringing new PGM production capacity on stream is a lengthy and expensive process.
- Technical challenges related to mining and processing **new ore types** and **lower grade ores**, mining at **greater depths**, and **more efficient recycling**.

Rhenium

Re – definitions and characteristics

Property	Value	Units	
Symbol	Re		
Atomic number	75		
Atomic weight	186.21		
Density at 25°C	21023	kg/m³	
Melting point	3180	°C	
Boiling point	5926	°C	
Hardness (Mohs scale)	7.0		
Specific heat capacity at 25°C	0.14	J/(g °C)	
Electrical resistivity at 25°C	18.40	$n\Omega$ m	
Thermal conductivity	48	W/(m °C)	
Young's modulus	463	GPa	

- Re is reported by many sources to be the last element to be discovered. Its discovery in **1925** is credited to Ida Tacke, Walter Noddack and Otto Berg.
- Much of early work developing Re processing was done in the USA by Kennecott and many patents related to re recovery from **molybdenite** processing were granted to this company.
 - Today the main use of Re is in **superalloys** for gas turbines in aircraft and in land-based applications, while its use in **petroleum-reforming catalysts** accounts for about 10% of total consumption.
- Naturally occurring Re consists of two isotopes: ¹⁸⁷Re (radioactive with a half-life of 4.3 x 10¹⁰ years) which accounts for 62.6% of the total, and ¹⁸⁵Re, which makes up the balance of 37.4%.
- The chemical properties of Re resemble metals in the **Mn group** (Group 7) of the Periodic Table. The physical properties, however, are much more similar to those of the **refractory metals** of Groups 5 and 6, particularly **Mo** and **W**. Re is considered a **refractory metal** because of its **high melting point** (3180 °C). However, in contrast to other refractory metals, **Re does not form carbides**.
- Re exhibits **several valences** from -1 to + 7, with the most common being **+7**, **+6**, **+5** and **+4**. **It easily changes from one valence to another**, a property which makes it ideal for use as a **catalyst**.

Re – abundance in the Earth and mineralogy

- Re does not have a ductile-to-brittle transition temperature → the addition of Re to W and Mo significantly reduces the brittle characteristics, increasing the recrystallization T, ductility and ultimate tensile strength.
- Re is one of the most dispersed elements, Clarke 0.2 – 2 ppb.
- Re minerals are also rare and relatively few minerals concentrate Re to a significant degree.

Name	Formula	Rhenium content
Rheniite	ReS ₂	74%
Tarkianite	(Cu,Fe)(Re,Mo) ₄ S ₈	49 to 56%
Dzhezkazganite	ReMoCu ₂ PbS ₆	22%
Molybdenite	MoS ₂	<10 ppm to 11.5%
Castaingite	CuMo ₂ S ₅	up to 1%
Uraninite	UO,	up to 2700 ppm
Gadolinite	Y ₂ Fe ²⁺ Be ₂ Si ₂ O ₁₀	up to 1 ppm

- Although Re has an **affinity for sulfide phases**, its concentration in most sulfide minerals is relatively low. However, the **ionic radius of Re**⁴⁺ **is very close to that of Mo**⁴⁺, which allows for a limited substitution of Re for Mo in **molybdenite** and other Mo minerals, such as castaingite.
- **Re is similar geochemically to Mo**, which it commonly accompanies through magmatic and related hydrothermal processes, and is commonly concentrated in **molybdenite** with various types of granite-related deposits, particularly **porphyry deposits**. The Re content of most molybdenites is generally within a range of a **few ppm to several thousands of ppm** (typically 200 1000 ppm).
- Other minerals in which Re may be concentrated in significant levels (> 1ppm) include **uraninite** and **gadolinite**.

Re content of molybdenite in porphyry deposits

		Re (p	ppm)	
Country	Deposit	Average	Range	References
Porphyry copper deposits				
Canada	Lornex-Valley	330	294-350	Sinclair et al. (in prep.)
Canada	Gibraltar	443	238-750	Sinclair et al. (2009)
Canada	Island Copper	1784	1704-1863	Sinclair et al. (2009)
Chile	Chuquicamata	220	194-250	Giles and Schilling (1972); Mathur et al. (2001)
Chile	Collahuasi	410	368-448	Mathur et al. (2001)
Chile	El Salvador	630		Giles and Schilling (1972)
Chile	El Teniente	390	182-1154	Mathur et al. (2001)
Chile	Escondida	1355		Mathur et al. (2001)
Kazakhstan	Kounrad	664	24-1930	Ivanov et al. (1969)
Mongolia	Erdenet	535		Gerel and Munkhtsengel (2005)
Peru	Cerro Verde	3280	3061-3497	Mathur et al. (2001)
United States	Bagdad	460	330-642	Barra et al. (2003)
Porphyry copper-gold deposits				
Armenia	Kadzharan	340	80-1610	Ivanov et al. (1972)
Armenia	Agarak	820	57-6310	Magakian et al. (1984)
Canada	Snowfield	3579		Pretium (2011)
Iran	Sar Cheshmeh	1000	900-1160	Shariat and Hassani (1998)
Mongolia	Oyu Tolgoi	1500		H. Stein (pers. comm., 2007)
United States	Bingham	360	120-2000	Giles and Schilling (1972)
United States	Pebble	1130	900-2260	Rebagliati et al. (2009)
Uzbekistan	Kal'makyr-Dalnee	1200	150-2100	Ivanov et al. (1969); Golovanov et al (2005)

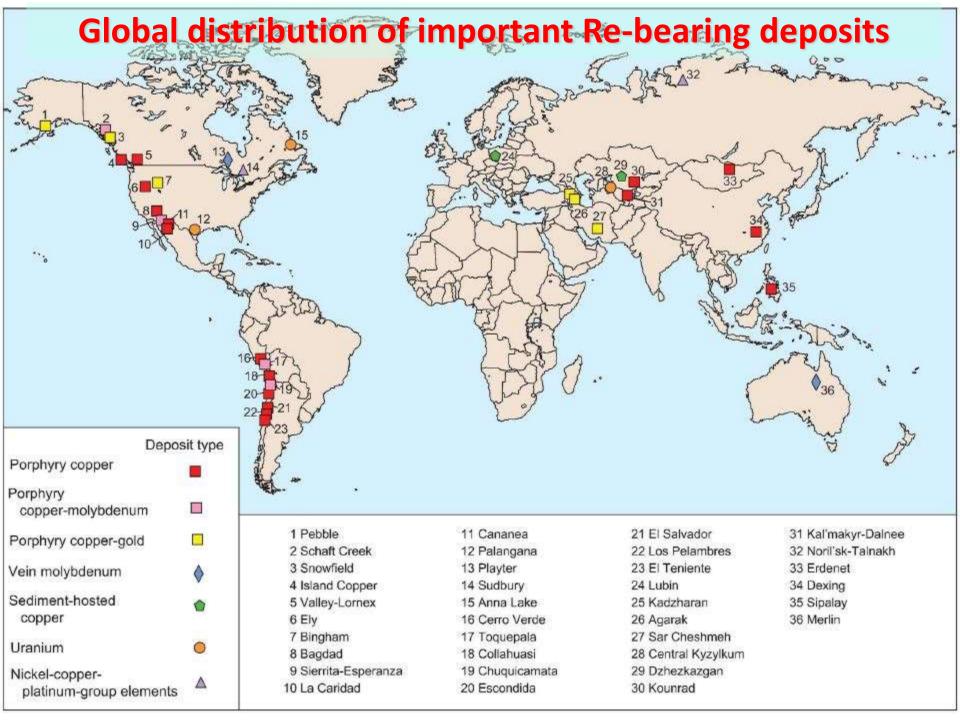

Re content of molybdenite in porphyry and vein deposits

Table 14.3 Rhenium content of molybdenite in various deposit types worldwide.

		Re (ppm)		
Country	Deposit	Average	Range	References
Porphyry copper-molybdenum de	posits			
Canada	Schaft Creek	590		Bender et al. (2007)
Peru	Toquepala	790	387-1496	Giles and Schilling (1972); Mathur et al. (2001)
United States	Sierrita-Esperanza	600	90-1800	Giles and Schilling (1972)
Porphyry molybdenum deposits				
Canada	Endako	35	15-67	Sinclair et al. (2009)
United States	Climax	35	11-80	Giles and Schilling (1972)
United States	Henderson	14	7-18	Giles and Schilling (1972)
United States	Thompson Creek	120		Sinclair et al. (in prep.)
Porphyry tungsten-molybdenum	deposits			
Canada	Northern Dancer (Logtung)	22		Sinclair et al. (2009)
Canada	Sisson	9	6-12	Sinclair et al. (in prep.)
Kazakhstan	Verkhnee Qairaqty	57	47-66	Ivanov et al. (1972)
Vein molybdenum deposits				
Australia	Merlin	1062	300-2098	Horton (2010)
Canada	Playter	402	185-1047	Kilpatrick and Grieco (2010)
Japan	Daito	132	116-188	Ishihara (1988)
Norway	Knaben	14	1-28	Fleischer (1959); Giles and Schillin (1972)

Re – deposit types

- <u>Porphyry deposits</u> are <u>large</u>, <u>low-grade</u> deposits in which ore minerals occur in extensive zones of <u>fracturing</u> and <u>brecciation</u> associated with <u>porphyritic granitic intrusions</u>. They are the world's most important source of <u>Cu</u> and <u>Mo</u>, and are major sources of <u>Au</u> and <u>Ag</u>. They also account roughly <u>85-90%</u> of <u>primary Re production</u>. The average Re content of molybdenite from porphyry deposits varies from < <u>10 ppm</u> to <u>4000 ppm</u>. <u>Porphyry Mo deposits</u> have the highest Mo grades (0.07 0.24% Mo) but the <u>lowest Re content</u> in molybdenites (10- 100 ppm).
- <u>Vein deposits</u> occur in various structural settings such as **faults**, fault systems and **breccia zones** and, in some cases, include **replacement zones** in associated host rocks. Unlike porphyry deposits, they are typically **small**, but are **highly varied in size and metal contents**. In many vein deposits, molybdenite has Re content comparable to molybdenite from porphyry Mo deposits (< 100 ppm). The recently discovered **Merlin deposit (Australia)** contains an average of **1.3% Mo** and a **high Re content** in molybdenite.
- <u>Sediment-hosted Cu deposits</u> consist of **disseminated** to **veinlet** Cu sulfides that occur in zones **more or less concordant with the stratification** of their sedimentary host rocks. Re is recovered from the processing of Cu concentrates (chalcopyrite, bornite and chalcocite).
- <u>Uranium deposits</u>: the Re content varies from < 1 to 5 ppm. Re is closely associated with Mo (jordisite MoS₂, amorphous), but some Re may be also present in **U minerals** (uraninite UO₂).
- Magmatic Ni-Cu-PGE deposits: potentially significant source of Re (strong affinity for metallic or sulfide phases). E.g. Norilsk Talnakh (Russia).

Re content in molybdenite vs. Mo grade in porphyry deposits

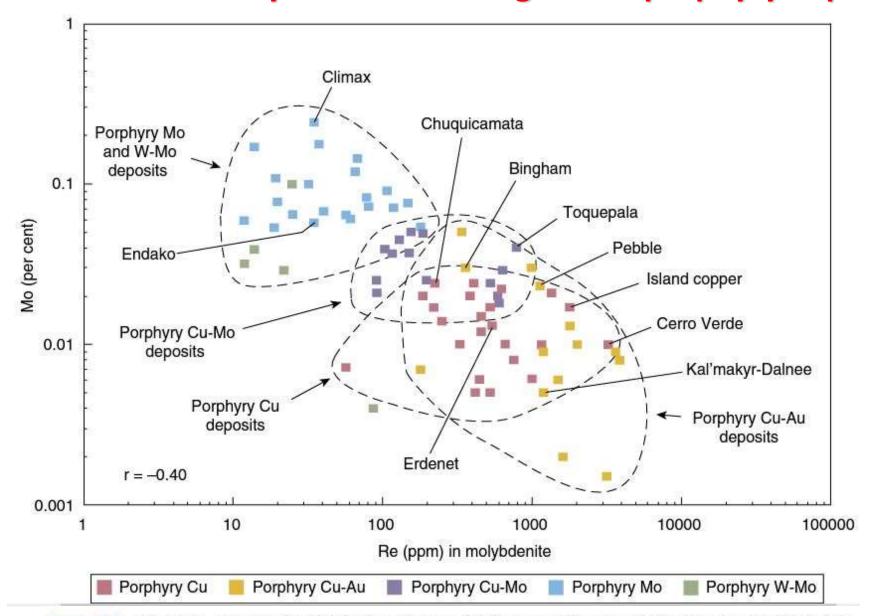


Figure 14.2 Rhenium content of molybdenite versus molybdenum grade in porphyry deposits. (Revised after Sinclair et al., 2009.) (Cu, copper; Mo, molybdenum; Au, gold; W, tungsten)

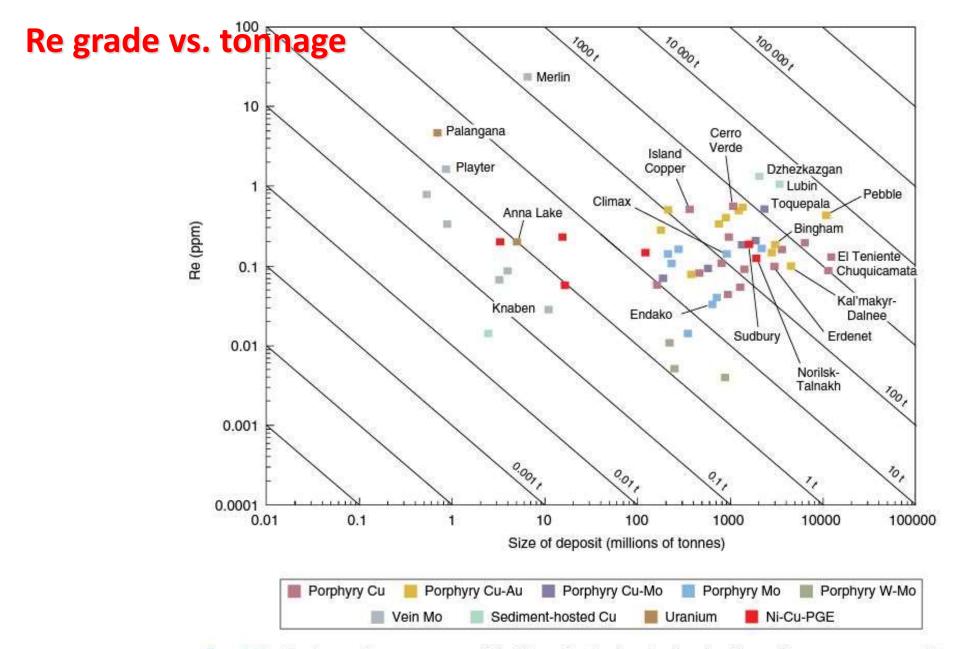
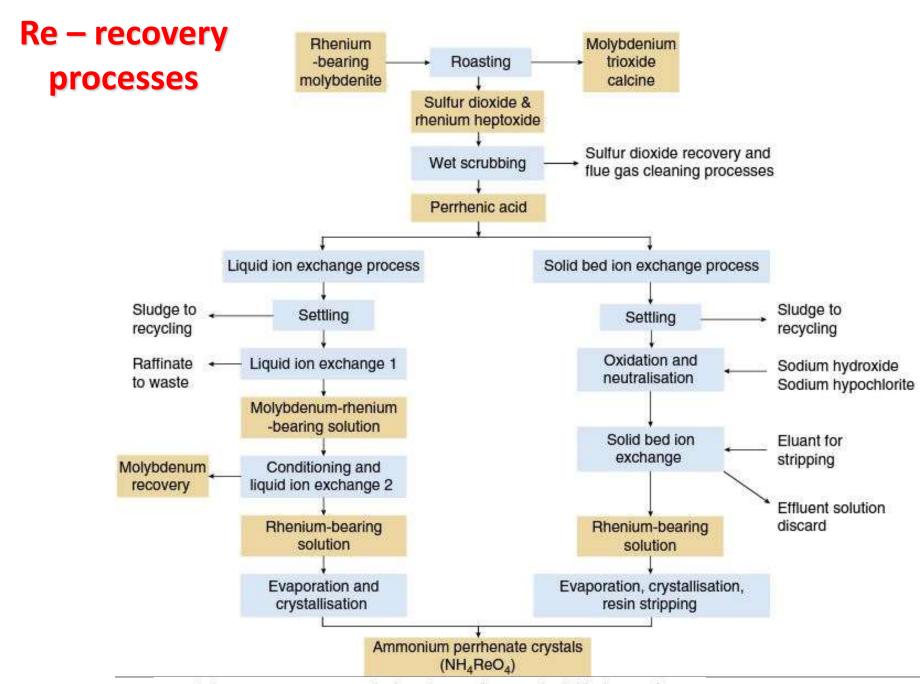



Figure 14.5 Rhenium grade versus tonnage of significant rhenium-bearing deposits; diagonal lines represent tonnes (t) of contained rhenium. (Revised after Sinclair et al., 2009.) (Cu, copper; Mo, molybdenum; Au, gold; W, tungsten; Ni, nickel; PGE, platinum-group elements)

Typical rhenium recovery process by liquid ion exchange and solid-bed ion exchange.

Re – production

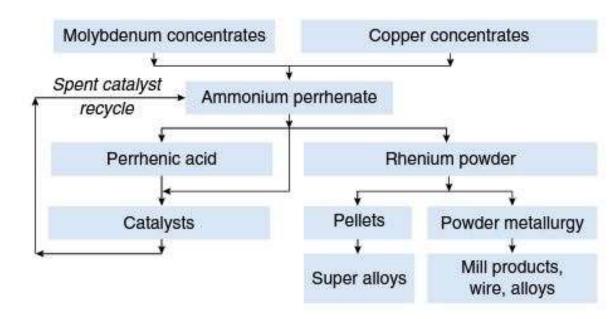
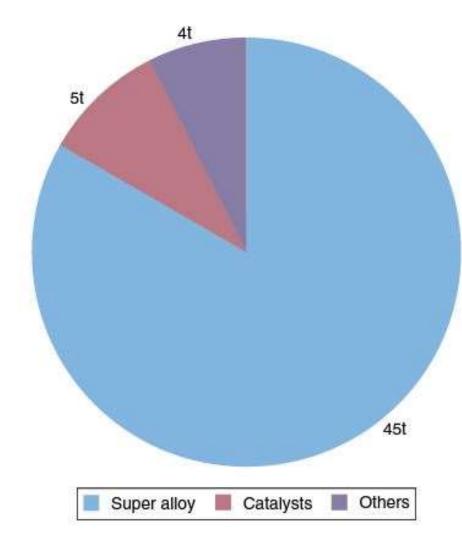
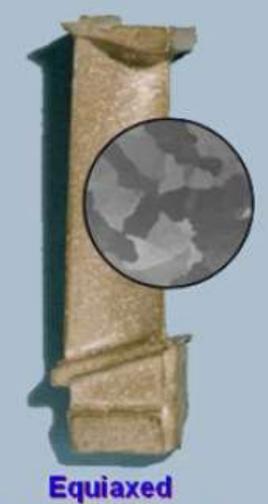


Figure 14.7 Summary of the production of rhenium and products.

- Re metal powder is produced by traditional powder metallurgy techniques. **Ammonium** perrhenate (NH_aReO_a) is reduced using H in common boats-in-tubes type furnaces.
- Re for alloy production is produced by pressing the powder into pellets of varying size. The
 pellets then are sintered to improve physical integrity as well as to reduce gases further.

Re – specifications and uses




Figure 14.8 The main sectors of rhenium consumption in 2012 (tonnes). (Data from MMTA, 2012a, courtesy of Lipmann Walton & Co Ltd.)

The main form of Re in which it is traded is **ammonium perrhenate** (APR, NH₄ReO₄), ready to be processed further for use in one of its 2 main industries:

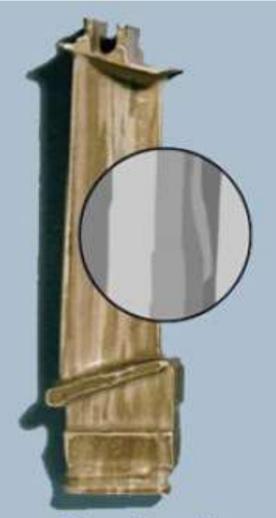
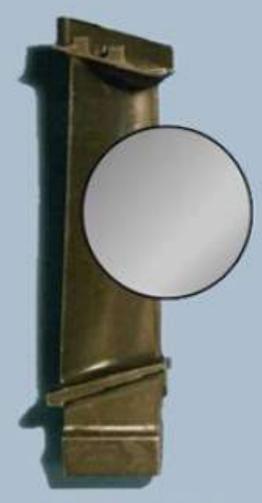

- **1. Superalloy** for casting into single-crystal turbine blades for aero-engines.
- 2. Solution for the manufacture of **reforming** catalysts.

Table 14.5 Composition of Cannon Muskegon's CMSX-4 superalloy. (Data from C-M Group, 2012.)


Element	Content (wt per cent)		
Cr	6.5		
Co	9.0		
Mo	0.6		
W	6.0		
Та	6.5		
Re	3.0		
Al	5.6		
Al Ti	1.0		
Hf	0.1		
Ni	61.7		

Equiaxed Crystal Structure

Directionally Solidified Structure

Single Crystal

Re – catalyst and superalloy grade

Table 14.4 (a) Specification for catalyst grade ammonium perrhenate. (Data courtesy of MMTA, 2012b.)

Table 14.4 (b) Specification for rhenium metal pellets, superalloy grade. (Data courtesy of MMTA, 2012b.)

Element	Maximum permitted content (ppm, unless otherwise stated)		
Re	68.5-69.8% minimum		
Sb	30		
As	30		
Ca	50		
CI,	100		
Cr	50		
Co	50		
Cu	50		
lr.	75		
Fe	50		
Pb	30		
Mg	50		
Mn	50		
Mo	100		
Ni	50		
Pd	50		
P	200		
K	200		
Rh	50		
Si	50		
Ag	50		
Na	50		
Sn	50		
Zn	50		
As, Ca, Fe, K, Mg, Na, Pb, Sn	200 total		
As, Co, Cr, Cu, Mn, Ni, Sb, Si, Sn	200 total		
H ₂ 0	0.10%		

Element	Maximum permitted content (ppm, unless otherwise stated)			
Element Re Se Te TI H Mg Ca Na As Bi Cd Ga In Pb Sb Th Sn Zn Cl K	content (ppm, ur	riless ed) m Fe Mo W Mn P Al B Co Cr Cu		
C Si S O N	30 20 20 300 50	Hf Nb Ni Ta Ti V Zr		

Re – recycling and substitution

Recycling

- Catalysts: the value of Pt with which Re is allied (Pt 0.3% and Re 0.3%) provides the incentive for recycling (15 t Re per year).
- **Superalloys**: the growth of a recycling industry has been slow and spasmodic (prices were mostly below the cost of recovery). The incentive for greater efficiency in recycling Rebearing alloys came when Re reached USD 12000/kg. Two approaches are employed by recyclers:
 - **Chemical decomposition** of the complex alloy followed by an **ion-exchange** process to recover Re in the form of APR;
 - **Pyrophoric process** where Re is evaporated as the heptoxide and subsequently captured and then precipitated as APR.

Substitution

- Re has non substitute in its main use as a 3% constituent in complex Ni-based alloys for single-crystal turbine blades. Here, the main purpose of Re is to increase the presence of the gamma prime (γ^{I}) phase which increases creep resistance.
- In the catalyst industry, mono-metallic catalysts, consisting solely of Pt, are regularly used but, in most applications, Re is preferred alongside Pt because it increases efficiency.

Re – production

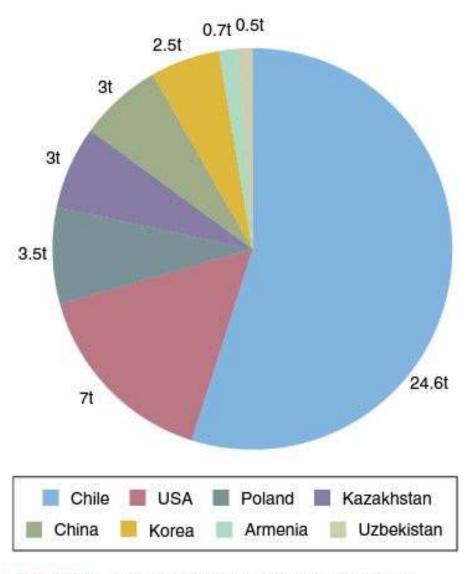


Figure 14.4 The main sources of primary rhenium production in 2012 (tonnes). (Data from MMTA, 2012a, courtesy of Lipmann Walton & Co Ltd.)

Re content in superalloys and prices

Table 14.6 The influence of the price of rhenium on the cost of superalloys as a percentage of the total cost of input raw materials. (The source of the prices used in these calculations is Metal Prices.com on 28 September 2011. The rhenium contents of the superalloys are from various published sources.)

		Rhenium price (US\$/kg)						
			\$	1215	\$2	205	\$	5952
Alloy	Rhenium content (%)	Alloy cost (US\$/kg)	Alloy cost (US\$/kg)	% alloy cost due to Re content	Alloy cost (US\$/kg)	% alloy cost due to Re content	Alloy cost (US\$/kg)	% alloy cost due to Re content
CMSX-3	0	5.15						
CMSX-4	3		66.95	55	95.99	69	208.42	86
CMSX-10	6		103.24	72	162.63	81	387.51	92
Rene N5	3		66.95	54	96.65	68	209.09	85

Re - price trend

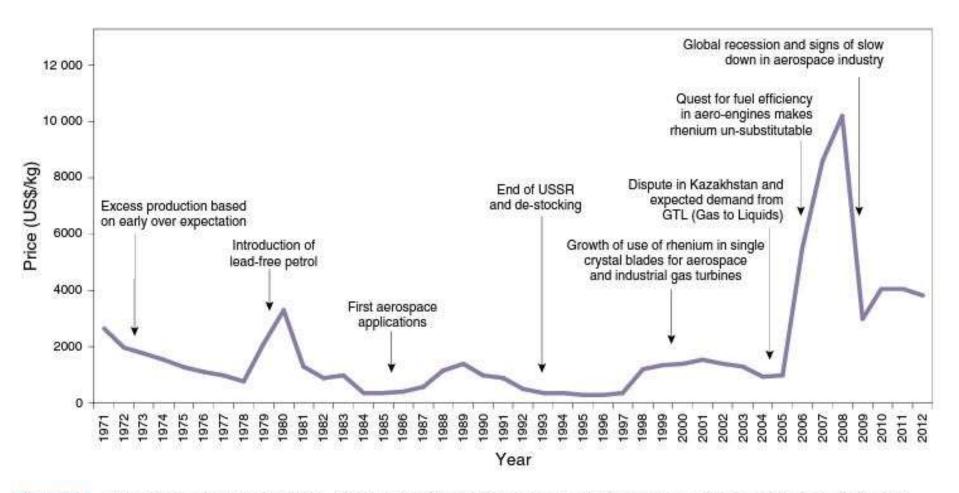
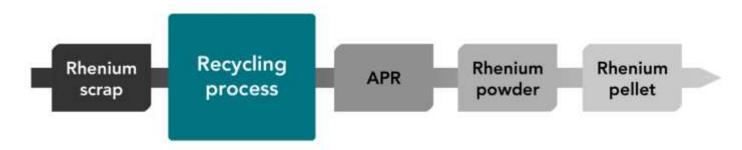



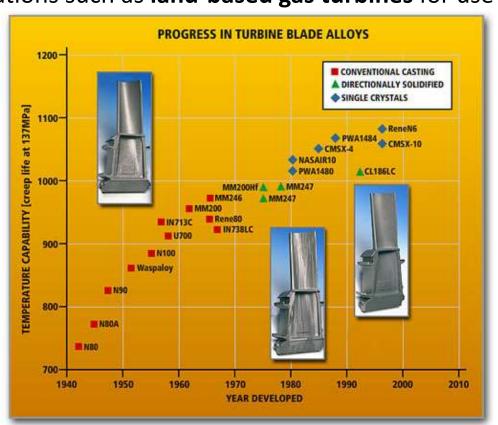
Figure 14.9 Rhenium price trend, 1971–2010. (Data from USGS up to 1993 and from Lipmann Walton & Co Ltd after 1993.)

Re – environmental issues

• Re is **radioactive** in all forms because of the content of the isotope 187 Re. However, it decays by emission of very low energy β particles (electrons) that pose minimal risk to human health.

- Re contributes to high operating temperatures, increased fuel efficiency of gas turbines, reduction of nitrous oxide emissions, and blade longevity.
- The recovery of Re units from aerospace industry will never be as efficient as the catalyst industry due to the wide dispersal of re units in end-life blades, the cost of recovery and the length of time (up to 12 months) from the recycling of used blade to production of new Re pellet.

Re - outlook


• There seems to be **more Re coming available** now with offers from such as Uzbekistan for 500 kg per month of APR, recovery from Mongolian ores being toll roasted, as well as the promise of more from deposits yet to be mined such as Merlin in Australia and Pebble (Alaska).

• The reduction of Re use by aircraft engine producers has resulted in increased Re availability for some of the other applications such as land-based gas turbines for use

in **power generation**.

• The use of **X-ray tube target** production seems to be one area where Re demand is on the increase.

• Re used in Ni-based **superalloys** for the production of **single-crystal turbine blades** is set to remain rhenium's main market for many years to come.

Tantalum and niobium

Nb and Ta – definitions and characteristics

Property	Valu	Units	
Name	Niobium	Tantalum	
Symbol	Nb	Та	
Atomic number	41	73	
Atomic weight	92.91	180.95	
Density at 25 °C	8578	16670	kg/m ³
Melting point	2468	2996	°C
Boiling point	4930	5425	°C
Hardness (Mohs scale)	6.0	6.5	
Electrical resistivity at 25 °C	144	134	$n\Omega$ m
Crystal structure	Body-centred cubic	Body-centred cubic	
lonic radius (six-fold coordination)	64	64	pm

- Ta derives its name from king **Tantalus** in Greek mythology. His daughter was **Niobe**, after which the
 element Nb is named. In the geochemical literature, these elements are referred as "geochemical
 twins", because their behavior is very similar.
- Charles Hatchett discovered Nb, first called columbium, in 1801. Anders Gustav Ekeberg first
 discovered Ta in 1802, but it was difficult to distinguish Ta from Nb. This issue was not resolved until
 Heinrich Rose in 1844 and Jean Charles Galissard de Marignac in 1866 were able to demonstrate that
 Nb and Ta were two different elements.

Nb and Ta – physical and chemical properties

- Nb sits above Ta in the Periodic table and both have very high melting temperatures.
- Nb has only one stable isotope ⁹³Nb, but has
 8 radiogenic isotopes (⁸⁹Nb → ⁹⁷Nb).
- Ta has two stable isotopes: 99.988% occurs as 181 Ta and 0.012% as 180 Ta. It also has 6 radiogenic isotopes (177 Ta \rightarrow 183 Ta).
- Nb and Ta both have a valency of +5 under most natural redox conditions and nearly the same ionic radius.
- These elements have a high charge to ionic radius and, because of this, they are insoluble in most geological fluids, are strong Pearson acids that are only complexed by strong ligands such as O²⁻, OH-and F-. However, these elements are soluble at wt.% levels in silicate melts, particularly alkaline melts, and can attain even higher solubilities in carbonatite melts.

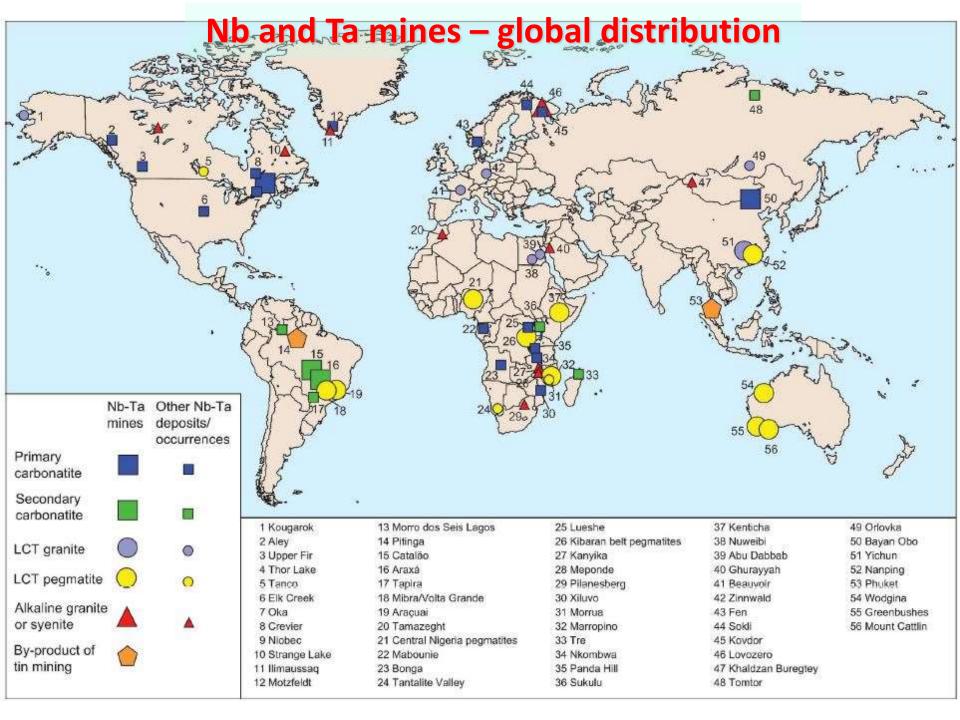
Nb and Ta – abundance in the Earth and mineralogy

- The estimated abundances of Nb and Ta in the upper continental crust are 12 and 0.9 ppm, respectively, which is enriched relative to the bulk continental crust (Clarke), 8 and 0.7 ppm, respectively. These values are much higher than the estimated concentrations in primitive mantle (548 ppb Nb and 40 ppb Ta).
- Both elements are highly incompatible, are enriched in alkaline magmas and are characteristically depleted in calk-alkaline melts.

- Apart from minerals of Nb, Ta and Sn, the highest concentrations of Nb and Ta are observed in Ti-bearing minerals, notably rutile TiO₂ and titanite CaTiSiO₅.
- Nb and Ta do not occur naturally as free metals. The charge to ionic ratio of Ta and Nb results in strong bonds being formed with O; in fact, most Nb-Ta minerals are oxides. The two most important groups of minerals by far are columbotantalite and pyrochlore.
- Nb deposits are predominantly hosted by carbonatites (→ pyrochlore group).
- Ta deposits are hosted by peraluminous pegmatites and granites [\rightarrow columbotantalite, wodginite (Ta, Nb, Sn, Mn, Fe)₁₆O₃₂ and microlite (Na, Ca)₂(Ta, Nb)₂O₆(O, OH, F)].

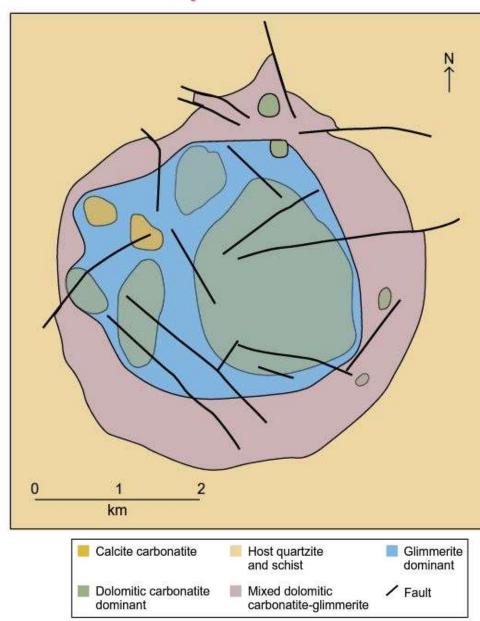
Nb and Ta – abundance in the Earth and mineralogy

Mineral name	Formula	Nb ₂ O ₅ (%)	Ta ₂ O ₅ (%)	
Columbite	(Fe,Mn)(Nb,Ta),O ₆	78.72	na	
Tantalite	(Fe,Mn)(Ta,Nb) ₂ O ₆	na	86.17	
Pyrochlore	(Na,Ca),Nb,O,(O,OH,F)	75.12	na	
Microlite	(Na,Ca) ₂ Ta ₂ O ₆ (O,OH,F)	na	83.53	
Tapiolite	(Fe,Mn) (Ta,Nb) ₂ O ₆	1.33	83.96	
Ixiolite	(Ta,Nb,Sn,Mn,Fe) ₄ O ₈	8.30	68.96	
Wodginite	(Ta,Nb,Sn,Mn,Fe)O ₂	8.37	69.58	
Loparite	(Ce,La,Na,Ca,Sr)(Ti,Nb)O ₃	16.15	na	
Lueshite	NaNbO ₃	81.09	na	
Euxenite	(Y, Ca, Ce, U, Th)(Nb, Ti, Ta), Os	47.43	22.53	
Strüverite	(Ti,Ta,Fe)O ₂	11.32	37.65	
Ilmenorutile	Fe _x (Nb,Ta) _{2x} 4Ti _{1x} O ₂	27.9	na	


- The **columbotantalite group** minerals are the most common and contain both Nb and Ta ("**coltan**").
- Another source of Ta is as a **by-product of Sn mining** (cassiterite can contain wt.% of Ta and Nb).

Nb and Ta – deposit types

- All primary Nb and ta deposits are associated with **igneous rocks** and can be classified on the basis of the associated igneous rocks. Three types of deposits are recognised:
 - 1. Carbonatite-hosted deposits (Nb and industrial minerals).
 - 2. Alkaline to peralkaline granites and syenites (Nb, Y, REE, Zr, Sn, Ta).
 - 3. Peraluminous pegmatites and granites (Ta, Nb, Sn, W, Cs, Li).


• Ta and Nb minerals are also resistant to mechanical and chemical weathering, and have high specific gravities → placer and alluvial deposits.

• A number of **Sn deposits** also contain Nb and Ta, particularly in SE Asia.

Nb and Ta – carbonatite deposits

- Carbonatites are igneous rocks that contain > 50% carbonate minerals. Most carbonatites occur in rift settings, but it is clear that there are several different types of carbonatites, many of which are unmineralised.
- Carbonatites are genetically related to strongly alkaline silicate rocks, but it is not clear whether these are related by fractional crystallization or by silicatecarbonatite melt immiscibility → both are interpreted to be the product of melting of a metasomatised mantle.
- The most important carbonatite-hosted Nb deposits are in Brazil (92% of the world's Nb). E.g. Araxá deposit ≈ 808 Mt ore, average grade 2.3% Nb₂O₅.

Nb and Ta – alkaline to peralkaline granites and syenites

- Significant concentrations of Nb and Ta occur in **alkaline to peralkaline granites and syenites**. These intrusions also contain high concentrations of **Zr**, **Y** and **REE**, and generally occur in **rift** or **failed rift** tectonic settings, although there are exceptions (e.g Lovozero and Khibiny intrusions, Kola Peninsula Russia).
- This style of mineralization has received considerable interest recently because of related **high Y and REE content**.
- One of the characteristics of this deposit type is the wide range of Zr, Nb and REE
 minerals that are present (including hydrous and anhydrous silicates, phosphates,
 oxide and mixed silicate-phosphate mineral phases).
- The dominant mineral of Nb and Ta is **pyrochlore**, but other complex phases such as **eudialyte** and secondary **fergusonite** are also important carriers of Nb.
- There are no current producing mines of this type, but they are potential sources of a variety of metals in the future.

Nb and Ta – peraluminous pegmatites

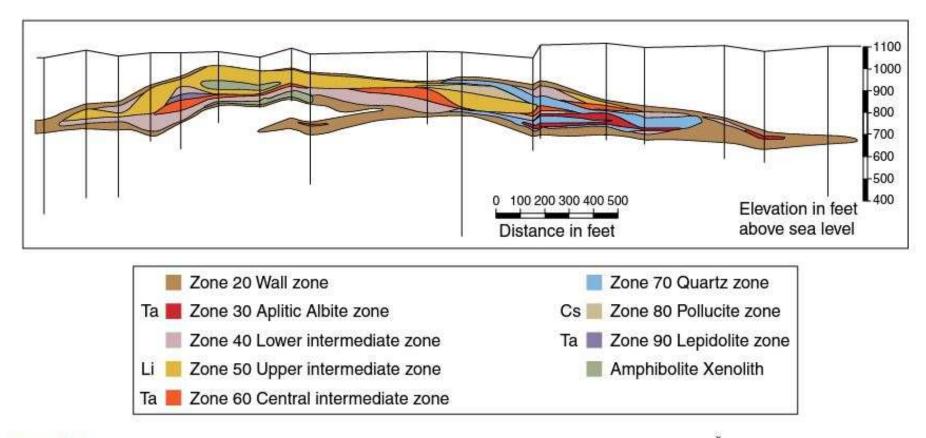


Figure 15.3 Longitudinal east-west section through the Tanco pegmatite. (Modified after Černý et al., 1996). (Cs, caesium; Li, lithium; Ta, tantalum.)

Peraluminous pegmatites have historically been the most important source of Ta, and are commonly associated with peraluminous S-type granites, and occur as late syn- to post-tectonic intrusions in collision belts, typically in association with shear zones. Other elements of economic significance include Li, Cs, Be, Rb, Nb and Sn. These pegmatites are assigned to the Li-Cs-Ta (LCT) family of pegmatites (relatively high T and P, from 750 °C and 5 kbar to a greisen and metasomatic stage at 620 °C and 5 kbar).

Nb and Ta – peraluminous pegmatites

Figure 15.4 Banded aplite ore from the Tanco deposit. Tantalum mineralisation is contained in the banded aplite (red and blue-grey at the bottom). A massive quartz zone (dark grey) is at the top and coarse, crystalline white beryl separates the aplite and quartz. The scale is approximately 2 m across. (Courtesy of R. Linnen.)

Nb and Ta – extraction methods and processing

• Extraction: Ta and Nb minerals are recovered through industry-standard open pit, underground and placer mining methods.

Processing:

• Pyrochlore ores are concentrated by flotation, preceded by removal of irrecoverable ultrafines to achieve acceptable concentrate grades, generally in excess of 50% Nb₂O₅, and rejection of unwanted contaminants. Several flotation stages as well as electrical separation are required.

Columbotantalite ores almost exclusively utilize standard wet gravity

concentration equipment.

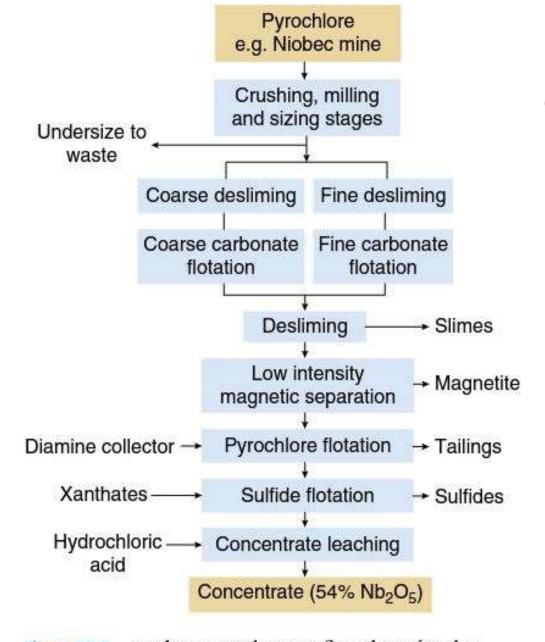
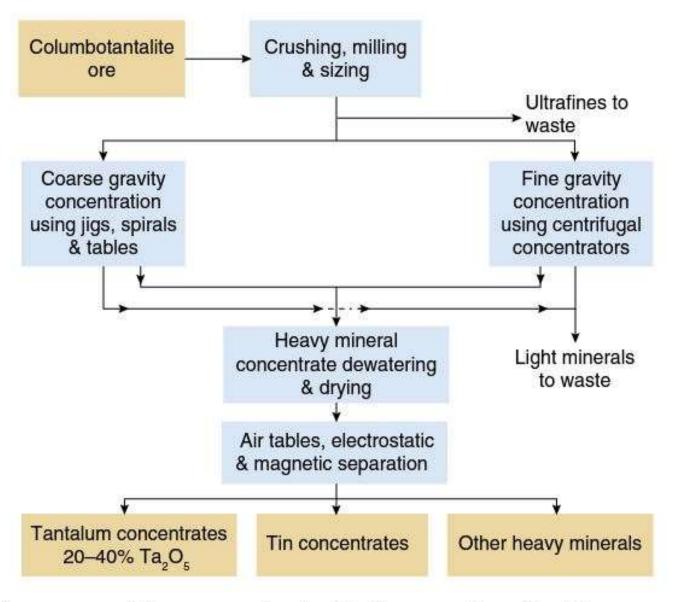



Figure 15.5 Niobium production flowsheet for the Niobec mine. (Modified after Shaw and Goodenough, 2011.)

Nb – pyrochlore extraction methods and processing

Ta – preparation of concentrates

Schematic summary of the processes involved in the preparation of tantalum concentrates.

Ta – production of Ta from concentrates, tin slags and scrap

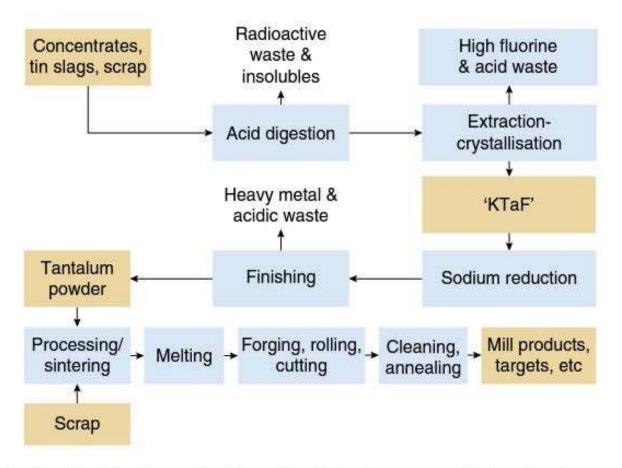


Figure 15.7 Schematic flowsheet for the production of tantalum from concentrates, tin slags and scrap. ('KTaF', potassium fluortantalate).

Nb – specifications and uses

- Close to **90%** of Nb production is used to make **high-strength low-alloy steels**. The addition of Fe-Nb to steel increases strength and toughness, as well as reduces the weight.
- The electrical resistance of Nb-Ti and Nb-Sn alloy wire drops to virtually zero at or below T of liquid He (-268.8 °C) → these alloys are utilized in superconducting magnetic coils in magnetic resonance imagery (MRI), magnetoencephalography, magnetic levitation transport systems and particle physics experiments.
- Nb is also used for alloys and chemicals, including carbides (Nb carbide is used for cutting tools). Niobium oxide (Nb₂O₅) is used to manufacture Li niobate (LiNbO₃) for surface acoustic wave filters, camera lenses, coating on glass for PC screens and ceramic capacitors.

Ta – specifications and uses

- The first uses of Ta were in lightbulb filaments and optical glasses.
- Its widespread usage arose with the advent of the transistors and solid-state avionics. These applications continue to account for over 50% of all Ta consumption, with the most significant segment being the Ta capacitor, used not just in consumer electronics, but also in many automobile components (ABS, airbag activation, GPS, engine management modules).

- Aircraft and medical appliances (pacemakers, defibrillators and hearing aids),
- Electronics: hard-disk devices, ink-jet printer heads.
- A significant growth area is for **sputtering targets**, with Ta being used as the **diffusion barrier** between interconnects on Cu-based **semiconductors**.
- Li tantalate is used in surface acoustic wave filters (mobile phones, audio systems and TV).
- Ta oxide has a high refractive index → lenses in mobile phones and high-end digital cameras.
- Corrosion resistant objects, high-T alloys for turbines, single-crystal alloys (3 11% Ta).

Nb and Ta - recycling and substitution

Recycling

- Nb is recycled (≈ 20%) when Nb-bearing steels and superalloys are recycled, but scrap recovery specifically for Nb is negligible.
- Ta is recycled (≈ 25%) from electronic components and from Ta-bearing cemented carbide and superalloy scrap.

Substitution

- As Ta prices rose in the early 2000s, **Nb** was more widely substituted into electronic capacitors (but **failed to make military specifications** in many critical end uses).
- Ta capacitors: low potential for substitution. For airbag triggers the Ta capacitor is a must.
- Ta-carbide: W (lower performance).

Nb – resources and reserves

Table 15.3 Estimated global reserves and resources of niobium pentoxide, Nb₂O₅. (Data from numerous company websites and other published sources.)

Source	Contained Nb ₂ O ₅ in proven and probable reserves (thousand tonnes)	Contained Nb ₂ O ₅ in measured and indicate resources (thousand tonnes)		
Australia	165	164		
Brazil	44	78,133		
Canada	1810	3005		
China		2200		
Egypt	2.00 m	4		
Malawi	(#E)	174		
Mozambique		52		
USA .	252	129		
Total	2019	81,662		

¹ Inferred resources are also reported in Brazil, Gabon, Kenya, Canada, Tanzania, Ethiopia, Saudi Arabia, Spain, Angola, Mozambique and USA.

²Some deposits are omitted because no reliable reserve or resource data are available.

Ta – resources and reserves

Table 15.4 Estimated global tantalum reserves and resources of tantalum. (Data from USGS, 2011b; Burt, 2010; DNPM, 2011.)

	Most likely resource base				
Source	(tonnes Ta ₂ O ₅)	Percentage of resources	Reserves (tonnes Ta		
Brazil	129,274	40	87,360		
Australia	65,771	21	40,560		
China and Southeast Asia	33,112	10	7800		
Russia and Middle East	31,298	10	220		
Central Africa	28,576	9	3120		
Other Africa	21,318	7	12,480		
North America	5443	2	1500*		
Europe	2268	1	### (A		
Total	317,060	100	152,820		

^{*}Deemed uneconomic at 2010 prices (USGS, 2011b).

Nb - production

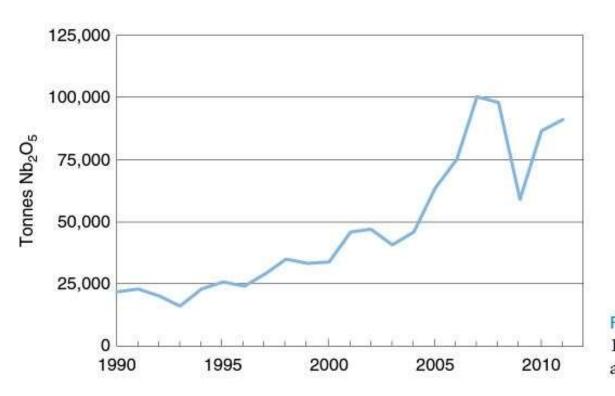


Figure 15.9 Global niobium production, 1990–2011. (After Schwela, 2011, with additional data from T.I.C. Bulletins.)

Ta – production

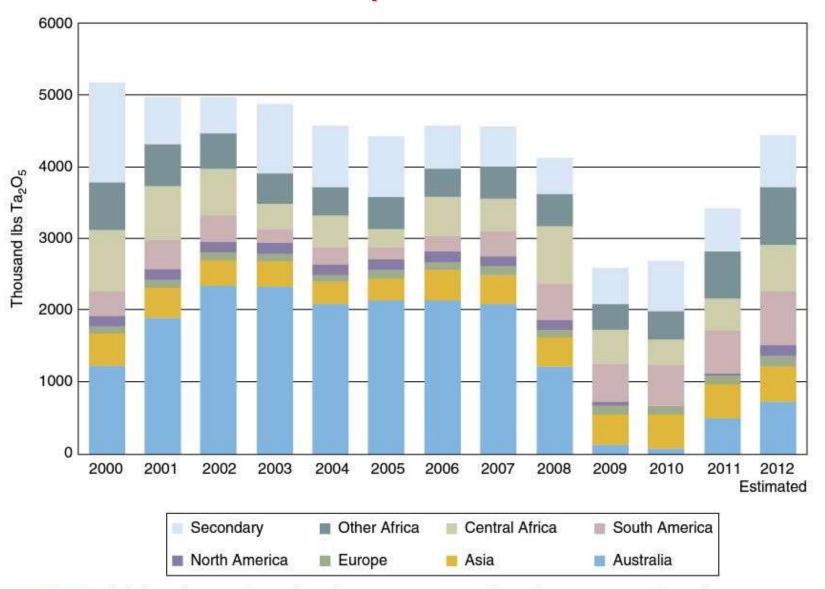


Figure 15.10 Global production of tantalum from concentrates and tin slags, 2000–2012. (Data from various trade documents, government statistics, and industry sources and estimates.) The 'Secondary' category includes low-grade tin slags and shipments of old stocks from the US Defence Logistics Agency 'stockpile'.

Nb and Ta – prices

Figure 15.11 Average annual ferroniobium price per pound of contained niobium, 1991–2012. (Based upon various technical and commercial sources.)

25 20 15 10 5 0 1991 1995 2000 2005 2010

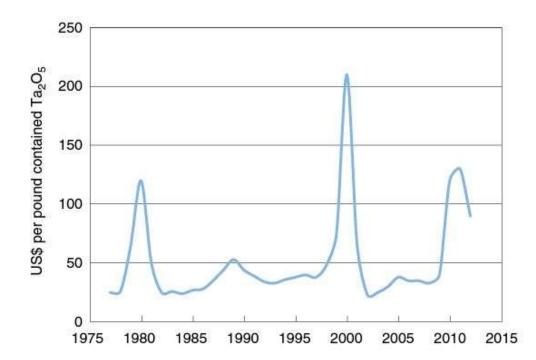


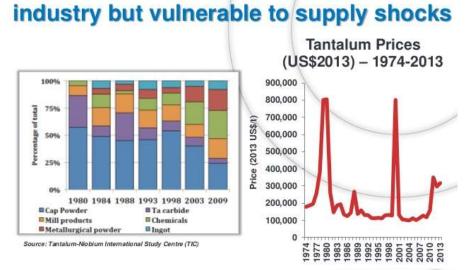
Figure 15.12 Average annual price for tantalum pentoxide contained in 30% tantalum pentoxide (Ta₂O₅) concentrate, 1977–2012. (Based upon various technical and commercial sources.)

Nb and Ta – environmental issues

• Nb and Ta ores do not pose any special environmental problems (lack of sulfides).

• Ta concentrates produced from pegmatites generally contain minute quantities of natural U and Th. Next-generation concentrates (alkaline and peralkaline deposits) will almost certainly have higher levels of these radioactive elements.

• The pyrochlore concentrates used to produce Fe-Nb also contain **Th** and **U**.


• The **solid forms** of **Nb** and **Ta** do not pose special environmental problems (powders can be irritant \rightarrow Ta capacitors).

Nb and Ta – outlook

- The **known global resources of Nb are exceptionally large**. More problematic, however, is a lack of suppliers (e.g. policies of Brazil).
- •A major use of **Nb** is in **steel** and **other alloys** essential to the development of infrastructure (railways, pipelines and automobiles).

 The role of Nb and its utility in electronics is still in the early stages of development. It now finds its way into computer chips and superconductors for medical technologies.
 Tantalum is 'critical' to the electronics

• Ta: the capacitor marked has declined, while in other sectors it has increased. It will remain a critical component in electronic uses.

Tungsten

W – definitions and characteristics

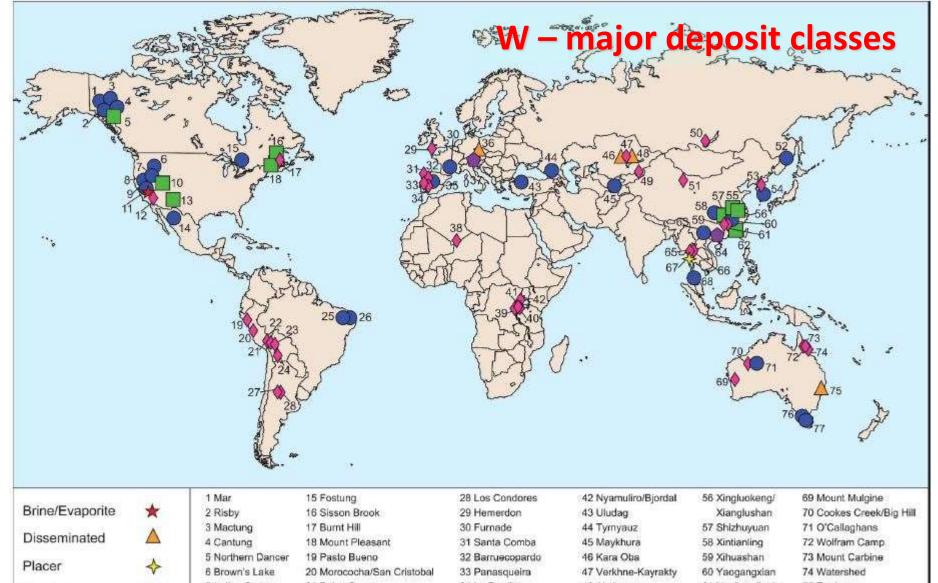

Property	Value	Units
Symbol	W	
Atomic number	74	
Atomic weight	183.84	
Density at 25 °C	19254	kg/m³
Melting point	3422	°C
Boiling point	5555	°C
Hardness (Mohs scale)	7.5	
Specific heat capacity at 25 °C	0.13	J/(g °C)
Electrical conductivity	18.2 × 10 ⁶	S/m
Coefficient of linear thermal expansion	4.5 × 10⁻⁵	/°C
Tensile strength at 20 °C	1000	MPa
Tensile strength at 1650 °C	approx 100	MPa
Thermal conductivity	174	W/(m°C)

- Tungsten, also known as wolfram, was discovered in 1781 when Carl Wilhelm Scheele, produced tungstic acid from scheelite.
- The name tungsten comes from the Nordic words "tung" and "sten", meaning "heavy" and "stone". The name "wolfram" has older roots, and is believed to have been used because the yield of Sn during smelting was reduced if W minerals were present.
- The main applications of W are in "hard metals", i.e. W carbide and cemented carbides, used for cutting, drilling and cemented carbides.
- W is a hard, very dense, steel-grey to greyish-white metal. It has the highest melting point
 of all non-alloyed metals and the second highest of all elements behind C. Of all pure
 metals, W has the lowest coefficient of expansion and the highest tensile strength at
 T>1650 °C.
- W is also known for its high density (similar to Au), high thermal and electrical conductivities, excellent corrosion resistance, does not react with air and water at room T and is largely unaffected by most acids.

W – abundance in the Earth and mineralogy

		Wolframite Group		
	Scheelite	Ferberite	Wolframite	Hübnerite
Chemical formula	CaWO,	FeWO,	▲ (Fe,Mn)WO,	MnWO,
Tungsten trioxide content (WO, %)	80.6	76.3	76.5	76.6
Specific gravity (g/cm³)	5,4-6.1	7.5	7.1-7.5	7.2-7.3
Colour	Pale yellow to orange, green to dark brown, pinkish-tan, dark blue to black, white or colourless	Black	Dark grey to black	Red-brown to black
Lustre	Vitreous or resinous	Submetallic to metallic	Submetallic to metallic	Submetallic to adamantine
Hardness (Mohs scale)	4.5-5.0	5.0	5.0-5.5	5.0
Crystal structure	Tetragonal	Monoclinic	Monoclinic	Monoclinic

- Average abundance of W in the Earth's continental crust ≈ 1 ppm. The upper crust contains ≈ 1.9 ppm W, whereas the middle and lower ≈ 0.6 ppm. The abundance of W in the oceans is ≈ 0.1 ppb. The average concentration in workable ores is usually between 0.1 1.0 % WO₃.
- W does not occur in nature as a free metal. Only **scheelite** (blue-white fluorescence in UV light) and **wolframite** group minerals are abundant enough to be considered ores. Secondary W minerals, such as hydrotungstite $H_2WO_4 \cdot H_2O$ can be produced by alteration processes or weathering and may cause problems during processing.



W – major deposit classes

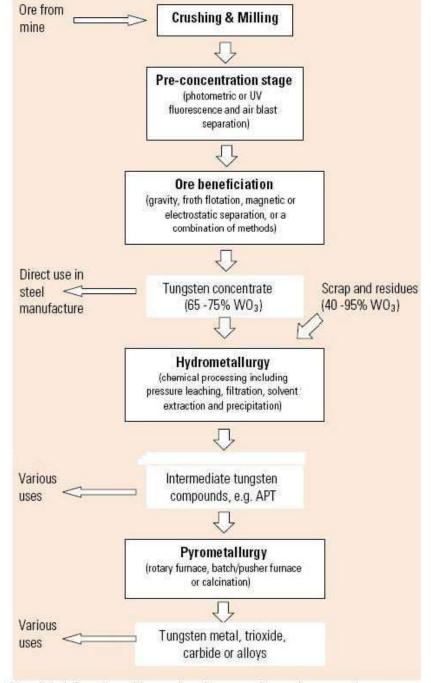
- W deposits usually occur within, or near to, orogenic belts resulting from subduction-related plate tectonics. All major deposits types are associated with granitic intrusions or with medium- to high –grade metamorphic rocks. Werner et al. (1998) classified major W deposits into seven types:
 - 1. Vein/stockwork
 - 2. Skarn
 - 3. Disseminated or greisen deposits
 - 4. Porphyry
 - 5. Stratabound
 - 6. Placer
 - 7. Brine/evaporite.

Table 16.3 Typical size and grade of major producing tungsten deposit types.

Deposit type	Deposit size range (metric tonnes)	Typical grade (WO ₃ %)	Examples		
Vein/stockwork	<10 ⁵ to 10 ⁸	0.1 to 0.8	Panasqueira (Portugal), Pasto Bueno (Peru), Hemerdon (UK)		
Skarn	<10 ⁴ to 10 ⁷	0.1 to 1.5	Mactung and Cantung (Canada), Xintianling and Yaogangxian (China)		
Disseminated	<10 ⁷ to 10 ⁸	0.1 to 0.5	Akchatau (Kazakhstan), Krásno (Czech Republic)		
Porphyry	<10 ⁷ to 10 ⁸	0.08 to 0.4	Xingluokeng and Yangchulin (China), Northern Dancer (Canada)		
Stratabound	$<10^6$ to 10^7	0.2 to 1.0	Mittersill-Ferbertal (Austria), Damingshan (China)		

W – major deposit classes

- Vein and stockwork deposits: genetically related to the development of fractures that occur
 in or near granitic intrusions during emplacement and crystallization. These fissures are
 frequently filled with quartz and can be up to several meters in width. The veining is
 commonly bordered by greisen, and the mineralogy of vein deposits range from the simple
 Qtz + wolframite, to the complex (> 50 vein-forming minerals, containing Sn, Cu, Mo, Bi, Au,
 U, Th, REE and phosphates).
- Skarn deposits: skarns are coarse-grained rocks dominated by calc-silicate minerals that
 have formed by metasomatic processes in sequences containing carbonate-bearing rocks.
 Most are found adjacent to plutons, but they can also occur along faults, major shear zones
 and shallow geothermal systems. Scheelite CaWO₄ is the principal W mineral and this may
 occur as disseminated grains or fracture filling.
- Disseminated or greisen deposits: wolframite or scheelite are disseminated in highly altered (greisenised) granite or granitic pegmatite. They usually occur near to the upper parts that are emplaced at depths of between 0.5 and 5 km, where fluids can boil but are prevented from escaping to the surface.
- Porphyry deposits: extensive, low-grade deposits formed following the separation of metal-rich fluids from a crystallizing wet magma. W (wolframite or scheelite) tends to concentrate in stockwork zones.


Vein-type W deposits

	Morphological zones	Zones thickness (metres)	Average vein width (metres)	Density (veins per metre)		Mineral association
1	Stringer or thread zone	100–200	0.001- 0.01	0.05–5	-i-Y-V	muscovite, cassiterite, wolframite, tourmaline
11	Veinlet zone	50–150	0.02-0.1	5–20		cassiterite, wolframite, chalcopyrite, bismuthine, beryl, muscovite, pyrite
III	Thin vein or mixed zone	150-250	0.05-0.5	1–8		wolframite, cassiterite, scheelite, chalcopyrite, pyrite, molybdenite, bismuthine, beryl, galena, sphalerite
IV	Large vein zone	200-450	0.2–2	0.03–2		wolframite, chalcopyrite, molybdenite, potash, feldspar, pyrite, galena
٧	Extinction or thin-out zone	>50	0.05–2	0.05-0.1		wolframite, molybdenite, chalcopyrite, pyrite, potash, feldspar

Figure 16.2 Schematic model of 'five-floor building' vein-type tungsten deposit. (Data sourced from: Gu, 1982; Huang and Xiao, 1986.)

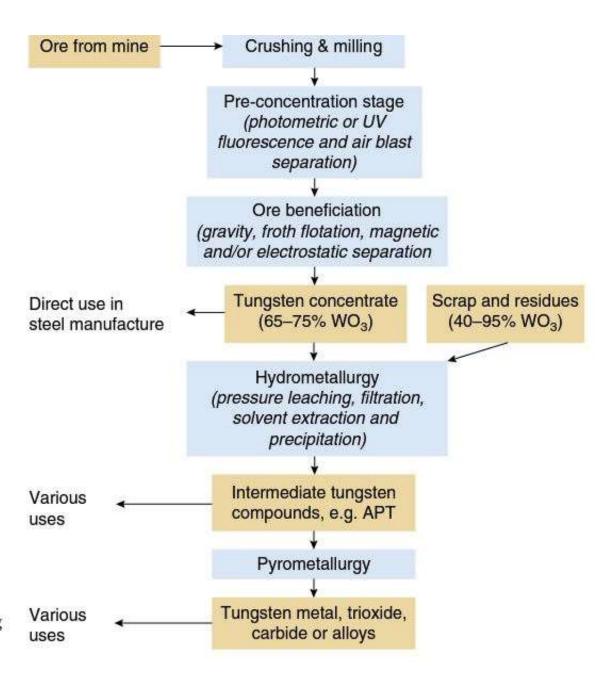
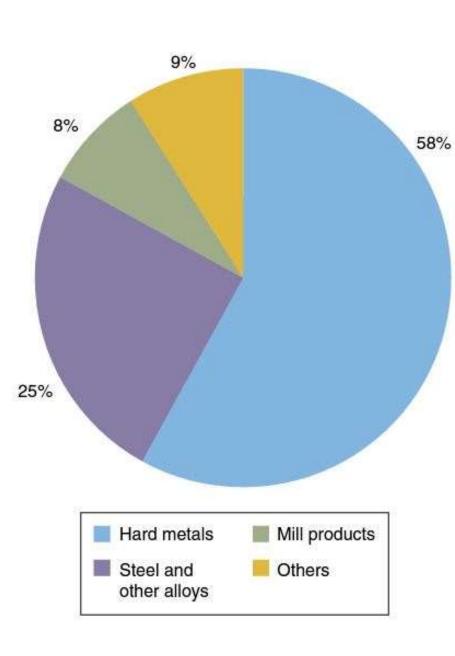
W – extraction methods and processing

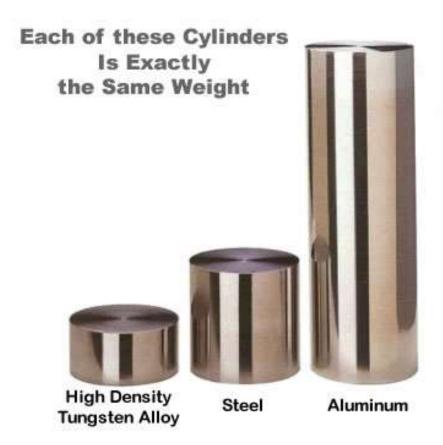
- Extraction: most W is mined from subsurface (underground) mines.
- Processing: the first phase of processing the ore is beneficiation at the mine site to increase the W content. The resulting concentrate containing > 65% WO₃ can either be used directly for production of **ferro**tungsten and steel manufacture, converted to a number of intermediate W compounds (e.g. ammonium paratungstate, APT) by hydrometallurgical processes or further refined to pure W using pyrometallurgical techniques (the calcination under oxidizing condition converts APT to W trioxide).

Simplified flow chart illustrating the general steps in processing tungsten.

(Source: British Geological Survey—tungsten.)

W - processing


Figure 16.3 Simplified flow diagram illustrating the generic steps in processing tungsten.

W – specifications and uses

- Ammonium paratungstate (APT): $(NH_4)_{10}(W_{12}O_{41})\cdot 5H_2O$ is the main W raw material traded in the market, usually calcined to yellow trioxide (WO_3) or blue oxide $(W_{20}O_{58})$.
- Ammonium metatungstate (AMT):
 (NH₄)₆H₂W₁₂O₄₀·xH₂O is a highly soluble white crystalline powder. Produced from APT in an electrolytic cell.
- Tungsten trioxide (WO₃)
- Tungsten blue oxide (TBO) WO_{2.97}
- Tungsten metal powder: produced from yellow or blue W oxide in hydrogen reduction furnaces.
- Tungsten heavy-metal-alloy (WHAs): W alloy that typically contain 90 98% wt. W in combination with a mix of Ni, Fe, Cu and/or Co.
- Produced by the reaction of W metal powder with pure C powder at 900 2200 °C (carburization). High melting point (2870 °C) and extremely hard.

W – specifications and properties

- Ferrotungsten (FeW and Fe₂W): remarkably robust alloy, high melting point. By combining Fe with W, the brittleness of metallic W is much reduced.
- Non-ferrous tungsten alloys: composites with Cu, Ag, Ni and rare metals. Hard, heat-resistant materials, superior wear resistance, robust physical properties at high T.
- Superalloys: usually with Ni, Co or Fe-Ni. Excellent mechanical strength and creep resistance at high T

PROPERTIES OF W

- Very high melting point
- Very high density
- Extreme strength
- High wear resistance
- High tensile strength
- Low coefficient of expansion
- High thermal and electrical conductivity

W – uses

- Hard metals: W carbides and cemented carbides (W carbides and Co, or Ti, Ta, Nb) → cutting, drilling, wear-resistant parts or coatings. Important in metalworking (40%), mining (30%) and petroleum (20%) industries.
- Steel and other alloys: high-speed steel (HSS), heatresistant steel and tool steel.
- Superalloys: aerospace, industrial gas turbines and marine turbine industries (e.g flue-gas desulfurization, heat exchangers, industrial furnaces, jet-engine combustion chambers).
- Mill products (wire, sheets or rods): ideal for electrical and electronic applications (e.g. bulb filaments, discharge lightning electrodes, vacuum tubes, heating elements, medical X-ray tubes, automotive ignition systems), welding electrodes (TIG).
- Chemical and other applications:
 - APT → colouring agent in porcelain industry or catalysts
 - AMT → reagent for chemical analysis and corrosion inhibitor
 - WF₆ → semiconductor circuits (200 t/year)

W – recycling and substitution

- Recycling: more than 30% of total world's supply is from recycled sources.
 - Old scrap (cemented carbide parts, W and W alloys, old superalloy scrap, W-bearing catalysts)
 - New scrap: generated during the processing of W concentrates.
 - **Unrecovered scrap**: chemical applications (except catalysts), wear of cemented carbide parts, erosion of electrical contacts.
 - Recycling methods: metallurgical and hydrometallurgical techniques.

Substitution

- Limited options for substitution in many applications (especially high-T).
- Mill products: Mo.
- W steels: Mo.
- Bulb filaments: fluorescent lamps and LEDs.
- Weights and armor-piercing projectiles: depleted U.

W - resources, reserves and production

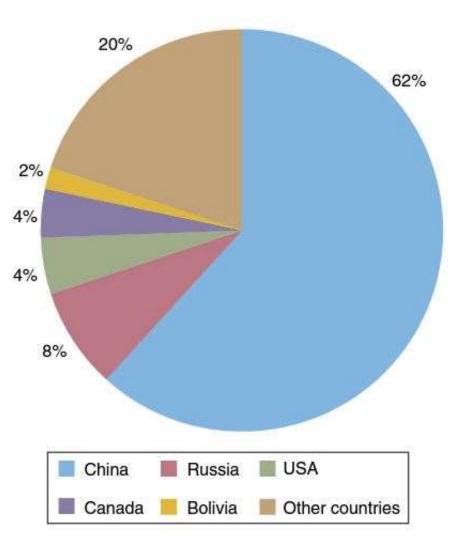


Figure 16.5 Location of the estimated world reserves of tungsten, as at December 2011 (Shedd, 2012a).

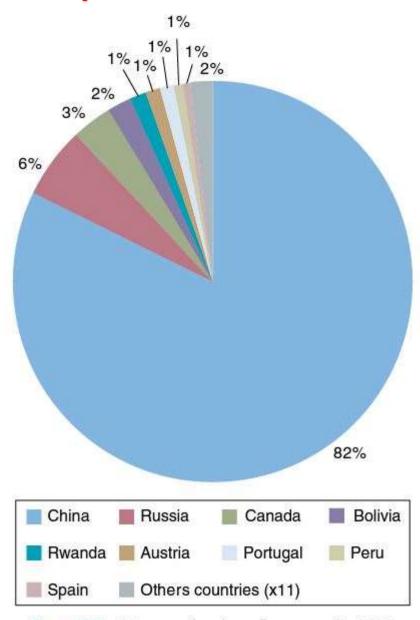


Figure 16.7 Mine production of tungsten in 2011. (Data from British Geological Survey, 2013.)

W - production

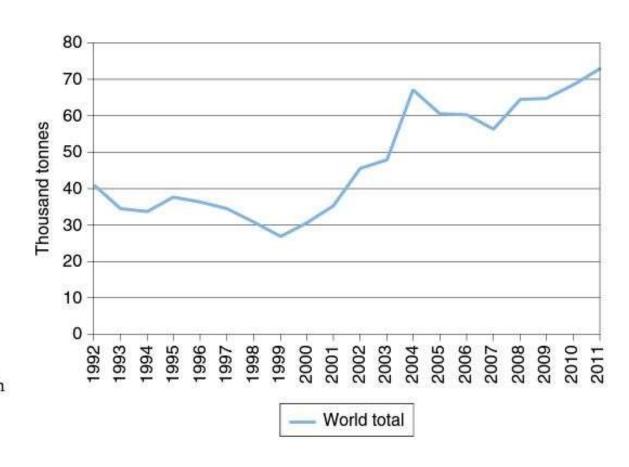


Figure 16.6 Mine production of tungsten, 1992–2011. (Data from British Geological Survey World Mineral Statistics database.)

W – evolution of W production

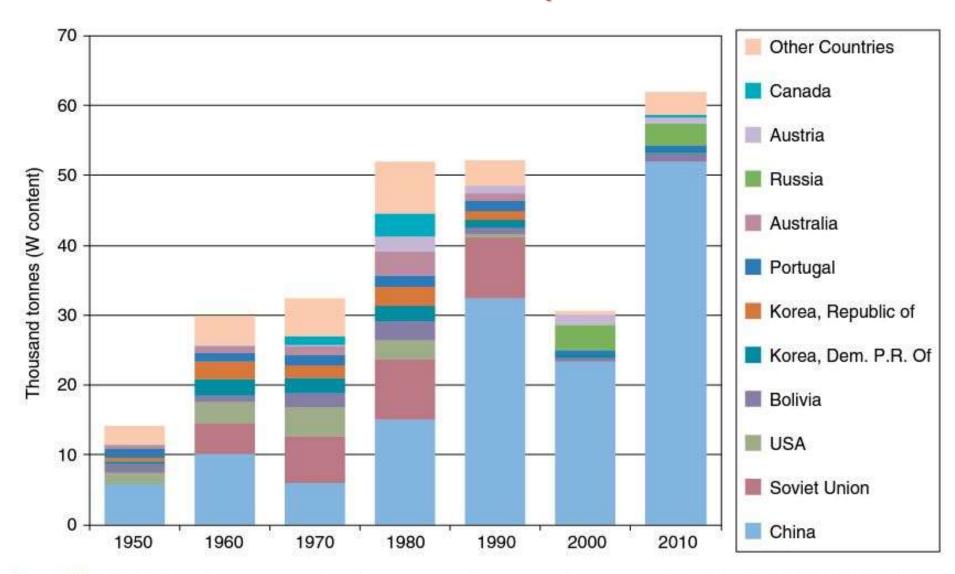


Figure 16.8 Evolution of tungsten production concentration, output by country for 1950, 1960, 1970, 1980, 1990, 2000 and 2010. (Data from British Geological Survey World Mineral Statistics database.)

W – major deposits under development

Table 16.4 Selected major tungsten deposits under development and those where production is expected in the near future.

Name	Country	Current Status (as at January 2013)	Possible Production	Resources (tonnes contained tungsten	
Hemerdon	United Kingdom	Feasibility study completed May 2011, mine construction expected 2013	2014	>460,000	
Barruecopardo	Spain	Feasibility study completed Feb 2012, commissioning expected 2014	2014 or 2015	>50,000	
Sangdong	South Korea	Feasibility study completed April 2012, commissioning expected 2014	2014 or 2015	>280,000	
King Island	Australia	Feasibility study completed Feb 2012, all permits in place, raising funding	2015 ?	>190,000	
Sisson Brook	Canada	Feasibility study completed 2013. Environmental impact assessment ongoing	2015 ?	>270,000	
Cookes Creek	Australia	Feasibility study ongoing	Unknown	>40,000	
Mactung	Canada	Feasibility study completed 2009, some environmental permitting in 2012	Unknown	>370,000	
Northern Dancer	Canada	Preliminary economic assessment completed in 2011	Unknown	>390,000	
O'Callaghans	Australia	Prefeasibility study ongoing	Unknown	>200,000	

Note: Resources are from all categories and in some cases include reserves.

W – main tungsten exporting countries

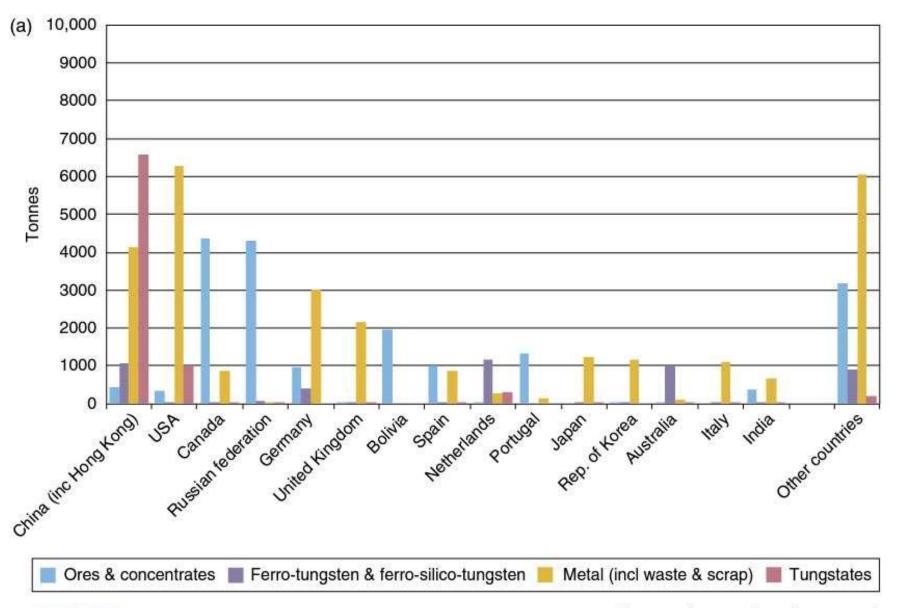


Figure 16.9a Main tungsten exporting countries, 2011. Note: 'tungstates' is predominantly APT. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)

W – main tungsten importing countries

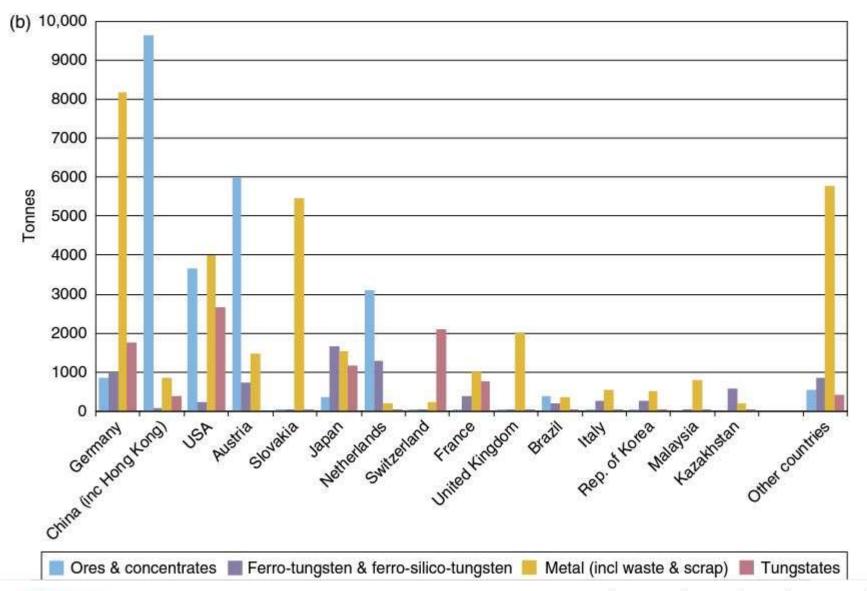
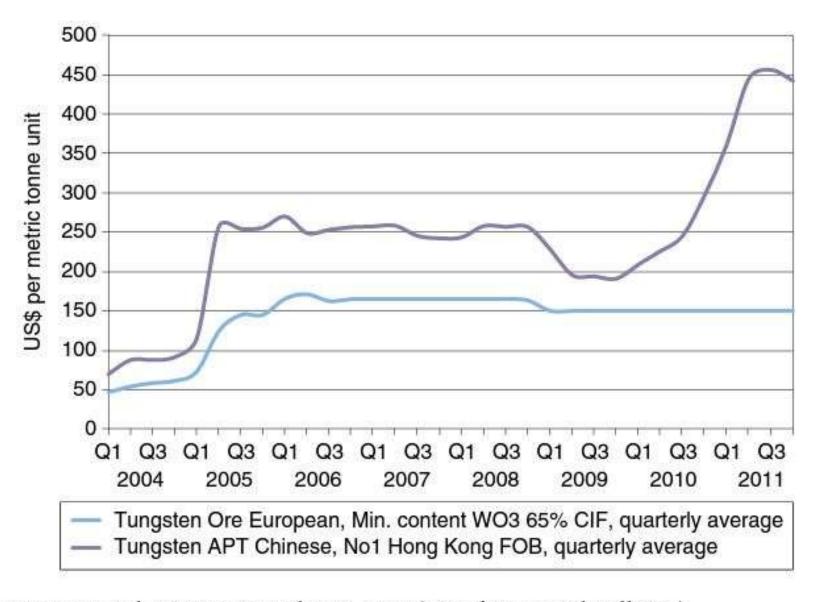



Figure 16.9b Main tungsten importing countries, 2011. Note: 'tungstates' is predominantly APT. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)

W – tungsten ore and APT price trend

Tungsten ore and APT price trend 2004–2011 (Data from Metal Bulletin.)

W – environmental issues

- W is much less toxic than other metals (e.g. Pb and Hg, for which it is sometimes used as a substitute, e.g. in ammunition).
- Particles of **W metal** could **oxidize in air** and then dissolve into soil through the action of rainwater. Elevated levels of W have been found in soils, trees, plant tissues, aquatic systems, atmosphere, animals and humans.
- The dissolution of W powders appears to cause **soil acidification** with associated adverse consequences on the micro-organisms, invertebrates and plant communities.
- The **geochemistry of W is complicated** and its mobility, bioavailability and toxicity in the environment depends upon the exact form of **W compounds**, **pH**, **oxidation states** and the **nature of the exposure pathway**.

W - outlook

- The worldwide supply of W is dominated by China (> 70% of total world production).
- Several new non-Chinese mines are likely to start production in the near future.
- W use is largely influenced by conditions in the **global economy**.
- Future developments of specialist steel alloys and "superalloys" (high-T and wear resistance) are likely to require significant quantities of W > aerospace, industrial turbines, fusion reactors.

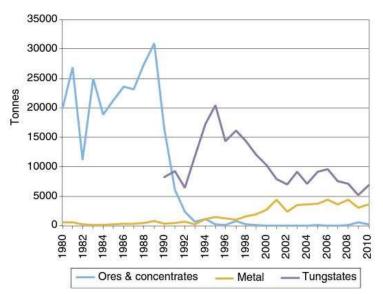


Figure 16.11 China exports of tungsten ores and concentrates compared to exports of tungstates (mainly APT) and tungsten metal, 1980–2010. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)

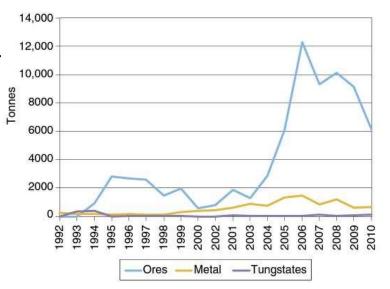


Figure 16.12 China imports of tungsten ores and concentrates, tungstates (mainly APT) and tungsten metal, 1992–2010. (Data from British Geological Survey World Mineral Statistics database and UN Comtrade, 2013.)