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Attivazione DDR nei tumori

Che cosa attiva DDR nel tumore?
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Che cosa attiva DDR nel tumore?
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Attivazione DDR nei tumori
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Attivazione DDR nei tumori\

Attivazione oncogeni interferisce con la
replicazione del DNA?
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Attivazione DDR nei tumori

Attivazione oncogeni interferisce con la
replicazione del DNA in vivo?
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Attivazione DDR nei tumori

Attivazione oncogeni interferisce con la
replicazione del DNA?
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Replication stress and cancer

Héléne Gaillard, Tatiana Garcia-Muse and Andrés Aguilera
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Figure 1| Oncogene-induced replication stress. There are different ways by which oncogene activation can deregulate
replication: a decrease in the number of licensed replication origins (as seen upon cyclin E overexpression*) reduces the
number of active origins, leading to under-replicated DNA; whereas, unscheduled replication initiation causes
re-replication and/or premature origin activation (as seen upon expression of cyclin E, cyclin D2 and MYC
oncogenes**1#4) which could result in replication fork stalling. Alternatively, replication fork stalling induced

by oncogenes can be mediated by a direct effect of the oncogenes on replication fork progression (for example, the BCL-2
oncogene*) or by an accumulation of reactive oxygen species (ROS) leading to DNA damage with the potential to impair
replication (as seen upon MYC overexpression'’3).
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Stress replicativo —
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Figure 4 | Genomic instability resulting from replication stress. a|DNA adducts —
DNA sequences covalently bound to a mutagenic chemical residue (blue oval) —or
tightly DNA-bound proteins similar to yeast replication fork blocking protein Fob1 can
block replication fork progression leading to single-stranded DNA (ssDNA) or
double-strand breaks (DSBs) that activate the checkpoint. During replication, base
lesions (orange star) can be bypassed via post-replicative repair (PRR) by translesion DNA
synthesis (TLS) or by template switching with the sister chromatid using a homologous
recombination (HR)-dependent process. Instead, DSBs are repaired by HR primarily using
the sister chromatid, although this can also occur with the homologous chromosome (as
shown). b | A defective response to replication stress by failure in PRR or HR can lead to
genome instability, which can be observed as high levels of point mutations, deletions
and amplifications, loss of heterozygosity (LOH), gross chromosomal rearrangements
(GCRs) and chromosome gain or loss that presumably involve pathways or events such as
error-prone DNA synthesis, non-homologous end joining (NHEJ), breakage—fusion-bridge,
Gaillard et al., 2015 anaphase bridges, and so on.
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Figure 2| How the DNA damage response pathways influence steps
leading to cancer. The figure shows how changes in the DNA damage
response (DDR) pathways promote critical steps in the aetiology of
carcinogenesis. A healthy cell has a plethora of DDR processes to
protect its DNA from exogenous and endogenously arising DNA-
damaging agents, and respond to viral infections. Nonetheless, the
processes are not perfect, and an early step in the aetiology of cancer is
the generation of one or more mutational changes. This may directly or
indirectly result in oncogene activation, which leads to replicative
and/or oxidative stress. Genetic predisposition to cancer can arise when

Precancerous cell

* Persistent genomic instability
e Further loss of DDR processes

one of these DNA repair processes is compromised. However, although
enhanced replication stress increases the level of DNA breakage,
mutation or rearrangement, a range of responses —for example, the
ability to accurately recover replication, the activation of checkpoint
arrest or other p53-dependent responses — can prevent the
proliferation of damaged cells. Progression from this precancerous state
to ongoing proliferation requires the downregulation of these DDR
processes, thereby facilitating persistent genomic instability. For clarity,
these steps have been depicted to arise in a linear fashion, which may
not be the case.

Jeggo et al., 2016
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La riparazione dei danni a
doppio filamento del DNA (DSB)

@DNA DAMAGE

DNA double-strand break
repair-pathway choice in somatic
mammalian cells

Ralph Scully® *, Arvind Panday, Rajula Elango and Nicholas A. Willis® *
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Meccanismi alternativi
di riparazione del DSB

a Single-strand annealing

* RPA displacement
* Annealing

\ /3'

3'

Scully et al., 2019
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Scelta del "
meccanismo di riparazione del DSB
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