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It has been over 20 years since Hanahan and Weinberg 
identified replicative immortality as a hallmark of cancer1  
and, in this time, there has been significant progress in 
the development of therapeutics that alter replicative 
potential2,3. One way to achieve this is through the inhi-
bition of telomere maintenance. Due to the inability of 
the replication machinery to fully replicate linear DNA 
molecules, telomeres, which comprise tandem arrays of 
(TTAGGG)n repeats at the distal ends of chromosomes, 
shorten with each cellular division, thereby limiting the 
lifespan of normal somatic cells1,4,5. The double- stranded 
telomere repeat array terminates in a 100–300- base pair 
single- stranded guanine (G)- rich 3′ overhang, which 
loops back on itself, invading proximal repeats of the 
same telomere, to form a lariat structure known as a 
telomere- loop (t- loop)6–9. Shelterin is a six- subunit 
protein complex consisting of telomeric repeat- binding 
factor 1 (TRF1), TRF2, RAP1, TRF1- interacting nuclear 
factor 2 (TIN2), TPP1 and protection of telomeres  
protein 1 (POT1) that plays a critical role in stabilizing  
the t- loop10–12. This nucleoprotein structure prevents the  
chromosome ends from being recognized as DNA 
double- strand breaks (DSBs) and the inappropriate acti-
vation of DNA damage response (DDR) pathways13,14. 
Shelterin binding and formation of the t- loop become 
compromised as telomeres continue to shorten with 

repeated cellular divisions, and this diminished protec-
tion leads to telomere dysfunction, cellular senescence 
or apoptosis13.

The extension of telomeres offers replicative immor-
tality to cancer cells and can be achieved through two 
major telomere- maintenance mechanisms (TMMs). 
The first relies on the ribonucleoprotein enzyme 
telomerase15,16, and the second involves a homology- 
directed repair (HDR) pathway referred to as alterna-
tive lengthening of telomeres (ALT)17,18. While the vast 
majority of cancer cells have an active TMM, most nor-
mal human somatic cells, with the exception of some 
stem cell populations, lack a TMM. This dichotomy 
advocates for the manipulation of TMMs as an effec-
tive therapeutic strategy for the treatment of most can-
cer types (Boxes 1 and 2). In this Review, we discuss 
the opportunities and limitations of targeting TMMs  
for cancer treatment, with a particular focus on new, 
repurposed and emerging therapeutics.

Telomerase
The telomerase holoenzyme extends the 3′ ends of linear 
chromosomes to replenish telomeric repeats that are lost 
during each round of cell division19. Telomerase activity 
is achieved by human telomerase reverse transcriptase 
(hTERT), the catalytic component of the enzyme, which 

Homology- directed repair
(HDR). A type of double- strand 
break repair where a homolo-
gous section on a sister chro-
matid is used as a template  
to guide DNA synthesis and 
repair. It involves processing  
of the double- strand break by 
the MRN complex to create 
single- stranded overhangs, 
prior to RAD51- mediated  
or RAD52- mediated strand 
invasion of the sister chromatid 
to enable DNA extension. 
Intermediates are then resolved 
to complete the repair.
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reverse transcribes telomeric repeats directly onto the 
chromosome ends, and hTR, an RNA molecule in which 
the intrinsic telomere template region is embedded. The 
H/ACA ribonucleoprotein binding factors dyskerin, 
NOP10, GAR1 and NHP2 as well as the Cajal body 
chaperone, telomerase Cajal body protein 1 (TCAB1), 
bind to the core enzyme to facilitate enzyme assembly 
and confer telomerase complex stability20–22. The telo-
merase essential N- terminal (TEN) domain of hTERT 
interacts directly with the shelterin component TPP1  
to enable the enzyme to bind to the telomeres during S to 
late G2 phase23–28. The interactions between telomerase 
and telomeres can be both transient and stable, indica-
tive of initial probing associations that precede longer 
productive interactions29–33. Telomere repeat exten-
sion commences when the telomeric single- stranded 
overhang binds to the complementary RNA template 
(5′- CUAACCCUAAC-3′) in hTR23–28. The telomerase 
active site then moves along the template until it reaches 
the 5′ boundary, at which point telomerase either 

dissociates or translocates along the DNA product23–28 
(FIg. 1). Translocation enables processive repeat addition. 
Extension is not directly coupled to DNA replication and 
5′ resection and typically occurs after telomere replication 
prior to C- strand fill- in34.

Telomerase is active in germline and most stem cell 
populations but is repressed in differentiated somatic 
cells through the silencing of hTERT expression35–37. 
Tight repression of hTERT is facilitated by its hetero-
chromatic genomic environment38, which is necessary as 
only a few molecules of hTERT are sufficient to maintain 
telomere length39–42. Cancer cells use a variety of means to 
re- express hTERT and thereby reactivate telomerase, with 
hTERT promoter mutations (–124C>T and –146C>T) 
that can override native hTERT silencing by recruiting the  
ETS family of transcription factors being amongst  
the most common pan- cancer driver point mutations43.

Alternative lengthening of telomeres
ALT is a telomerase- independent TMM that relies on 
HDR to lengthen telomeres. Hence, ALT- positive cells 
are defined by their ability to maintain their telomeres in 
the absence of telomerase. Activation of the ALT mech-
anism involves the transition of telomeres to a recombi-
nation permissive state, which involves altered telomeric 
chromatin and elevated levels of replication stress (FIg. 2). 
Loss of either α- thalassemia/mental retardation syn-
drome X- linked (ATRX) or death domain- associated 
protein 6 (DAXX) triggers chromatin decompaction, 
which is thought to be required for the induction of 
ALT activity44–49 (FIg. 2a). However, the low prevalence 
of ATRX and/or DAXX mutations in ALT- positive can-
cers suggests that chromatin decompaction may aid but 
is not a necessity for ALT induction35,50. Other studies 
have shown that increases in chromatin compaction by 
the nucleosome remodelling and histone deacetylase 
(NuRD)–zinc finger protein 827 (ZNF827) complex 
and the histone- lysine N- methyltransferase SETDB1 can 
also stimulate and propagate ALT activity51,52 (FIg. 2b). 
Together, these data support the requirement for distinct 
telomeric chromatin environments for ALT initiation 
versus ALT propagation and maintenance.

Replication stress can occur when lesions in DNA 
hinder progression of the replication fork, resulting 
in stalled forks53 (FIg. 3). Extensive terminal repetitive 
sequences and their propensity to form secondary 
structures, such as g- quadruplexes (G4s), RNA–DNA 
hybrids, t- loops and displacement- loops (D- loops), 
make telomeres inherently difficult to replicate54,55. The 
telomeres in cells that use the ALT pathway (ALT telo-
meres) display exacerbated levels of DNA damage and 
replication stress due to aberrant telomeric chromatin 
and altered protein binding56–59. The replication stress 
response protein SWI/SNF- related matrix- associated 
actin- dependent regulator of chromatin subfamily A- like 
protein 1 (SMARCAL1), along with Fanconi anaemia 
proteins Fanconi anaemia complementation group M 
(FANCM) and FANCD2, play vital roles in managing the 
levels of replication stress at ALT telomeres60–65 (FIg. 3).  
These proteins remodel the replication fork, trigger-
ing fork regression and re- initiation of replication61–68.  
If unrepaired, stalled forks can deteriorate into DSBs60–63,65,  

Box 1 | Telomere- maintenance mechanism detection and determination

telomerase is active in the vast majority of tumour types whilst alternative lengthening 
of telomeres (Alt) is present in a smaller proportion, with an additional category of 
tumour types that have no detectable telomere- maintenance mechanism (tmm)289,290. 
the precise proportions of each category are hard to ascertain due to the limited num-
ber of reports addressing the prevalence of tmms, variability in the samples studied, 
the selected cohort and inconsistencies in the tmm detection technique employed. 
Nevertheless, it is clear that tumours of mesenchymal or neuroepithelial origin have the 
highest prevalence of Alt activity, with Alt detected in over 50% of some bone and soft 
tissue sarcomas280. It is unclear why some tumour types favour one tmm over another, 
although a high prevalence of Alt may reflect tighter suppression of telomerase in the 
cell type of origin195. Alt- positive tumours are biologically and clinically distinct from 
their telomerase- positive counterparts291 and, as tmm- specific therapeutics emerge, 
the need for specific clinical prognostic or diagnostic tests is becoming increasing  
relevant. Characterization of tmms in clinical samples has the potential to stratify 
patients that will benefit from therapeutics targeting each tmm but could also be  
used retrospectively to determine treatment efficacy in tumours using different tmms.

telomerase activity is biochemically measurable whereas a variety of phenotypic 
markers are used to identify Alt50,83,292–295. the most robust and clinically applicable 
assays for ALT detection are native telomere- fluorescence in situ hybridization (FISH) 
(known as ALT- FISH), which measures all single- stranded telomeric repeat species in  
a one- step FISH method, and the C- circle assay292,294,295. the C- circle assay involves 
amplification of extrachromosomal telomeric C- circles using phi29 polymerase in a 
rolling circle amplification reaction. Amplification products are then detected using  
a sequence- specific radiolabelled probe or by quantitative pCr195. Significant efforts 
have also focused on using whole- genome sequencing data to identify the molecular 
signatures that underlie each tmm in tumours35,39,40,50. Alt- positive tumours frequently 
display loss- of- function mutations in α- thalassemia/mental retardation syndrome 
X- linked (ATRX) or death domain- associated protein 6 (DAXX) while telomerase- positive 
tumours often acquire telomerase reverse transcriptase (TERT) modifications such as 
promoter mutations, amplifications and structural variations39. However, the prevalence 
of such mutations is too low to be prescriptive, loss- of- function mutations in ATRX can 
occur synonymously with htert promoter activating mutations, and these mutations 
are heterogeneously distributed across tumour types40,296. Interestingly, the position 
and prevalence of telomere variant repeats within telomere reads extracted from 
whole- genome sequencing datasets can effectively determine tmm status39,40,50. 
telomere variant repeats are telomeric sequences that differ from the canonical telo-
meric sequence and include ttGGGG, tCAGGG, tGAGGG and tAAGGG. the strength 
of using genomic signatures to stratify tmms in tumours is dependent on extensive 
experimentally validated training and testing datasets, and accuracy can be increased 
by considering a single tumour type in favour of a tumour- agnostic approach40. Currently, 
tmms are not considered in cancer diagnosis and prognosis, and these assays require 
further clinical development and validation.

Rolling circle amplification 
reaction
An isothermal DNA or RNA 
amplification reaction where 
circular oligonucleotides  
(for example, C- circles) function 
as a template for the DNA  
or RNA polymerase.

5′ Resection
A process where the blunt  
end of a double- strand break 
undergoes nucleolytic 
degradation in the 5′ to 3′ 
direction to leave a 3′ 
single- stranded overhang.

Telomere replication
Replication of the telomere 
repeat tracks.
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ultimately promoting the recruitment of DNA repair 
factors and the engagement of HDR mechanisms that 
extend the telomeres69 (FIg. 4). Specifically, 5′-3′ resection 
of DSBs is achieved by Bloom syndrome helicase (BLM) 
through its interactions with exonucleases EXO1 and 
DNA2 (ReFs.70,71) (FIg. 4a,b). The resulting single- stranded 
telomeric DNA is then coated with replication protein A 
(RPA) prior to undergoing homology- directed searches 
and strand invasion to form a D- loop (FIg. 4a,b).

Several repair pathways are simultaneously engaged 
at ALT telomeres, with distinct requirements, tem-
poral dynamics and outcomes72–76. The predominant 
telomere extension pathway is dependent on RAD52, 
with a RAD52- independent pathway operating 

in situations when RAD52 is compromised72 (FIg. 4c–e). 
Both pathways rely on the BLM–DNA topoisomerase 3α 
(TOP3A)–RecQ- mediated genome instability protein 1 
(RMI1) and RMI2 (BTR) complex and its interaction 
with the proliferating cell nuclear antigen (PCNA)–
replication factor C (RFC)–DNA polymerase- δ (Polδ) 
replisome to mediate branch migration of the D- loop72,77 
(FIg. 4f). The D- loop is then either dissolved by the BTR 
complex, resulting in telomeric extension without cross-
over, or resolved via the SLX1–SLX4, MUS81–EME1 
and XPF–ERCC1 (SMX) endonuclease complex result-
ing in crossover events in the absence of telomere 
lengthening78–80 (FIg. 4g).

The ALT pathway generates several biomarkers that 
can be used to identify ALT activity in preclinical stud-
ies. As a result of extensive homologous recombination 
(HR), ALT- positive cells display heterogeneous telomere 
lengths and increased numbers of telomere sister chroma-
tid exchange events18. Telomere synthesis in ALT- positive 
cells predominantly occurs in a subset of promyelo-
cytic leukaemia (PML) nuclear bodies, known as ALT- 
associated promyelocytic leukaemia bodies (APBs) (FIg. 4e). 
APBs are nuclear foci formed by liquid–liquid phase sep-
aration that facilitate telomere associations and clustering. 
APBs are unique to cells using ALT and are comprised of 
a PML and Sp100 protein shell as well as shelterin com-
ponents, proteins involved in DNA replication and repair, 
and telomeric DNA, held together by non- covalent 
small ubiquitin- like modifier (SUMO)–single- interacting 
motif (SIM) interactions81,82. ALT activity involves break- 
induced replication (FIg. 4c) and can generate abundant 
extrachromosomal telomeric repeats (ECTRs), including 
partially single- stranded, circular structures of C- rich 
telomeric DNA known as C- circles83,84. At least two of 
these four major ALT markers (heterogeneous telomere 
lengths, telomere sister chromatid exchanges, APBs and 
ECTRs) should be present for cells to be classified as ALT 
positive17. Additional parameters can be used in the clin-
ical setting to identify patient tumours as ALT positive  
and these are described in Box 1.

Strategies to target telomerase
Therapies that target telomerase have historically been 
viewed as a highly attractive means of cancer treatment 
by restraining proliferative capacity through telomere 
length85–87 (TABLe 1). However, limitations include the 
lag phase that ensues following telomerase inhibition 
as the telomeres shorten to critical lengths before any 
cytotoxic effects can be observed as well as potential tox-
icity towards highly proliferative tissue compartments 
such as haematopoietic and epidermal stem cells that 
rely on telomerase for regeneration88,89. More recently, 
telomerase- targeting therapies that exert activities beyond 
inhibiting telomere extension alone have been explored.

Oligonucleotides against hTR. Telomere synthesis can be 
blocked by oligonucleotides that disrupt hTR function90 
(FIg. 1). The most commonly tested oligonucleotides 
are N3′ → P5′ thio- phosphoramidates that form stable 
duplexes with complementary DNA91. Cell- permeable 
2′- O- methyl and N3′ → P5′ thio- phosphoramidate- 
substituted RNA and/or DNA antisense oligonucleotides 

C- strand fill- in
Telomeres consist of g- strand 
(5′- TTAggg-3′) and 
complementary C- strand 
(3′- AATCCC-5′) repeats. 
Telomerase extends the 
g- strand, resulting in a g- rich 
single- stranded 3′ overhang. 
C- strand fill- in is the process  
by which the complementary 
C- strand is synthesized by DNA 
polymerase α- primase 12 to 
convert the single- stranded 
DNA of the 3′ overhang into 
double- stranded DNA.

Box 2 | Models for preclinical testing of telomere- maintenance mechanism- 
specific therapies

A wealth of potential telomere- maintenance mechanism (tmm)- specific protein 
targets and therapeutic opportunities exist; however, the success of drug discovery  
for cancers of any type or subtype is dependent on the availability of biologically 
representative models in which to assess the efficacy of novel agents.

Cell line models
Numerous cell line models exist that have been defined and characterized as having 
either telomerase or alternative lengthening of telomeres (Alt) activity using a variety 
of established experimental techniques. these cell lines encompass standard cancer 
cell lines, patient- derived cell lines and cell lines derived from spontaneously, virally or 
chemically immortalized fibroblasts. the majority of patient- derived Alt- positive cell 
lines originate from osteosarcomas, rhabdomyosarcomas, chondrosarcomas and 
neuroblastomas, consistent with the high prevalence of Alt in these cancer types. 
Alternatively, isogenic telomerase- positive or Alt- positive cell lines derived from  
the same genetic background can be utilized to examine tmm- specific effects297.  
An extensive panel of Alt- positive and telomerase- positive clonal cell line derivatives 
has been established by SV40- immortalization of JFCF-6 mortal jejunal fibroblasts from 
a male patient with cystic fibrosis297,298. Isogenic cell lines have also been derived from 
Sv40- immortalized normal lung Imr-90 fibroblasts and include Imrb (Alt positive)  
and SW39 (telomerase positive)299,300, and cellular hybrids of Imrb and SW39 have  
been established that use either Alt or telomerase44. Another relevant cell system is  
the double- positive Gm847 human telomerase reverse transcriptase (htert) cell line, 
which was created by overexpression of htert in the Alt- positive Gm847 fibroblast  
cell line and hence displays both tmms301. Cell- based efficacy studies will benefit  
from examination across an extensive and diverse panel of telomerase- positive and 
Alt- positive cell lines and mortal cell strains.

Animal models
the majority of animal models used to assess the efficacy of telomerase- targeting ther-
apeutics involve xenografts of telomerase- positive cell lines into immunocompromised 
mice or rats302–306. Syngeneic models have been used to assess the effects of telomerase 
inhibition on metastatic spread307; however, these models are less relevant due to differ-
ences between murine and human telomere biology35,308. there are fewer animal mod-
els for in vivo testing of ALT- targeting therapeutics due to the lack of therapeutic 
agents and a general lack of assessment of Alt activity. patient- derived xenografts, 
established from patients with relapsed neuroblastoma that utilizes either Alt or telo-
merase, have been used to demonstrate the efficacy of ataxia telangiectasia mutated 
(Atm) inhibitors in reversing resistance to the commonly used salvage therapy for  
neuroblastoma, which consists of the chemotherapy combination temozolomide and 
irinotecan226. patient- derived xenograft models from Alt and/or telomerase- positive 
sarcoma cell lines have also been established, including the Alt- positive lb857 myx-
oid sarcoma cell line, which was found to readily form macroscopic tumours in immuno-
compromised mice292. Several Alt- positive osteosarcoma cell lines, such as CAl-72 and 
SaoS-2, have shown potent tumorigenicity in nude or NoD/SCID- γ- immunodeficient 
mice309,310. many of these cell lines have been validated for how well they represent 
osteosarcomas in patients as shown by their ability to produce osteoid. Further devel-
opment and expansion of the available preclinical models with defined tmms will  
be integral to the progress and success of telomerase- targeted and Alt- targeted  
therapeutics for cancer.
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are designed to target the template region of hTR91–94. 
When bound, the catalysis of telomere repeat addition 
can be effectively inhibited. While these oligonucleotides 
effectively induce telomere shortening, the observed 
effects are limited to in vitro experiments. The addi-
tion of lipid groups can enhance the cell permeability 
and bioavailability of such oligonucleotides. GRN163L 
(imetelstat) is a 13- mer N3′ → P5′ thio- phosphoramidate 
antisense oligonucleotide conjugated to a 5′- palmitoyl 

group that competitively binds to the hTR sequence 
template to inhibit telomerase activity95,96. Imetelstat has 
shown in vitro and in vivo efficacy across varying tumour 
models and remains the only oligonucleotide that has 
progressed to clinical trials97–101. Imetelstat has demon-
strated clinical efficacy in myelofibrosis and lower risk 
myelodysplastic syndromes99,102–105. In 2019, after phase II  
trials, imetelstat was given fast- track designation by the 
FDA for relapsed or refractory myelofibrosis, a disease 
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Fig. 1 | Telomerase-mediated telomere lengthening and the therapeutics that inhibit this process. Telomerase con-
sists of the human telomerase reverse transcriptase (hTERT) enzyme bound by H/ACA ribonucleoprotein binding factors 
dyskerin, NOP10, GAR1 and NHP2, the Cajal body chaperone, telomerase Cajal body protein 1 (TCAB1), and hTR, an RNA 
molecule in which the intrinsic telomere template region is embedded. hTERT peptide vaccines can stimulate immune 
responses to hTERT peptides presented on the surface of cancer cells. These responses include the release of cytokines  
or interactions with apoptosis- inducing receptors on cancer cells. The telomeric single- stranded overhang binds to the 
complementary RNA template (5′- CUAACCCUAAC-3′) in hTR to enable telomeric repeat extension. This interaction can 
be inhibited by oligonucleotides complementary to hTR. Once telomerase reaches the 5′ boundary, it either dissociates  
or translocates along the DNA product to enable processive repeat addition. This extension process can be inhibited by 
BIBR1532, a non- competitive inhibitor of hTERT, nucleoside analogues and G- quadruplex- stabilizing ligands. Illustration 
of telomerase holoenzyme based on findings from ReFs.15,288. 5- MeCITP, 5- methylcarboxyl- indolyl-2′- deoxyriboside 
5′- triphosphate; AZT, azidothymidine; MHC I, major histocompatibility complex I; TRAIL- R, tumour necrosis factor- related 
apoptosis- inducing ligand receptor.

G- quadruplexes
(g4s). Non- canonical secondary 
structures formed by guanine 
(g)- rich DNA sequences.

Displacement- loops
(D- loops). D- loops form when 
single- stranded DNA invades  
a section of double- stranded 
DNA, causing it to separate 
into a loop structure.
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where activated telomerase is thought to maintain the 
elevated mitotic activity of myelodysplastic cells106–108.

Despite promising preclinical results in cancer mod-
els and efficacy in patients with myelofibrosis, inhibitory 
effects of imetelstat on progression of other cancer types 
in humans remain to be seen. Imetelstat has been tested in  
phase I and II clinical trials on patients with recur-
rent or refractory solid tumours but only achieved a 
partial response in a small number of patients100,103,109.  
This response was associated with severe neutropenia and 
thrombocytopenia, with the latter also leading to intratu-
moural haemorrhage100,103,109. The disparity between the 
preclinical and clinical results of imetelstat treatment can 
be explained by the time taken for telomeres to shorten 
to critical lengths, during which patients can succumb to  
cancer progression. This lag phase has been demon-
strated in vitro in lung cancer cell lines with longer  
telomeres but these cell lines were often not selected for 
subsequent in vivo studies, meaning that the response 
to the agent in cancer xenografts with longer telomeres 
remains unclear99. Data from the clinic supported this 
notion as patients with shorter telomeres responded 
better to imetelstat than those with longer telomeres110. 
Due to its severe side effects, continual administration 
of imetelstat is not possible, creating breaks in the treat-
ment regimen that provide the opportunity for telomere 
lengths to be restored99,100,103,109. Nevertheless, imetelstat 
remains an efficacious therapeutic for patients with 
myelo fibrosis, and the search for more specific and 
potent inhibitors of telomerase continues.

Nucleoside analogues. Nucleoside analogues are 
covalently incorporated at the telomere end by telo-
merase but prevent further nucleotide addition due 
to the absence of the 3′- OH functional group (FIg. 1). 

Due to the structural similarity, numerous analogues 
that have been previously used to inhibit the human 
immunodeficiency virus (HIV) reverse transcriptase 
have also been found to inhibit the hTERT catalytic 
site111–113. Nucleoside analogues that have been inves-
tigated in telomerase- positive cancers include azido-
thymidine (AZT; which is FDA approved for the 
treat ment of HIV), 6- thio-2′- deoxyguanosine (6- thio- dG)  
and 5- methylcarboxyl-indolyl-2′- deoxyriboside  
5′- triphosphate (5- MeCITP)90,114,115.

Upon entry into cells, AZT is phosphorylated  
to AZT- triphosphate, which incorporates into DNA to 
block transcription elongation114. AZT was first discovered 
to cause progressive telomere shortening and growth 
arrest in the single- celled ciliate Tetrahymena and then in 
human lymphocytes116–118. In cancer, the effects of AZT 
on telomere shortening and cell death have mainly been 
observed in malignancies induced by viruses such as 
human T cell leukaemia virus type I (HTLV1)- induced 
adult T cell leukaemia, acquired immune deficiency 
syndrome- related Kaposi sarcoma and Epstein–Barr 
virus- associated lymphoma119–121. In the clinic, patients 
with HTLV1- induced leukaemia treated with AZT 
showed cancer regression that corresponded with 
decreased telomerase activity119. However, in non- virally 
induced cancer types, the inhibitory concentration 50 
(IC50) of AZT is high (~200–500 μM) and there is lit-
tle difference in response between cancer types that rely 
on telomerase versus those that use ALT, suggesting 
that the observed toxicity may stem from off- target 
effects122,123. 6- Thio- dG serves as a competitive inhibitor 
of telomerase; it inhibits the growth of both A549 lung 
cancer and diffuse intrinsic pontine glioma xenografts 
by inducing both telomere shortening and telomere dys-
function, and has further been demonstrated to cross the 

Strand invasion
single- stranded DNA invades  
a section of double- stranded 
DNA with sequence homology.

Osteoid
An unmineralized organic 
tissue that becomes calcified 
and contributes to the bone 
matrix.

Replisome
A protein complex that can 
exhibit helicase, primase and 
DNA polymerase activities  
to replicate DNA of both the 
leading and lagging strand. 
During ALT, the replisome 
consists of proliferating cell 
nuclear antigen (PCNA), 
replication factor C (RFC)  
and DNA polymerase δ (Polδ).

Branch migration
A process that occurs after 
strand invasion, where one 
strand of DNA is processively 
exchanged for another at 
Holliday junctions or D- loops, 
resulting in movement of the 
junction.
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Fig. 2 | Chromatin remodelling creates an ALT permissive state. a | The α- thalassemia/mental retardation syndrome 
X- linked (ATRX)–death domain- associated protein 6 (DAXX) complex forms a histone chaperone complex that deposits 
histone H3.3 and remodels H3.3- containing nucleosomes at heterochromatic regions, including telomeres. Loss of ATRX 
and/or DAXX leads to chromatin decompaction, which is thought to promote alternative lengthening of telomeres (ALT). 
b | Nucleosome remodelling and histone deacetylase (NuRD)–zinc finger protein 827 (ZNF827) binding to telomeres using 
ALT counteracts chromatin decompaction, which contributes to loss of shelterin binding, homologous recombination (HR) 
and propagation of ALT. PML, promyelocytic leukaemia. Ac, acetylation.
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blood–brain barrier, making it an attractive therapeutic 
for brain tumours124,125. Treatment with 6- thio- dG causes 
telomere uncapping because of failure of the telomere 
to form the t- loop structure; this causes activation of 
the DDR, which leads to cell cycle arrest and apopto-
sis, enabling 6- thio- dG to elicit more rapid cytotoxicity 
compared to agents that induce cytotoxicity through 
telomere shortening alone125. Although the underlying 
mechanism of telomere dysfunction by 6- thio- dG is not 
fully understood, such findings support the development 
of telomerase- targeting therapies that combine the inhi-
bition of telomere extension with additional activities to 
achieve enhanced efficacy. Nucleoside analogues can also 

exert inhibitory effects on telomerase without incorpora-
tion into telomeric DNA. 5- MeCITP is an indole nucleo-
tide analogue containing a methoxy group that remains 
trapped in the catalytic site of telomerase to prevent 
further telomere extension by telomerase90. Unlike AZT, 
which possesses inhibitory effects on polymerases other 
than telomerase that heighten its toxicity, 5- MeCITP has 
fewer off- target effects90. Therefore, while 5- MeCITP 
shows selective toxicity towards telomerase- positive 
cancer cell lines, it is not as potent as AZT90.

Small molecule inhibitors of hTERT. The most 
successful small- molecule inhibitor of hTERT is 
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2-[(E)-3- naphthalen-2- yl- but-2- enoylamino]- benzoic 
acid (BIBR1532)126–129. BIBR1532 was discovered from an 
in vitro screen and found to be selective for telomerase126. 
BIBR1532 binds to hTERT at a non- catalytic site, thereby 
inhibiting telomerase activity with non- competitive 
kinetics130 (FIg. 1). Generally, non- competitive inhibitors 
are more potent as they do not have to compete with 
endogenous substrates. BIBR1532 does not block the 
initial telomere extension event but instead interacts 
with the hydrophobic pocket of the thumb domain of 
telomerase to prevent the further translocation required 
for processive telomere repeat addition126,130,131. Despite 
the inhibitory effects of BIBR1532 on telomere exten-
sion in cancer cells, the cytotoxic effects of BIBR1532 

appear to arise from direct damage to telomere struc-
ture. Specifically, BIBR1532 treatment resulted in loss 
of TRF2 binding, which induced markers of telomere 
dysfunction, including telomere end- to- end fusions and 
increased activation of p53 (ReF.132). In preclinical studies, 
BIBR1532 has demonstrated potent effects in a num-
ber of cancer cell lines and xenograft models, including 
breast cancers, fibrosarcomas, endometrial cancers and 
leukaemias126,133–138. BIBR1532 also has the propensity to 
sensitize resistant cancer cells to chemotherapy, which 
has important clinical implications as chemoresistance 
is one of the main causes of cancer progression and 
mortality139. Sensitization appeared to be correlated 
to telomere shortening as prolonged treatment with 
BIBR1532 heightened sensitivity; however, the precise 
mechanism is unknown.

Another method to inhibit hTERT via small- molecule 
inhibitors is to block transcription of the hTERT gene140. 
Inhibition of hTERT transcription can be achieved 
through the green tea polyphenol epigallocatechin gal-
late (EGCG), which inhibits DNA methyltransferase 1  
(DNMT1)141,142. This causes the hTERT promoter to 
become hypomethylated, allowing binding of the  
Rb–E2F1–histone deacetylase 1 (HDAC1) repressor 
and causing suppression of hTERT transcription142. 
Since EGCG is relatively unstable, compounds synthe-
sized with EGCG- related moieties have been explored 
as improved hTERT inhibitors. Of these compounds, 
chemical screens have identified MST-312 as a potent 

ALT- associated 
promyelocytic leukaemia 
bodies
(APBs). Membraneless 
structures formed by phase 
separation that promote the 
aggregation of homologous 
recombination proteins, 
nucleases, telomere- associated 
proteins, PML proteins and 
telomeric DNA. APBs are  
a biomarker of alternative 
lengthening of telomeres (ALT).
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Fig. 4 | Multiple DNA repair pathways are engaged at 
telomeres using ALT. a | Bloom syndrome helicase (BLM), 
through its interactions with exonucleases EXO1 and 
DNA2, performs 5′-3′ resection of double- strand breaks.  
b | The resulting single- stranded telomeric DNA is then 
coated with replication protein A (RPA) prior to undergoing 
homology- directed searches and strand invasion to form  
a D- loop. c | Several repair pathways are simultaneously 
engaged at telomeres using alternative lengthening of telo-
meres (ALT), with distinct requirements, temporal dynamics 
and outcomes. The predominant extension pathway is 
dependent on RAD52, with a RAD52- independent path-
way operating in situations where RAD52 is compromised.  
d | ATM and RAD3- related (ATR)–checkpoint kinase 1 
(CHK1) signalling stabilizes and restarts replication forks 
whilst inhibiting cell cycle progression until all lesions are 
repaired. Inhibitors of ATR disrupt this replication stress 
response to mediate apoptosis. e | Both RAD51- mediated 
and RAD52- mediated homologous recombination path-
ways rely on BLM, topoisomerase 3α (TOP3A), and RecQ- 
mediated genome instability protein 1 (RMI1) and RMI2 
(the BTR complex) and its interaction with the proliferating 
cell nuclear antigen (PCNA)–replication factor C (RFC)–
DNA polymerase- δ (Polδ) replisome to mediate telomere 
extension. RAD51- dependent recombination generates 
extrachromosomal telomeric repeats (ECTRs). Telomere 
repeat DNA synthesis occurs in ALT- associated promyelo-
cytic leukaemia bodies (APBs). f | During telomere exten-
sion, the BTR complex together with Fanconi anaemia 
complementation group M (FANCM) enable branch migra-
tion of the D- loop. g | The D- loop is then either dissolved by 
the BTR complex, resulting in telomeric extension without 
crossover, or resolved via the SLX1–SLX4, MUS81–EME1, 
XPF–ERCC1 (SMX) endonuclease complex, resulting in 
crossover events in the absence of telomere lengthening.
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Table 1 | Major telomerase- targeting therapeutics in preclinical and clinical development

Target Compound Mechanism Stage of 
development

Structure of compound (if available)

hTR N3′ → P5′ thio- 
phosphoramidate

Binds to the template 
region of hTR to 
prevent catalysis 
of telomere repeat 
addition93

Preclinical
B
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O

S
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HN

HO B
O

O

HN

2′- O- methyl- RNA Binds to the template 
region of hTR to 
prevent catalysis 
of telomere repeat 
addition

Preclinical NA

Imetelstat Lipid- conjugated 
phosphorothioate 
13- mer antisense 
oligonucleotide that 
binds to hTR to inhibit 
telomerase95

FDA approved for 
myelofibrosis

Palmitoyl tail

S
P

O OH

O

OH

N
H

N

NH

O
O O

O

S
P

HN

HO Base
O

O

S
P

HN

HO
O

O

NH2

N

NN

N

NH2

11

hTERT BIBR1532 Binds to non- catalytic 
site on hTERT to inhibit 
translocation130

Preclinical

CO2H
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O

Telomeres 
(nucleoside 
analogues)

AZT Covalently 
incorporated into 
telomeres but the 
absence of a 3′- OH 
group prevents further 
nucleotide addition111

FDA approved for HIV
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O
HO
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O

O

Acyclic nucleoside 
phosphonates, for 
example, PMEGpp

Covalently 
incorporated into 
telomeres but 
their absence of 
3′- OH group prevents 
further nucleotide 
addition281,282

Varies with individual 
inhibitor, for example, 
PMEA (adefovir) is 
FDA approved for 
hepatitis B, but the 
most potent inhibitor 
of telomerase, 
PMEGpp, is still at 
preclinical stages

O

N

NHN

NH2N
O

PHO
OH

O
PO
OH

O

PO
OH

O

5- MeCITP Traps itself in the 
catalytic site to inhibit 
telomere extension90

Preclinical
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inhibitor of hTERT140. Treatment of cells of various 
cancer types, including breast, lung and colon car-
cinomas, with MST-312 caused downregulation of 

hTERT expression, decreased telomerase activity, and 
telomere shortening, which led to cell cycle arrest  
and apoptosis142–145. However, cytotoxic effects took up to 

Target Compound Mechanism Stage of 
development

Structure of compound (if available)

CD8+ T cells GV1001 hTERT peptide- 
containing vaccines 
that stimulate a CD8+ 
T cell response against 
hTERT- presenting 
cancer cells

Phase III clinical trials 
(NCT02854072)283

NA

Vx-001 hTERT peptide- 
containing vaccines 
that stimulate a CD8+ 
T cell response against 
hTERT- presenting 
cancer cells

Phase II clinical trials 
(NCT01935154)284

NA

G- quadruplex 
stabilizers

Telomestatin Stabilizes 
G- quadruplexes  
to prevent telomere 
extension and shelterin 
binding, leading to 
replication stress178

Preclinical

NO

O
N

O

N

O

N

N

O
N

S

N N

O

O

TMPyP4 Stabilizes 
G- quadruplexes to 
prevent telomere 
extension and shelterin 
binding, leading to 
replication stress285

Preclinical

NH

N

N

HN

N N

N

N

RHPS4 Stabilizes 
G- quadruplexes  
to prevent telomere 
extension and shelterin 
binding, leading to 
replication stress286

Preclinical F

F

N

N

Pyridostatin Stabilizes 
G- quadruplexes  
to prevent telomere 
extension and shelterin 
binding, leading to 
replication stress287

Preclinical

NH

NH2

O

O O

O

N

O
NH2

HN

N

N

NH2

5- MeCITP, 5- methylcarboxyl- indolyl-2′- deoxyriboside 5′- triphosphate; AZT, azidothymidine; HIV, human immunodeficiency virus; hTERT, human telomerase 
reverse transcriptase; NA, not available; PMEA, 9-(2- phosphonomethoxyethyl)adenine; PMEGpp, 9-(2- phosphonylmethoxyethyl)guanine diphosphate.

Table 1 (cont.) | Major telomerase- targeting therapeutics in preclinical and clinical development
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90 days post- treatment to occur due to the time required 
for telomeres to shorten to critical lengths140. During this 
lag phase, cells can also adapt to the loss of telomerase 
activity, as shown when cells returned to their original 
growth rate after prolonged treatment (>200 days)146. For 
tumours with relatively short telomeres, MST-312 does 
exert anti- oncogenic effects in vivo145. In vitro MST-312 
treatment also appears to result in off- target effects that 
may enable it to exert more rapid cytotoxicity, includ-
ing inhibitory effects on topoisomerase II and nuclear 
factor- κB (NF- κB)144,145,147. This may account for the 
synergism observed between MST-312 and the chemo-
therapeutic drug doxorubicin, which is observed during 
short- term experiments147.

MST-312 and BIBR1532 remain the most promising 
small- molecule inhibitors of hTERT. Nevertheless, a 
range of screens have identified other inhibitors. These 
include Nu-1 and rubromycin antibiotics, which directly 
inhibit the catalytic domain of hTERT, and bufalin and 
rapamycin, which block hTERT transcription148–152. 
These agents have all stalled at early stages of preclini-
cal studies mainly due to low potency and slow onset of 
cytotoxic effects. Evaluating telomerase inhibitors based 
on their ability to induce telomere dysfunction rather 
than telomere shortening per se may provide a more 
accurate indicator of potency against telomerase- positive 
cancer cells.

Immunotherapies against hTERT. Telomerase can be 
therapeutically targeted through vaccines that stimulate 
an immune response against surface hTERT153. Cancer 
cells can process endogenous hTERT and present hTERT 
peptides on the cell surface through major histocom-
patibility complex (MHC) I and II molecules154 (FIg. 1). 
hTERT vaccines typically comprise peptides of the 
enzyme, which are injected into the dermis where den-
dritic cells present the antigens to CD4+ T helper 1 (TH1) 
cells in the lymph nodes154,155. These hTERT- specific 
TH1 cells migrate into the tumours, where they either 
stimulate CD8+ T cell activity against hTERT- expressing 
cancer cells, or kill the cancer cells directly by releasing 
cytokines or interacting with FAS or tumour necro-
sis factor- related apoptosis- inducing ligand (TRAIL) 
apoptosis- inducing receptors154,155.

GV1001 is an early generation vaccine based on 
a 16- amino acid peptide that spans the hTERT active 
site and has been shown to significantly extend the 
survival rates of patients with pancreatic cancer that 
had a CD8+ T cell response156. However, as with many 
immunotherapies, a number of studies have shown that 
a substantial proportion (around 40%) of patients did 
not show an immune response to GV1001 (ReFs.156–160). 
Combining GV1001 with chemotherapy to enhance 
the immune response has been explored but with lim-
ited success160,161. Specifically, GV1001 combined with 
temozolomide resulted in an immune response in  
78% of patients with stage IV melanoma, resulting  
in longer survival rates in responders compared with 
non- responders although the difference was not statisti-
cally significant (median overall survival 396 days versus 
250 days)161. Combination treatments of GV1001 with 
the chemotherapeutic drugs capecitabin or gemcitabine 

failed to prolong survival beyond chemotherapy alone160. 
Given the less- than- optimal results of these phase III tri-
als, the focus of research into telomerase vaccines has 
shifted to other hTERT vaccines, including UV1, Vx-001  
and INVAC1.

The UV1 vaccine was developed against the epitopes 
generated from epitope spreading events following treat-
ment with GV1001 (ReF.162). UV1 stimulates a wide range 
of CD4+ and CD8+ T cell responses against hTERT163. 
When administered in combination with the cytokine 
granulocyte–macrophage colony- stimulating factor 
(GM- CSF) to patients with late- stage prostate cancer, 
the vast majority of patients had stable disease for the 
9 months of the study, exceeding observations with 
GV1001 (ReF.164). UV1 is currently in phase II clinical 
trials (NCT04382664)165 and the FDA has now granted 
fast- track approval of UV1 in combination with anti- PD1 
therapies for the treatment of advanced malignant mela-
noma. The Vx-001 vaccine, which contains two hTERT 
peptides, has shown long- lasting immunogenicity 
and survival extension in patients with various types 
of cancer166–168. Long- lasting immune responses were 
observed in around 30% of patients with non- small- cell 
lung carcinoma and these responders, including those 
who would have had poor prognosis, had signifi-
cantly longer survival rates than non- responders (21.3 
and 13.4 months, respectively; P = 0.004)166. However, 
given the low response rates, no extension in survival 
was observed when comparing the overall cohort of  
vaccinated versus unvaccinated patients166,168.

INVAC1 is a DNA- based vaccine that consists of a 
plasmid encoding an inactivated form of hTERT fused 
to ubiquitin153,169. When expressed, hTERT is degraded 
by the proteasome, allowing its antigens to be presented 
to stimulate an immune response153,169. In mouse sar-
coma models, INVAC1 stimulated a broad range of 
hTERT- specific immune responses, including the gen-
eration of high numbers of CD4+ TH1 effector and mem-
ory CD8+ T cells, which led to a 50% increase in survival 
rates169. Phase I clinical trials of INVAC1 found that the 
vaccine was well tolerated, triggered hTERT- specific 
CD4+ and CD8+ T cell responses, and prevented cancer 
progression in 58% of patients with relapsed or refrac-
tory solid tumours169,170. INVAC1 has now progressed  
to phase II clinical trials (NCT03265717)171.

G4- stabilizing ligands. G4 ligands were initially thought 
to be negative regulators of telomerase activity by 
inhibiting telomerase binding to telomeric DNA172,173. 
Consistent with this rationale, unwinding of telomeric 
G4s by POT1 is necessary for normal telomerase proces-
sivity and to prevent telomerase stalling174–176. Numerous 
G4- stabilizing ligands have been developed, including 
telomestatin, TMPyP4, RHPS4 and pyridostatin, which 
vary substantially in their ability to inhibit telomerase 
binding and processivity177 (FIg. 1). Telomestatin is a 
naturally occurring macrocyclic compound that prevents 
telomerase from extending telomeres by inducing the 
formation and stabilization of intramolecular antipar-
allel G4s178. Telomestatin treatment impairs telomere 
extension and is associated with cytotoxicity in a range 
of cancer cell lines and xenografts179–181. The porphyrin 

Small ubiquitin- like modifier
(sUMo). Units that are cova-
lently attached to proteins 
post- translationally in a pro-
cess known as sumoylation. 
This can alter several proper-
ties of the protein, including 
protein stability, localization, 
and addition or removal of  
protein–protein binding sites.

Break- induced replication
Recombination- dependent 
DNA synthesis that initiates 
from a double- strand break 
and occurs following strand 
invasion mediated by RAD51 
or RAD52.

Extrachromosomal 
telomeric repeats
(eCTRs). Linear and circular 
extrachromosomal copies of 
telomeric sequences that are 
generated during homologous 
recombination in cells using 
ALT, including C- circles and 
t- circles. eCTRs are a biomarker 
of ALT.

Myelofibrosis
A rare type of bone marrow 
cancer that prevents the 
production of blood cells, 
leading to anaemia and scar 
tissue in the bone marrow.

Transcription elongation
A step in RNA transcription 
that occurs following initiation 
and prior to termination when 
the RNA sequence is 
synthesized complementary  
to the DNA template.

Inhibitory concentration 50
(IC50). The dose of an agent 
required to inhibit 50% of  
cell growth.

Epitope spreading
The process by which epitopes, 
distinct from the inducing 
epitope of a vaccine, become 
major targets of the immune 
response.

Macrocyclic compound
A compound made up of 
chemical ring structures that 
each consist of 12 or more 
carbon atoms.

Porphyrin
A molecule that consists of  
a ring of four linked hetero-
cyclic groups that can be  
held together by a central  
metal atom.
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TMPyP4 facilitates the formation of intermolecular G4, 
has potent inhibitory effects on telomerase activity and 
can inhibit tumour growth in vivo182,183. However, one of 
the major caveats of telomerase inhibition by G4 ligands 
is the prevalence of G- rich DNA with the propensity to 
form G4s throughout the genome, including in the pro-
moter regions of oncogenes184. G4 ligands are therefore 
likely to confer significant off- target effects. It has also 
been shown that a subset of telomeric G4 structures that 
exist in parallel conformations can be extended by telo-
merase albeit at a lower affinity to that of linear DNA, 
suggesting that telomerase extension is compatible with 
the presence of G4 stabilizers185–187.

Strategies to target ALT
One of the greatest challenges in the search for 
ALT- selective cancer therapies is that the factors 
involved in ALT are also critical to normal DNA repli-
cation and repair. Therefore, much of the drug discovery 
process for ALT- positive cancers is centred around the 
search for druggable targets that, when suppressed, exert 
selective toxicity to ALT- positive cancers. It has also been 
observed that ALT activation can serve as a resistance 
mechanism to prolonged anti- telomerase therapy, mean-
ing that patients with telomerase- positive tumours may 
require ALT- targeting therapeutics post- relapse188–191. 
It is unclear whether such resistance mechanisms stem 
from telomerase inhibition causing activation of ALT 
or from the selective expansion of a subpopulation of 
cancer cells using ALT, which originate from a hetero-
geneous tumour cell population with both TMMs. Both 
options are feasible and should be considered192–194. The 
aggressive nature of ALT- positive cancers combined 
with the stagnancy of treatment regimens for many of 
the tumour types with high ALT prevalence indicate that 
ALT is primed for therapeutic targeting195–197. Several 
therapeutic avenues are currently under investigation.

Repurposing therapies. Poly(ADP- ribose) polymerase 1 
(PARP1) is a member of the PARP family of ADP- ribosyl 
transferases and is one of the earliest responders to DNA 
damage, acting as a sensor and repair protein for both 
single- strand breaks and DSBs198–201. PARP1 consumes 
NAD+ to add poly(ADP- ribose) chains onto itself as well  
as histones at the sites of damage, which serve as plat-
forms for the recruitment of DNA repair proteins202. 
PARP inhibitors have particular utility in HR- deficient 
cancers, such as breast and ovarian cancers with BRCA1 
or BRCA2 mutations, through the induction of synthetic 
lethality203–207. In these cancer types, PARP inhibitors 
bind and trap PARP onto DNA, blocking replication 
fork progression and causing DNA damage. In ALT- 
positive cancers, the mechanism of action appears to dif-
fer. Preclinical studies have shown that, in ALT- positive 
cancer cells, PARP inhibitors cause TRF2 dissociation 
from telomeres, thereby stimulating inappropriate 
non- homologous end- joining repair208,209. This resulted in 
lethal telomere fusions and culminated in apoptosis and 
impaired growth of ALT- positive intracranial astrocy-
tomas in mice208,209. Several PARP inhibitors are now 
FDA- approved for HR- deficient breast, ovarian, pancre-
atic and metastatic prostate cancers210–213. Based on the 

preclinical data, testing PARP inhibitors in patients with 
ALT- positive cancers warrants further investigation210,214.

Oncolytic herpes simplex virus type 1 (HSV1) can 
selectively infect, replicate within and induce the lysis of 
cancer cells215. A modified version of this virus, known as 
Talimogene laherparepvec (T- VEC), is the first- in- class 
oncolytic HSV1 to have received FDA approval for the 
treatment of metastatic melanoma216. HSV1 has several 
attractive characteristics from a therapeutic perspective; 
first, it has the ability to infect a wide range of cancer 
types; second, it can be treated by antivirals in the event 
of disease arising from the infection; and third, it can 
be targeted to cancer cells through modifications to its 
glycoproteins217–219. The rationale for exploring HSV1 
as a treatment strategy for ALT- positive cancers stems 
from the ability of ATRX and DAXX to create intrinsic 
antiviral resistance to HSV1 infection220–222. ALT- positive 
cancer cells can exhibit loss- of- function ATRX and/or 
DAXX mutations, suggesting that these cancer types 
would be more susceptible to HSV1 infections. This was 
demonstrated using a mutant HSV1 that lacks the ability 
to degrade PML nuclear body components, which was 
found to be more effective at infecting ATRX- deficient 
cancer cells than ATRX- positive cells223. Since high 
numbers of PML nuclear bodies (often observed in 
ALT- negative cells) confer resistance to HSV1, the 
inability of the mutant HSV1 to degrade PML nuclear 
bodies may explain the target cytotoxicity of the virus 
towards ALT- positive cancer cells223. Infection with 
the mutant HSV1 also selectively reduced the propor-
tion of human osteosarcoma U-2 OS cells, which are  
ALT positive and lack ATRX, when co- cultured with ALT- 
negative fibroblasts, indicating selective toxicity to 
ALT- positive cells223. These data support further investi-
gation of HSV1 for the treatment of ALT- positive cancer 
types with ATRX and/or DAXX mutations.

Replication stress modulators. ALT- positive cells have 
characteristically high levels of telomere- specific rep-
lication stress that perpetuate ALT- mediated HDR 
pathways53,60,61,63. The level of telomeric replication stress 
in ALT- positive cells is finely balanced to achieve the 
maintenance of telomere length and cell viability without 
the cell succumbing to toxic levels of telomere damage61. 
If this balance is tipped to favour either outcome, the 
result can have profound effects on cell fate. Targeting 
the proteins involved in resolving replication stress or 
components of the replication stress response pathway 
has the potential to exacerbate telomeric DNA damage 
and offer selective toxicity to ALT- positive cancer types. 
The major advantage of this approach is the rapid cyto-
toxic response to telomere stress induction that mini-
mizes adaptive responses and the potential emergence 
of resistance mechanisms.

The development of inhibitors of ataxia–telangiectasia  
mutated (ATM) and ATM and RAD3- related (ATR) 
protein kinases for cancer treatment has established sig-
nificant momentum in recent years. ATM contributes 
to the replication stress response in the context of DSBs, 
suggesting that ATM inhibitors may exacerbate telomere 
replication stress and cell death in ALT- positive cancer 
types224. Several ATM inhibitors have been developed. 

Non- homologous 
end- joining
A repair pathway where 
double- strand breaks  
are ligated together. 
Non- homologous end- joining 
(NHeJ) consists of either 
canonical NHeJ or alternative 
NHeJ. In the canonical 
pathway, the two ends of the 
DNA are bound by Ku70 and 
Ku80 and DNA- PKcs, which 
come together to form the 
synaptic complex. This is then 
ligated together by the ligase 
IV–xRCC4 complex. Alternative 
NHeJ occurs independently  
of canonical NHeJ proteins  
and involves the direct joining 
of short sequence homologies 
(microhomologies).
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Specifically, AZD0156 has shown selective toxicity in 
ALT- positive neuroblastomas and is currently in phase I 
clinical trials (NCT02588105)225,226. Furthermore, resist-
ance to the chemotherapeutic drugs temozolomide and 
SN38 (the active metabolite of irinotecan) used upon 
relapse was reversed when neuroblastoma cell lines 
were treated with AZD0156 (ReF.226). ATR is recruited to 
sites of replication stress to stabilize and restart repli-
cation forks and inhibit cell cycle progression until all 
lesions are repaired227–230. There are currently multiple 
ATR inhibitors at various stages of clinical development, 
including four inhibitors in phase I (BAY1895344 and 
VX-803) and phase II (VE822 and AZD6738) clinical 
trials231. ATR inhibitors also sensitize cancer cells to 
DSB- inducing chemotherapeutic drugs, such as cis-
platin and melphalan, because such damage requires 
ATR- mediated HR repair232,233. It was previously shown 
that ATR inhibitors were more toxic to ALT- positive 
cancer cells than to telomerase- positive cancer cells234. 
This initial discovery provided optimism for the treat-
ment of ALT- positive cancers; however, the selectivity of 
ATR inhibitors for ALT- positive cancers has since been 
called into question235,236.

The potency of ATR inhibitors can be enhanced by 
combining them with PARP inhibitors. This has been 
demonstrated in a variety of cancer models but none 
have been validated to be ALT positive237–240. However, 
in the context of ALT- positive cancer types, a clinical 
trial is under way, albeit still in the recruiting stage, 
to examine the safety and efficacy of the ATR inhibi-
tor M1774 alone and in combination with the PARP 
inhibitor niraparib (NCT04170153)241,242. In this trial, 
the presence of ALT is determined by the presence of 
loss- of- function mutations in ATRX and/or DAXX. 
Other clinical studies are in progress to test novel ATR 
inhibitors, such as RP-3500 and BAY 1895344, but while 
activation of the DDR will be examined via histone var-
iant γH2AX staining, assessment of the ALT status of 
patient tumours and telomere- specific DNA damage will 
not be conducted (NCT04267939, NCT04497116)243,244. 
The design of these clinical trials highlights a major 
limitation to the discovery of ALT- based therapeutics, 
which is that tumour ALT status is often not determined 
or is predicted using loosely correlative markers such 
as loss of ATRX and/or DAXX. Assessing ALT activity 
using more robust tests, such as the C- circle assay, ALT– 
fluorescence in situ hybridization (FISH), and telomere 
variant repeat content, has the potential to uncover new 
and more robust anti- ALT activities of agents currently 
in clinical trials (Box 1).

FANCM is a DNA translocase that attenuates rep-
lication stress specifically at telomeres using ALT by 
promoting branch migration, which results in replica-
tion fork regression and the displacement of D- loops 
and R- loops63,245–247. FANCM depletion causes cells to 
enter a hyper- ALT state, characterized by increased 
telomere damage and a dramatic induction of ECTR 
DNA, that is ultimately toxic to cells using ALT61. 
Proof- of- principle experiments to disrupt the FANCM–
BTR complex have yielded encouraging results in can-
cer cells using ALT. Specifically, inducible expression 
of a peptide, corresponding to the MM2 domain of 

FANCM, that sequesters BTR complex components 
away from endogenous FANCM, resulted in C- circle 
induction, telomere damage and a striking loss of via-
bility of cancer cells using ALT61. Similarly, ALT- positive 
cancer cell lines showed increased sensitivity to the 
small- molecule inhibitor PIP-199, which was identi-
fied through a high- throughput small- molecule screen 
of approximately 75,000 compounds as an inhibitor of  
the FANCM–BTR protein–protein interaction61,248. 
While PIP-199 appears to show ALT- selective toxic-
ity at sub- micromolar concentrations, this compound 
requires substantial further validation and optimization.

The propensity for telomeres to form G4s implicates 
these secondary structures as obstacles for the replica-
tion machinery249. Consequently, G4- stabilizing ligands 
have the potential to exacerbate telomeric replication 
stress in cells using ALT. Telomestatin, previously dis-
cussed for its role in inhibiting telomerase- mediated 
telomere extension, can also destabilize shelterin com-
plex binding, causing telomere replication stress and 
resulting in mitotic arrest250. The pentacyclic acridine 
compound RHPS4 has been shown to induce pheno-
types associated with ALT, including telomere dysfunc-
tion, fragility and recombination, as well as causing 
an increase in APBs and C- circles, all of which can be 
attributed to increased levels of telomeric replication 
stress251. Pyridostatin and 2,6- pyridine- dicarboxamide 
derivatives have also been shown to cause an increase  
in fragile and dysfunctional telomeres and an increase in  
telomeric mitotic DNA synthesis in cells using ALT73,252. 
One limitation is the observation that replication stress 
caused by G4- stabilizing ligands was able to fuel recom-
bination and drive ALT activity251, opposing any thera-
peutic potential and highlighting the need for potential 
therapeutics that target replication stress to strike the 
correct balance between activating ALT- associated HDR 
pathways and killing ALT- positive cells.

Potential novel therapeutic targets. Characterization 
of the ALT mechanism has led to the discovery of an 
increased number of factors involved in the ALT pro-
cess. Some of these factors are redundant, while the sup-
pression of others can severely impair the mechanism of 
ALT or trigger the death of cells using ALT. Therefore, 
target discovery in this case involves delineating between 
redundant factors and true therapeutic targets as well as 
assessing the targets for druggability. Although the path-
ways discussed below do not yet have reliable inhibitors, 
their importance to cancer types using ALT advocates 
that they should be considered in the development of 
future ALT- targeting therapies.

The cyclic GMP- AMP synthase (cGAS)–stimulator  
of interferon genes (STING) pathway is part of the 
innate immune system that senses both host and for-
eign cytosolic double- stranded DNA to initiate a type I 
inter feron response253,254. In the context of cancer, 
the inter feron response leads to apoptosis, thus providing 
a critical tumour- suppressive function253,254. Although 
the exact nature of the self- double- stranded DNAs that 
trigger cGAS activation is not completely understood, 
ECTR DNA generated by cells using ALT can stimulate 
this interferon response. Specifically, fibroblasts exposed 

Mitotic DNA synthesis
The process of DNA repair 
synthesis during mitosis.
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to ECTRs triggered cGAS–STING- dependent DNA 
sensing, which led to enhanced interferon signalling and 
impaired cell proliferation255. In cancer cells using ALT, 
where ECTRs are abundant and can translocate into the 
cytoplasm, the cGAS- STING pathway is typically defec-
tive due to low STING expression and, consequently, 
these cells using ALT exhibit an impaired interferon 
response255. This highlights two major weaknesses of 
cells using ALT. First, while the impaired interferon 
response enables cells using ALT to evade ECTR- induced 
anti- proliferative effects, it may also confer vulnerability 
to viral infections. Second, the necessity for cells using 
ALT to shut down the cGAS–STING pathway is indica-
tive of the potent lethality of this pathway to these cells 
if active. This suggests that testing the end- products of 
this pathway, such as the FDA- approved interferon- β 
(IFNβ), may be a rational approach to inhibit the growth 
of ALT- positive cancer cells256–262.

Several strategies to disrupt APB formation have 
been investigated. One method involves targeting the 
SUMO ligases to disrupt the SUMO–SIM interactions 
that hold the PML components together. Suppression of 
the MMS21 SUMO ligase of the structural maintenance 
of chromosomes protein 5 (SMC5)–SMC6 complex, 
which prevents sumoylation of the shelterin compo-
nents TRF1 and TRF2, causes APB disruption, telomere 
shortening and senescence in cancer cells using ALT263. 
This implicates inhibition of the ligases that mediate 
sumoylation as a viable therapeutic strategy for cancer 
types using ALT. Ubiquitin carrier protein 9 (UBC9) 
is the sole E2- conjugating enzyme in the sumoylation 
cascade and plays an important role in sumoylation of 
the PML protein. 2′,3′,4′- Trihydroxy flavone (2- D08) is 
a small- molecule inhibitor that inhibits the transfer of 
SUMO from the UBC9 thioester conjugate to SUMO 
substrates264 and has the potential to inhibit the sumoyla-
tion of PML proteins and the formation of APBs, causing 
cytotoxic effects in cells using ALT265. A major caveat 
is that 2- D08 is likely to exert widespread inhibition  
of sumoylation at other UBC9 SUMO substrates in  
addition to PML proteins266.

APB formation also enables proximity- dependent 
degradation of shelterin components by ubiquitin 
ligases. Specifically, the shelterin component POT1 colo-
calizes with the ubiquitin- specific- processing protease 7  
(USP7) deubiquitinase within APBs. Testis- specific 
Y- encoded- like protein 5 (TSPYL5) has recently been 
identified as a PML component and functions as a  
USP7 inhibitor267. Suppression of TSPYL5 activates USP7  
(ReF.267), which allows USP7 to deubiquitinate and stabilize  
POT1- targeting ubiquitin ligases that would other-
wise undergo auto- ubiquitination and degradation267. 
The active POT1- targeting ligases then ubiquitinate 
POT1, resulting in its proteasomal degradation267. 
Without POT1, the shelterin complex becomes compro-
mised, causing telomere dysfunction and cell death267. 
Interestingly, the interaction between USP7, POT1 and 
its ubiquitin ligases was dependent on APB formation, 
explaining why TSPYL5 suppression was specifically 
toxic to ALT- positive cancer cells267. This study not 
only identifies TSPYL5 as a possible therapeutic tar-
get for ALT- positive cancer types but also raises the 

possibility of targeting interactions and processes that 
occur uniquely within APBs as a treatment strategy for 
ALT- positive cancers.

Other proteins within the shelterin complex, specifi-
cally TRF1 and TRF2, have also been explored as poten-
tial therapeutic targets for cancer treatment. TRF1 and 
TRF2 form homodimers that bind to double- stranded 
telomeric DNA268. TRF1 can recruit helicases, including 
BLM and regulator of telomere elongation helicase 1 
(RTEL1), to remove secondary structures, thereby pre-
venting replication stress54,269,270. TRF1 also suppresses 
ATR signalling during S- phase, which would otherwise 
induce a fragile telomere phenotype54. The ability of 
TRF1 loss to elicit cytotoxicity by inducing DNA dam-
age has been investigated using TRF1- knockout mouse 
models. TRF1 knockout reduces the progression of 
several cancer types, including glioblastoma and lung 
cancer, while the knockout has minimal impact on 
organ function in non- malignant tissues and on sur-
vival of mice, suggesting the possibility of a therapeutic 
window271–273. This therapeutic window was demon-
strated when tolerable doses of small- molecule inhib-
itors against TRF1 (ETP-47228 and ETP-47037), which 
inhibit TRF1 binding to DNA, induced DNA damage 
and inhibited cancer progression271,273. TRF1 function 
can also be indirectly inhibited through the use of kinase 
inhibitors due to TRF1 stabilization and foci formation 
being dependent upon TRF1 phosphorylation by ERK2, 
BRAF, mTOR and AKT kinases272,274.

Mutations in TRF2 result in altered telomeric DNA 
topology that can initiate an ATM- dependent DDR275. 
TRF2 also cooperates with RAP1, another component 
of the shelterin complex, to suppress the localization of  
PARP1 and SLX4 to telomeres, thereby inhibiting 
non- homologous end- joining275,276. Reduced recruit-
ment of HDR proteins to telomeres results in telomere 
resection, telomere loss and chromosome fusions276. 
Triazole- stapled peptides have been developed to 
block the protein−protein interaction between RAP1 
and TRF2, which functions to suppress inappropri-
ate HDR277. The interaction between TRF2 and the 
5′- exonuclease, Apollo, presents another druggable 
opportunity. Apollo, when recruited to the telomeres by 
TRF2, creates the 3′ single- stranded overhang, which 
invades the proximal regions of the telomere to form the 
t- loop. Cyclic peptide mimetics of the TRFH- binding 
motif on Apollo can bind to TRF2, disrupting its inter-
action with Apollo278. The TRFH domain on TRF2 itself 
has also be inhibited by cyclic peptides, resulting in acti-
vation of the DDR279. The efficacy of shelterin inhibitors 
has not been studied in the context of different TMMs. 
Given the importance of shelterin and t- loops in pre-
venting telomere dysfunction irrespective of the TMM 
of the cancer, it is possible that inhibitors of shelterin 
function may exhibit a ‘pan- cancer’ cytotoxic effect.

Conclusions and future perspectives
Telomerase inhibitors have been the focus of substan-
tial interest and investment over the last few decades, 
while ALT- positive cancers have remained ignored and 
therapeutically unchallenged. However, the landscape is 
changing, and ALT is rapidly becoming recognized as a 
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specific clinical classification, with the potential to be 
therapeutically targeted. ALT is estimated to be active in 
10–15% of all cancer types, with its prevalence reaching 
>50% in some subtypes of bone and soft tissue sarcomas 
and central nervous system tumours280. As ALT- positive 
cancer types are typically aggressive and recalcitrant to 
current treatment regimens, there is an urgent need  
to diagnose and effectively treat this significant group 
of cancers.

In this Review, we have discussed the detection tech-
niques amenable for the clinical diagnosis of ALT and 
collated current progress in the development of disrup-
tors of both telomerase- mediated and ALT- mediated 
telomere lengthening pathways as cancer therapeutics. 
While many promising inhibitors have been devel-
oped against telomerase, including the highly attrac-
tive hTERT vaccines and imetelstat, which gained 
fast- track FDA approval, recent major developments 
have focussed on new therapeutic opportunities for 
patients with ALT- positive cancer types. In line with 

our growing understanding of the ALT mechanism, 
inhibitors that fortuitously target components of the 
ALT pathway, which have been developed over many 
years, are becoming increasingly recognized and rele-
vant for their utility in the treatment of ALT- positive 
cancer types. To date, many of the molecular- based 
treatments for ALT come from repurposing inhibitors 
developed primarily for other cancer types but novel 
inhibitors, such as the FANCM inhibitor PIP-199, are 
emerging as targeted and ALT- selective therapeutics. 
The major challenge now is to comprehensively test 
these approaches in cell and animal models as well as 
in the clinic to establish efficacy and TMM- selective 
toxicity. In summary, the field is poised to recognize 
and treat cancer types based on their TMM status, 
with ALT- targeted therapeutics offering a broad- based 
precision approach for the treatment of a significant  
proportion of tumour types.
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