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Figure 2. The end-replication problem as posed by Watson!'® and by
(A) _ Olovnikov."” When a replication fork reaches the end of a chromo-
primer a RNA some, the lagging strand will necessarily be incomplete as a result of
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Telomeri e telomerasi

Elizabeth Blackburn studied the single-cell
organism Tetrahymena thermophila and
had found that the ends of chromosomes
contain a short DNA sequence repeated
many times.

T i Jack Szostak studied yeast cells and
e Dreak-throug - a single-cell organism . cre .
thet ves inweter \J 24 observed that linear artificial
Chromosomes \ . . .
1.Minichromosomes without telomeres were wrthtelomeresx\/ , / mInICh romosomes Were rapldly deg raded.
introduced into yeast cells. They were not . .
St S / Together they decided to test if telomere
R\ DNA from Tetrahymena could protect
o c - o 2 Telomere DNA from Tetrahymena . . .
NS o) DN i s menesas. - MiNichromosomes in yeast.
// \ mmllcﬂraor‘nosomes \
~

Carol Greider and Elizabeth

Blackburn asked if an enzyme might
synthesize telomeres.

i ~ \ Yeast cell o7
3 ‘ >
\
N
‘-_\

Damaged
minichromosomes Yeast cell

3.The results showed that telomere DNA from one organism,
Tetrahymena, protected chromosomes in an entirely different
one, yeast. This demonstrated the existence of a previously
unrecognized fundamental mechanism.

Szostak et al., 2010
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Carol Greider and Elizabeth Blackburn
Blackburn asked if an enzyme might e mememn e
for enzymatic activity. They mixed it with
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synthesize telomeres. e o syt i g
and nucleotides (as DNA building blocks). r
On Christmas Day 1984 the first positive
results demonstrating enzymatic activity
were obtained. The telomere DNA primer
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Telomerase had been discovered.
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1. Assay for telomere elongation 2. Telomerase synthesizes telomeres

Different synthetic single-stranded The experiment sh that an unk y
telomere DNA oligomers were added extends telomere DNA. A ladder of bands was obtained
to a Tetrahymena cell extract along when either or yeast i
with radioactively labeled nucleotides were used as primers (lanes 5 and 6) but not when
allowing visualization of the reaction unrelated DNA sequences were used.
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Supplementary Sidebar 10.1 The use of the TRAP assay and
adaptations thereof permits the rapid and quantitative
assessment of the levels of the catalytic activity of telomer-
ase enzyme in eukaryotic cells In adult human cells, with the
exception of the hTERT catalytic subunit, the remaining multi-
ple subunits of the telomerase holoenzyme appear to be present
at levels that are consistently adequate for robust telomerase
activity. Consequently, enzyme activity is governed by changes
in the levels of the hTERT catalytic subunit, which may vary dra-
matically from one cell type to another (Figure $10.1).

Figure $10.1 Detecting telomerase activity The telomeric
repeat amplification protocol (TRAP) assay permits detection of
minute levels of telomerase activity in cell lysates by relying on
the polymerase chain reaction (PCR) to amplify the products of
the telomerase enzyme. A primer consisting of nontelomeric
sequences (dark pink) and telomeric hexanucleotide sequences
(from the G-rich strand; /ight green) is added to a cell lysate in
the presence of deoxyribonucleotide triphosphates. This primer
is extended (light orange) by any telomerase that may be present
in a cell lysate. The thermostable Tag polymerase is then added
together with a primer from the C-rich strand (dark green),
and the second strand is elongated (light blue). These two
DNA strands are then denatured and recopied repeatedly

by the PCR in the presence of appropriate primers.

Weinberg, la biologia del cancro
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Lagging strand = .
e The end-replication problem
! — v o o — P % %
! ' With growing understanding of how
genes are copied another problem
- presented itself.
Re g stiand BRA When a cell divides both strands of the

DNA double helix in the chromosomes
are copied, base by base, by DNA poly-
merase enzymes.
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the chromosomes should
be shortened. Finally the

chromosomes should

erode and be damaged.

DNA polymerase is dependent on a
preformed primer to initiate copying.

Copying of the lagging strand by DNA
polymerase occurs in a stepwise fashion.
The gaps are filled in to produce an
intact DNA molecule.

[ Due to the lack of priming, DNA
polymerase cannot fill the gap at
the very end of the chromosome.

geies

Observed

The chromosomes
are protected. Their
length and integrity
are maintained.

Telomeri e telomerasi

Elizabeth Blackburn studied the single-cell
organism Tetrahymena thermophila and
had found that the ends of chromosomes
contain a short DNA sequence repeated
many times.

Jack Szostak studied yeast cells and
observed that linear artificial
minichromosomes were rapidly degraded.
Together they decided to test if telomere
DNA from Tetrahymena could protect
minichromosomes in yeast.

Carol Greider and Elizabeth
Blackburn asked if an enzyme might
synthesize telomeres.
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una trascrittasi inversa
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hEST2, the Putative Human Telomerase
Catalytic Subunit Gene, Is Up-Regulated
in Tumor Cells and during Immortalization
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Expression of hEST2 in normal and cancer cells

Cancer Cell
Normal HumanTissues Lines

533

%2 :
44 = ' hEST2

24—

14 —

actin

Meyerson et al., 1997 o O ‘o
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Figure 5. hEST2 Expression in Primary Human Tumors

RNase protection assays are shown for hEST2 and B-actin controls. Sizes of the full-length and protected bands are indicated. Shown are
the HL-60 leukemia cell line (control), normal breast tissue, two primary breast tumors, the MCF7 and T47D breast cancer cell lines, and
normal and primary tumor tissues from the testis, colon, and ovary. The doublet seen protected by the hEST2 probe is invariant and may be

a result of probe secondary structure.

85-90% dei tumori umani sono
positivi alla telomerasi

Hanno telomeri lunghi?
Meyerson et al., 1997
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Figure 6. Correlation in Cultured Cells of hEST2 RNA with Telomerase Activity and Immortalization Status

(A) Comparison of normal and immortalized cells. hEST2 and B-actin control RNA levels were determined by RNase protection analysis using
40 p.g of total RNA from each cell type. Sizes of the full-length probes and protected fragments are indicated. Telomerase was assayed with
the TRAP protocol on 100 ng of cell lysate (bottom panel).

(B) Comparison of EBV-transformed B cells (B4) and SV40 T antigen-transformed kidney cells (HA1) precrisis and postcrisis. Cell line passage
numbers are indicated in parentheses. The top two panels show RNase protection of hEST2 and B-actin as a control. The third panel shows
Northern blot analysis of the hTR transcript. The bottom panel shows TRAP telomerase assays on 1 pg of cell lysate.

Meyerson et al., 1997
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Expression of hESTZ during cell differentiation

Figure 7. Changesin hEST2RNA Expression during Induced Differ-
entiation of HL-60 Cells

Differentiation of the human promyelocytic leukemia cell line HL-60
was induced with all-transretinoic acid as described in Experimental
Procedures, and cells were collected for analysis at the indicated
times. Total cellular RNA (20 w.g) was analyzed for each time point.
The first three panels show RNase protection analysis of the hEST2,
B-actin control, and hTR transcripts, respectively. Analysis of the
human B-actin transcript was performed in the same reaction tube
as that for hEST2. The fourth panel shows Northern blot analysis of
the early growth response gene EGR-1, whose expression is rapidly
induced during HL-60 differentiation (Nguyen et al.,, 1993); this is
used as a control to verify cell differentiation. RNA quantity and
integrity were assessed by ethidium bromide staining (data not
shown).
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Inattivazione della telomerasi e
senescenza
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Figure 16. Senescence of yeast EST-1 cells. A) Telomeric yeast DNA
fragments from an EST-1 mutant strain are visualized by Southern
blotting. Lanes 1 through 8 represent increasing numbers of gener-
ations of growth. B) A mutant EST-1 strain streaked out on an agar
plate after 25, 46, 67, and 87 generations of prior growth.

Szostak et al., 2010; Armstrong and Tomita, 2017
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Yeast as a model to study
replicative senescence
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Yeast as a model to stucm
replicative senescence
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Yeast as a model to study\
replicative senescence
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