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Chaperonins are biological nanomachines that help newly translated

proteins to fold by rescuing them from kinetically trapped misfolded

states. Protein folding assistance by the chaperonin machinery is

obligatory in vivo for a subset of proteins in the bacterial proteome.

Chaperonins are large oligomeric complexes, with unusual seven fold

symmetry (group I) or eight/nine fold symmetry (group II), that form

double-ring constructs, enclosing a central cavity that serves as the

folding chamber. Dramatic large-scale conformational changes, that take

place during ATP-driven cycles, allow chaperonins to bind misfolded

proteins, encapsulate them into the expanded cavity and release them

back into the cellular environment, regardless of whether they are folded

or not. The theory associated with the iterative annealing mechanism, which

incorporated the conformational free energy landscape description of

protein folding, quantitatively explains most, if not all, the available data.

Misfolded conformations are associated with low energy minima in a

rugged energy landscape. Random disruptions of these low energy

conformations result in higher free energy, less folded, conformations

that can stochastically partition into the native state. Two distinct

mechanisms of annealing action have been described. Group I

chaperonins (GroEL homologues in eubacteria and endosymbiotic

organelles), recognize a large number of misfolded proteins non-

specifically and operate through highly coordinated cooperative motions.

By contrast, the less well understood group II chaperonins (CCT in

Eukarya and thermosome/TF55 in Archaea), assist a selected set of

substrate proteins. Sequential conformational changes within a CCT ring

are observed, perhaps promoting domain-by-domain substrate folding.

Chaperonins are implicated in bacterial infection, autoimmune disease,

as well as protein aggregation and degradation diseases. Understanding

the chaperonin mechanism and the specific proteins they rescue during

the cell cycle is important not only for the fundamental aspect of protein

folding in the cellular environment, but also for effective therapeutic

strategies.
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Introduction

Protein folding in the cell is not always a spontaneous process

due to unproductive pathways of misfolding and aggregation.

Chaperonin molecules in bacterium prevent such off-pathway

reactions and promote protein folding through spectacular ATP-

driven cycles of binding and releasing substrate proteins (SPs).

Chaperonins are distinguished among the molecular chaperone

family by the presence of a cavity that offers a productive

environment for protein folding, thus preventing unwarranted

inter protein interactions, which could occur in the crowded

cellular environment. Many chaperones are known as heat-shock

proteins (Hsp), alluding to their overexpression under stress

conditions, although their action is also required under normal

cell growth. Availability of chaperone assistance at critical junctures,

for example through thermotolerance, ensures cell viability even

when cellular functions would otherwise be overwhelmed. More

broadly, comprehensive protein quality control relies on a range of

chaperone subfamilies, classified according to their molecular

weight, to deliver assistance with essential processes in the

protein lifecycle: folding/refolding, with an important role for

Hsp60/Hsp10 (GroEL/S), Hsp90 and Hsp70/Hsp40 classes

(DnaK/DnaJ); protection against oxidative stress, Hsp33;

disaggregation, Hsp100 (Hsp104/ClpB), Hsp70/Hsp40, and small

Hsps (sHsp); and degradation, Hsp100 (Clp family, p97, the

proteasome Rpt1-6 ring). (Parsell and Lindquist, 1993; Wickner

et al., 1999; Frydman, 2001; Kim et al., 2013).

Two distinct chaperonin classes have been identified. GroEL

and its co-chaperonin GroES in Escherichia coli (Figure 1A) are

the prototype for chaperonin systems found in eubacteria and

endosymbiotic organelles, or Group I chaperonins. The

thermosome (Figure 1B) and TCP-1 ring complex (TRiC, or

CCT for chaperonin-containing TCP1) are representative for

archaeal and eukaryotic cells, respectively, and are known as

Group II chaperonins. Structural characterization (Braig et al.,

1994; Xu et al., 1997; Ditzel et al., 1998; Fei et al., 2013) reveals

that chaperonins have an oligomeric, double-ring structure,

composed of two (thermosome) or more (CCT) distinct

FIGURE 1
Prototypes of chaperonin classes. (A) Group I chaperonin GroEL and its co-chaperonin GroES (purple) (B) Group II chaperonin thermosome.
Three domains, equatorial (red), intermediate (green), and apical (yellow), are distinguished within each subunit. The domains belonging to one
subunit of each chaperonin are higlighted. Adapted from (Ditzel et al., 1998).
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subunits within the same ring or identical subunits (GroEL).

Within each subunit there are three distinct domains: The ATP-

binding equatorial domain, the flexible apical domain and the

intermediate hinge region. The co-chaperonin GroES is a single-

ring oligomer with identical subunits, capping one of the GroEL

rings (Figure 1A). This elaborate annealing machinery is present

in nearly all organisms and it is essential for cell survival (Fayet

et al., 1989).

Why does folding of some proteins in the crowded cellular

milieu require chaperonin assistance? This requirement does

not exist in vitro, as favorable conditions for folding can be

identified for known chaperonin substrates. Cellular

conditions, however, are unfavorable (non-permissive) for a

subset of these proteins, leading to formation of misfolded

conformations. To reach the native state from the misfolded

conformations, proteins must overcome large free energy

barriers, a feat which could prove difficult to accomplish

within the biological time scale. Moreover, misfolded

proteins expose patches of hydrophobic amino acids, making

them potential targets for aggregation or leaving them

vulnerable to degradation. Chaperonins rescue proteins

trapped in misfolded conformations and allow them to reach

the native state within a protected folding chamber.

It should be noted that the chaperone annealing action does

not alter the three-dimensional conformation of the native

protein, in accord with Anfinsen. (1973) hypothesis that the

information needed for the native state is encoded solely in the

amino acid sequence. Instead, chaperones induce pathways that

ensure the correct folding of newly translated or newly

translocated proteins (Naqvi et al., 2022).

Here, we provide our perspective on the substrate recognition

mechanisms for the two chaperonin types. A number of reviews

describe in detail other fundamental features of the chaperonin

machinery, including structure, allosteric motion and ATPase

activity (Thirumalai and Lorimer, 2001; Hartl and Hayer - Hartl,

2002; Saibil and Ranson, 2002; Fenton and Horwich, 2003; Spiess

et al., 2004; Horovitz and Willison, 2005; Horwich et al., 2006;

Gruber and Horovitz, 2016; Thirumalai et al., 2020; Horovitz

et al., 2022). We refer the interested reader to these accounts for a

broader picture of the chaperonin mechanisms.

We also briefly examine the role of chaperonin in disease

and point to extensive research in the area (Ranford and

Henderson, 2002). Prevention of aggregation through

chaperonin assisted folding of non-native polypeptides

naturally suggests that defects in the chaperonin machinery

may result in disease. The extreme situation, the absence of

chaperonin, is fatal, as a consequence of the essential nature of

this machinery for the cell. Besides these immediate

implications, chaperonins are also found to be major

immunogens that play an important role in infection,

autoimmune disease, and idiopathic diseases such as arthritis

and atherosclerosis. Considering the potential therapeutic use,

the study of chaperonin assisted protein folding is likely to

suggest valuable practical approaches.

Chaperonin hemicycle

Chaperonins operate as continuous annealing machines

by alternating encapsulation of substrate proteins within the

cavity of each ring. These encapsulation events are enabled by

large scale, coordinated, conformational transitions that take

place in conjunction with ATP and GroES binding in the

active ring of GroEL. In this section, we focus on the series of

events that occur during the GroEL hemicycle.At the

initiation of the chaperonin cycle, termed the T state

(Figure 2), GroEL presents a nearly continuous

hydrophobic ring formed at the mouth of the cavity by the

seven apical domain binding sites. (Braig et al., 1994) This

state has high affinity for non-native polypeptides, which also

present exposed hydrophobic surfaces. Binding of misfolded

proteins to GroEL prevents the formation of irreversible

protein aggregates. Upon ATP and GroES binding to the

same ring, large-scale, entirely concerted, domain motions

in that ring result in doubling the size of the cavity. During

these transformations, GroES, which occupies the same apical

binding sites as the SP, (Fenton et al., 1994; Buckle et al., 1997;

Xu et al., 1997; Chen and Sigler, 1999) displaces the SP in the

FIGURE 2
Reaction hemicycle of GroEL illustrating the substrate protein
(SP) folding assistance. EL and ES stand for GroEL and GroES
respectively. The GroEL T state has a high affinity for SP binding.
Upon ATP and GroES binding, the SP is displaced into the
expanded GroEL cavity, where productive folding can take place.
Dissociation of the complex occurs upon the initiation of a folding
reaction in the opposite GroEL ring. The structures of the T, R, and
R″ states are known. Reproduced from (Stan et al., 2007)Ⓒ(2007)
National Academy of Sciences.
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largely expanded cavity. As a result of these spectacular

allosteric transitions, the SP is presented with a completely

different, mostly hydrophilic, environment that promotes SP

folding. The chaperonin cycle is completed by ATP hydrolysis

and the binding of ATP in the opposite ring, which initiates

the cycle in that ring. These events trigger the release of

GroES, ADP and SP from the folding chamber. Stringent

GroEL substrates require several cycles of binding and

release in order to reach their native state. In each cycle,

productive folding, if it were to occur at all takes place within

the cavity. (Thirumalai et al., 2020).

Iterative annealing mechanism

The function of the GroEL machinery can be quantitatively

understood within the Iterative Annealing Mechanism (IAM)

framework (Todd et al., 1996). This mechanism is described in

the framework of the energy landscape, which associates a free

energy to each conformational state of the protein (Figure 3).

During each cycle, the SP is rescued from one of the low energy

minima, that corresponds to a misfolded state. From the

ensuing higher free energy state, the protein chain undergoes

kinetic partitioning (Guo and Thirumalai, 1995) to either the

native state or to the same or a different low energy minimum.

Protein folding in a model cavity has been investigated using

implicit solvent and coarse-grained models for the SP.

(Betancourt and Thirumalai, 1999; Klimov et al., 2002;

Baumketner et al., 2003; Takagi et al., 2003; Jewett et al.,

2004; van der Vaart et al., 2004; Stan et al., 2007) These

studies have provided several important clues about how

protein folding occurs in confinement. It turns out that an

optimum range of interactions between the cavity wall and the

SP results in enhanced stability and folding rates.

GroEL substrate protein binding
mechanism

GroEL manifests a promiscuous behavior towards binding

non-native polypeptides. Misfolded proteins, that expose

hydrophobic residues, are recognized by GroEL without

preference for a specific secondary or tertiary structure

(Viitanen et al., 1992; Aoki et al., 2000). Despite the large

number of proteins that can form complexes with GroEL

(Viitanen et al., 1992), in vivo only about 5–10% of E. coli

FIGURE 3
Energy landscape perspective of the chaperonin annealing action.
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proteins can afford to use the chaperonin machinery under

normal conditions (Lorimer, 1996; Ewalt et al., 1997). Even

upon heat stress, only about 30% of E. coli proteins require

folding assistance (Horwich et al., 1993). The relatively reduced

participation of GroEL to protein folding in the cell prompts us to

wonder why only a subset of proteins of the entire organism uses

chaperonin assistance. Given the GroEL promiscuity, how does

GroEL discriminate between substrates and non-substrates

within a proteome?

Addressing these questions is challenging, from an

experimental point of view, because of the inherent difficulty

in arresting structures of complexes formed between GroEL and

non-native polypeptides. Somewhat surprisingly, even after

25 years, the only available crystal structures of GroEL-bound

ligands correspond to the GroEL-GroES complex (Xu et al.,

1997) and to peptides bound to GroEL (Wang and Chen, 2003)

or to the GroEL apical domain fragment (Buckle et al., 1997;

Chen and Sigler, 1999), while a number of lower resolution cryo-

EM structures (Ranson et al., 2001; Roseman et al., 2001; Falke

et al., 2005; Chen et al., 2006) are available. Nevertheless, these

structures, as well as a number of biochemical studies, identified

the GroEL binding sites and the multivalent binding of stringent

substrate proteins. Bioinformatic analyses complementing these

studies pinpointed chaperonin signaling pathways and chemical

character conservation at functionally relevant sites.

Characterization of the GroEL binding sites using

mutational (Fenton et al., 1994) and crystallographic (Xu

et al., 1997) studies pointed towards a mostly hydrophobic

groove between two amphiphatic helices (Figure 4A), as well

as a nearby loop, located in the apical domain of each GroEL

subunit. Specific residues implicated in GroES and SP binding

are Tyr 199, Tyr 203, Phe 204, Leu 234, Leu 237, Leu 259, Val

263, Val 264 (Fenton et al., 1994). In addition, these studies

led to the key observation that the same GroEL region

responsible for recognizing misfolded substrates is

ultimately destined to form the interface with GroES in the

course of the chaperonin cycle. Strikingly, the structures of

peptides bound to GroEL overlap significantly (Chen and

Sigler, 1999), suggesting that strong restrictions are imposed

on the bound conformation.

Bioinformatic analysis of a large number of chaperonin

sequences further revealed that the various chaperonin

functions (peptide binding, nucleotide binding, GroES and SP

release) require that the chemical character and not the identities

of specific amino acids be preserved (Stan et al., 2003). Moreover,

this study lent support to the sequence analysis by Kass and

Horovitz (Kass and Horovitz, 2002), which suggested that

correlated mutations couple residue doublets or triplets along

signaling pathways within GroEL or between GroEL and GroES.

Multivalent binding of stringent SP substrates was suggested

to be implicated in the GroEL unfoldase action. This action is

brought about by the large scale conformational transitions that

take place in coordinated fashion in all GroEL subunits during

the chaperonin cycle, resulting in an increased separation of the

apical binding sites. At the initiation of the chaperonin cycle, the

seven GroEL binding sites form a nearly continuous ring at the

cavity opening. Stringent GroEL substrates, such as malate

dehydrogenase and Rubisco (not natural substrates for GroEL,

however Rubisco is a substrate of the Rubisco binding protein,

GroEL homolog in chloroplast), appear to interact with at least

three consecutive binding sites (Farr et al., 2000; Elad et al., 2007).

By contrast, Rhodanese, which is a less-stringent substrate,

FIGURE 4
(A) Contacts between GroEL helices H and I (cyan) and the GroES mobile loop (pink). Sidechains of the residues that form the closest contacts
are shown in red (GroEL) and green (GroES). (B) Schematic representation of contacts between GroEL and GroES. Reproduced from Ref (Stan et al.,
2005).
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requires two non-contiguous binding sites (Farr et al., 2000). The

effect of this displacement, corroborated with multivalent SP

binding, is to impart a stretching force to the SP. (Thirumalai and

Lorimer, 2001).

Taken together, these important results suggest that substrate

recognition involves peptides that occupy the GroEL binding site

in a similar conformation as the GroES mobile loop. For

stringent GroEL SPs, multiple interfaces are formed involving

these peptides and several contiguous GroEL subunits. The

peptide complementarity to the GroEL binding sites is

defined, as in the GroES case, by amino acids whose chemical

character is strongly conserved.

Identification of GroEL substrates at the
proteome level

The promiscuous behavior of GroEL towards binding non-

native polypeptides appears to be at variance with the relatively

small fraction of protein chains in an organism that actually use the

GroEL machinery. However, common features of GroEL

substrates and similar conformations of bound peptides, as

discussed above, suggest a set of requirements for GroEL

recognition. Several computational approaches (Chaudhuri and

Gupta, 2005; Stan et al., 2005; Noivirt-Brik et al., 2007; Raineri

et al., 2010; Tartaglia et al., 2010) and proteomic studies (Houry

et al., 1999; Kerner et al., 2005) were successful in identifying and

characterizing GroEL substrates within whole proteome.

Proteomic and biochemical studies (Houry et al., 1999; Kerner

et al., 2005) provided the first experimental identification of GroEL

SPs, on a proteome-wide scale, in E. coli. These studies found that

252 of the ~2400 cytosolic proteins in E. coli interact with GroEL.

Among this set of proteins, 85 are stringent substrates under normal

growth conditions and they occupy 75–80% of the GroEL capacity.

Additional in vivo studies (Chapman et al., 2006) involving a

temperature-sensitive lethal E. coli mutant suggested a wider set

of ~300 GroEL interacting proteins, including some that had not

been revealed by previous in vitro experiments. The latter study

raises the possibility that even transient GroEL interaction, in the

cellular environment, suffices to prevent aggregation of misfolded

proteins. The set of obligate in vivo substrates was subsequently

narrowed to ≃ 60 proteins identified in experiments using GroE-

depleted conditions (Fujiwara et al., 2010), and completed by the

addition of 20 novel substrates identified using cell-free proteomics

(Niwa et al., 2016). GroEL substrates were also identified in other

bacteria, such as Thermus thermophilus (Shimamura et al., 2004)

and Bacillus subtilis (Endo and Kurusu, 2007).

One line of computational research focuses on identifying

polypeptide regions within proteins that render them natural

substrates for GroEL. The underlying hypothesis is that natural

SPs have the same sequence complementarity to the GroEL

binding site as GroES (Chaudhuri and Gupta, 2005; Stan et al.,

2005). Therefore, SPs possess sequence patterns similar to the

GroES mobile loop segment 23–31, GGIVLTGAA, which binds to

GroEL. In one approach (Chaudhuri and Gupta, 2005), SP binding

motifs are defined as strong hydrophobic patches (i.e., containing

amino acids L, V, I, F, M) having 40–50% sequence similarity to

the GroES segment GGIVLTG. The sequence similarity is

evaluated using a pairwise alignment between the protein

sequence and the peptide GGIVLTG and allowing amino acid

substitutions that preserve the chemical character (hydrophobic-

hydrophobic or same charge). In a different approach (Stan et al.,

2005), the binding motif is required to match the pattern

G_IVL_G_A that includes NC = 6 GroES amino acids in

contact with GroEL (Figure 4) and three arbitrary amino acids

(“_”). Pattern matching takes into account possible amino acid

substitutions that preserve the chemical character, as well as less

strongly bound peptides, having four (G_IVL) and five

(G_IVL_G) contacts. Natural SPs must possess multiple copies

of the binding motif, NB, to satisfy the required multivalent

binding to GroEL. About a third of the sequences in the E. coli

proteome are expected to be natural SPs (Horwich et al., 1993).

This method retrieves the expected fraction of natural SPs in E. coli

for sequences that satisfy 4 <NC < 6 and 2 < NB < 4. No preferred

secondary structure emerges in this set of proteins. This method is

able to identify 80% of experimentally determined natural

substrate proteins for GroEL from E. coli (Houry et al., 1999;

Kerner et al., 2005) and predicted SPs in several other proteomes.

GroEL must not only recognize proteins that require folding

assistance, but also the protein conformations that must be

remodeled. How does GroEL discriminate between native

conformations, which it should not recruit, from the misfolded

conformations of proteins it must selectively assist? A structural

and bioinformatic analysis (Stan et al., 2006) found that GroES-

type binding motifs are not significantly exposed to solvent in the

native conformation of GroEL SPs. This result suggests that GroEL

recognition of misfolded conformations of SPs requires that

multiple GroES-type binding motifs be solvent-exposed. In

accord with this hypothesis, molecular dynamics simulations

that probe extensively the conformational space of an obligate

GroEL substrate, DapA (Nagpal et al., 2015), reveal that its GroES-

type binding motifs are solvent-exposed in unfolding

intermediates, but are inaccessible in the native conformation.

These studies find that, for the seven motifs identified within the

DapA sequence, the average solvent-exposed area per residue

increases from ≃ 74Å in the native conformation to ≃ 182Å in

the intermediate structures. Experimental studies using hydrogen-

exchange coupled with mass spectrometry (Georgescauld et al.,

2014) support the increased exposure of the hydrophobic segments

and loss of hydrogen bonds that accompany the destabilization of

the TIM-barrel core of this substrate.

A different line of computational research (Noivirt-Brik et al.,

2007; Raineri et al., 2010; Tartaglia et al., 2010; Azia et al., 2012) uses

machine learning approaches to examine physicochemical

characteristics of E. coli proteins that indicate a requirement for

GroE-dependent folding. Among two sets of in vivo substrates
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(Kerner et al., 2005; Chapman et al., 2006), stringent dependence on

GroEL correlates with low folding propensity and high translation

efficiency (Noivirt-Brik et al., 2007). Secondary structure content, as

well as contact order, which quantifies the average distance along the

polypeptide chain between amino acids that form native contacts,

were not found to distinguish GroEL SPs from other proteins.

Consistently, this study found that homologues of these SPs in

Ureaplasma urealyticum, an organism that lacks a chaperonin

system, do not possess sequence characteristics that would

require them to recruit the GroE system. Additional features

were found by two other studies to separate GroEL SPs from

GroE-independent proteins. One found that lower rate of

evolution, hydrophobicity, and aggregation propensity are

characteristics of GroEL SPs (Raineri et al., 2010), however it was

later argued that the estimation of aggregation propensity may

reflect the algorithm bias towards amyloid structure (Azia et al.,

2012). Solubilities of E. coli proteins are found to display a bimodal

distribution within a cell-free system in the absence of chaperones,

with stringent GroEL SPs belonging to the more aggregation-prone

set (Niwa et al., 2009). In agreement with these results, the second

computational approach was successful in distinguishing the GroEL

requirement for the previously identified substrate classes (Kerner

et al., 2005) on the basis of decreasing folding propensity and

increasing likelihood of aggregation (Tartaglia et al., 2010). To

probe the substrate requirements in controlled fashion, recent

experiments used computationally designed substrates based on

the enhanced green fluorescence protein (eGFP) (Bandyopadhyay

et al., 2017; Bandyopadhyay et al., 2019). These in vitro and in vivo

studies showed that GroEL dependence of eGFP variants increases

with increasing frustration (Ferreiro et al., 2018), effected through

point mutations (Bandyopadhyay et al., 2017), or contact order

(Plaxco et al., 1998), engineered through circular permutations

(Bandyopadhyay et al., 2019). Intriguingly, as noted above, in

vivo GroEL SPs are not distinguishable from non-substrates

through the contact order parameter. This suggests that other

features play a larger role in determining GroE-dependence.

Specific recognition of substrate proteins
by group II chaperonins

In contrast to the extensive knowledge of the set of proteins that

require assistance from the GroEL-GroES system, relatively little is

currently known about the substrates of group II chaperonins. The

presence of distinct subunit types within group II chaperonins

suggests that specialized binding mechanisms were developed to

target different substrates. However, the extent of subunit

heterogeneity varies among members of this class. In archaeal

chaperonins, one (Knapp et al., 1994), two (Waldmann et al.,

1995), or three (Archibald and Roger, 2002) distinct subunit

types are identified, whereas in eukaryotic chaperonins eight

different subunits are described (Liou and Willison, 1997).

Correspondingly, it is plausible that different substrate

recognition mechanisms are used by archaeal and eukaryotic

chaperonins. Group II chaperonins have been suggested to

employ a sequential, rather than cooperative, mechanism for

conformational transitions, consistent with their suggested

domain-by-domain folding of SPs and specific SP interaction.

Archaeal chaperonins are abundant in the cell

(approximately 1–2% of cellular proteins) and have low

subunit heterogeneity as a result of gene interconversion

(Archibald and Roger, 2002). These facts prompted the

suggestion that, like GroEL, they assist folding of a large

set of proteins perhaps through a promiscuous mechanism.

In support of this hypothesis, it is noted that thermosome,

which has two subunit types, assists folding of GroEL

substrates green fluorescence protein (Yoshida et al., 2002)

and cythrate synthase (Iizuka et al., 2004). The coexistence of

group I and group II chaperonins within the archaebacterium

Methanosarcina mazei (Klunker et al., 2003) provides an

unique opportunity to compare and contrast the annealing

action of the two chaperonin classes. Both chaperonins

contribute to the folding of 13% of the proteins in the

archaeal cytosol, albeit the two sets of substrates are non-

overlapping (Hirtreiter et al., 2009).

The less abundant eukaryotic chaperonin CCT (0.1% of

cellular proteins) uses a significantly different mechanism of

substrate recognition than GroEL. CCT was initially suggested

to interact only with actins and tubulins (Kubota et al., 1994).

Recently, numerous other substrates have been identified,

including some that contain tryptophan-aspartic

acid repeats (Spiess et al., 2004). Substrates include the

myosin heavy chain, the Von Hippel-Lindau (VHL) tumor

suppressor, cyclin E, and the cell division control

protein. Charged residues on the surface of CCT SPs

appear to be required for recognition by the eukaryotic

machinery. Intriguingly, CCT substrates cannot be folded

by other prokaryotic or eukaryotic chaperones (Tian et al.,

1995).

A challenging aspect of the CCT substrate recognition

mechanism is the lack of knowledge of the CCT binding site.

Several proposals exist regarding the localization of CCT

binding sites. One assumes structural homology to the

GroEL binding sites, formed by two apical domain helices

(Xu et al., 1997). In contrast to the GroEL binding site, the

two CCT helices have a mostly hydrophilic character, which

would be consistent with the notion that CCT recognizes

surface charged residues (Jayasinghe et al., 2010). A second

proposed CCT binding site involves a flexible helical protrusion

(Heller et al., 2004) that acts as a built-in lid for the chaperonin

cavity. Finally, the inner side of the closed cavity was also

suggested as CCT binding site (Pappenberger et al., 2002). This

region has a mostly charged and polar character, a feature

similar to the lining of the GroEL cavity wall. At this time, few

experimental data are available to unambiguously define the

CCT binding site. A study that used photocrosslinking and
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fluorescence spectroscopy to probe VHL binding (Spiess et al.,

2006) provides strong indication that the CCT binding sites are

located within helix 11, which is structurally homologous to the

GroEL binding site.

It is possible that more than one of these proposed

locations correspond to in vivo CCT binding sites. This

would not be completely surprising given the diversity

among CCT substrates and the CCT inhomogeneous

oligomeric structure (Spiess et al., 2004). Distinct CCT

subunits may serve the purpose of providing the versatility

to recognize different substrates.

Implication of chaperonins in disease

An intriguing connection was made between the

Hsp60 chaperonin class and prion disease (DebBurman

et al., 1997). Prion proteins are suggested to form fibrillar

aggregates upon conversion of the normal cellular form PrPC,

having primarily α-helical structure, into a β-sheet rich

misfolded conformation, PrPSc. Experiments performed

in vitro found that GroEL promotes conversion to the

disease-related PrPSc (DebBurman et al., 1997). These

authors proposed that in vivo validation of the chaperonin-

assisted conversion would provide a natural target for clinical

approaches.

Mutations in human chaperonins result in diseases,

such as the hereditary spastic paraplegia (Hansen et al.,

2002), or the McKusick-Kaufman Syndrome (Stone et al.,

2000). Chaperonins have been implicated, through

autoimmune response, as putative causes of diseases

such as rheumatoid arthritis, atherosclerosis, and

inflammation (Ranford et al., 2000). Immunosuppresive

action of chaperonins has been described in animal

models of juvenile arthritis (van Eden et al., 1989) and

diabetes (Elias et al., 1990), as well as in human pregnancy

(Cavanagh and Morton, 1994). Immunization with a

mycobacterial chaperonin was suggested to protect

against arthritis (van Eden, 1991). To date, there is no

clear understanding of the subset of chaperonin SPs

affected by these mutations and the precise effect of

these mutations on chaperonin annealing action (Barral

et al., 2004). Mastering the intricacies of the chaperonin

action will provide answers to these questions and suggest

effective therapies.

Conclusion

Protein folding assistance mediated by chaperonins is a

critical quality control mechanism to maintain protein

homeostasis. Selective recruitment of substrate proteins by

chaperonins represents a fundamental regulatory step in the

remodeling action, given the limited availability of

chaperonins within the cytosol and the stringent

dependence of a subset of proteins on this assistance.

Remarkably, GroEL substrate selectivity is achieved even as

the chaperonin promiscuously binds misfolded proteins. As

highlighted here, research efforts to elucidate the substrate

recognition mechanism have primarily focused on two

complementary questions. One question is focused on how

GroEL binds substrate proteins that require its assistance. As

the GroEL binding site is well established and the GroES co-

chaperone competes with substrates during the chaperonin

cycle, this suggests that natural SPs include polypeptide

regions similar to the GroES loops that participate in the

interface with GroEL. The additional observation that

substrates interact with multiple GroEL subunits (2–3)

further defines the requirement that several GroES-type

motifs be present within the polypeptide chain, at least for

stringent substrates. The other question refers to which

proteins are likely to require folding assistance in vivo.

Here, low partition factor (fraction of molecules that fold

spontaneously) and high aggregation propensity emerge as

important factors that underlie the GroEL requirement. In

addition, such factors can help to explain the extent of GroEL

dependence among known substrates.
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