Cell, Vol. 116, 181-190, January 23, 2004, Copyright ©2004 by Cell Press

Back to the Future with Ubiquitin

Cecile M. Pickart*

Department of Biochemistry and Molecular Biology
Bloomberg School of Public Health

Johns Hopkins University

Baltimore, Maryland 21205

Two papers published in 1984 by the Varshavsky labo-
ratory revealed that the ubiquitin/proteasome pathway
is the principal system for degradation of short-lived
proteins in mammalian cells, setting the stage for fu-
ture demonstrations of this pathway’s many regulatory
roles. This perspective discusses the impact of those
papers and highlights some of the subsequent insights
that have led to our current appreciation of the breadth
of ubiquitin-mediated signaling.

Introduction

Over athousand papers published in the year 2003 alone
cited “ubiquitin” as a keyword, compared to fewer than
a hundred such papers in 1984. The dramatic difference
reflects the efforts of many laboratories, whose collec-
tive findings have shown that nearly every aspect of
eukaryotic cell biology carries a connection to ubiquitin.
As a result, today it is easy to frame a career around
this remarkable signaling molecule. But one’s motives
had to be purer in 1984 —despite the novelty of ubiqui-
tin’s role as a degradation signal, it was impossible to
gauge the generality and significance of the eponymous
proteolytic pathway.

In the accompanying supplement, Cell republishes
two seminal papers that provided major insights into
what we now call the ubiquitin/proteasome pathway.
In this work, Varshavsky and coworkers exploited their
discovery of a temperature-sensitive defect in ubiquitin
conjugation to reveal for the first time the enormous
scope of ubiquitin-dependent proteolysis in mammalian
cells (Ciechanover et al., 1984; Finley et al., 1984). In
the accompanying supplement, the authors themselves
comment on how their findings influenced the growth
of the ubiquitin field. Here, | offer an independent per-
spective, beginning with the 1984 papers and proceed-
ing to some of the developments that, in my view, have
most notably altered our view of ubiquitin from that
which prevailed twenty years ago.

Background: The Ubiquitin/Proteasome Pathway

of Protein Degradation

Breaking a peptide bond is a difficult proposition—the
uncatalyzed hydrolysis of one bond in a polypeptide
chain is estimated to occur with a half-life of several
hundred years under physiological conditions (Wolfenden
and Snider, 2001). The kinetic stability of proteins is
biologically desirable—one wouldn’t want these work-
horses of the cell to undergo spontaneous fragmenta-
tion—but it creates a problem when proteins need to

*Correspondence: cpickart@jhmi.edu

Review

be eliminated for purposes of regulation or quality con-
trol. This problem is solved by proteases, which often
use acombination of acid, base, and nucleophilic cataly-
sis to facilitate the attack of water on peptide bonds.
Proteases are rarely energy-dependent, however, be-
cause the reaction that they catalyze is thermodynami-
cally favorable.

The discovery of the ubiquitin/proteasome pathway
emerged from efforts to understand why intracellular
proteolysis, measured as the release of amino acids
from intact cells, requires metabolic energy (Simpson,
1953). Key elements of the answer became clear in the
early 1980’s as a result of the pioneering biochemical
studies of Hershko and coworkers. These investigators
found that energy, in the form of ATP, is needed to
modify proteolytic substrates with ubiquitin, a highly
conserved 76 amino acid polypeptide that is joined to
a substrate lysine side chain through an isopeptide bond
to ubiquitin’s C terminus (Ciechanover et al., 1980; Hershko
et al., 1980). Ubiquitination occurs through sequential
steps catalyzed by activating (E1), conjugating (E2), and
ligase (E3) enzymes (Hershko et al., 1983). The presence
of multiple substrate-linked ubiquitins recruits the 26S
proteasome, a 2.5 MDa complex that uses energy de-
rived from ATP hydrolysis to unfold the substrate poly-
peptide chain and translocate it into an interior chamber
(Baumeister et al., 1998). Having arrived at this site, the
substrate is hydrolyzed by a nucleophilic mechanism to
produce small peptides. Ubiquitin is spared from degra-
dation through its release from the substrate (or a sub-
strate fragment) by deubiquitinating enzymes (Hershko
et al., 1980). Thus, there are two independent reasons
why ATP is required for intracellular proteolysis: to acti-
vate ubiquitin’s C terminus in preparation for conjugation
and to support the proteasome’s substrate unfolding and
translocation activities (Figure 1A) (Baumeister et al., 1998;
Pickart, 2001).

Much of what is stated in the preceding paragraph
was already known in outline form by the early 1980’s,
although E1 was the only enzyme that had been thor-
oughly characterized. As shown by Hershko, Rose, and
coworkers, E1 activates ubiquitin by using ATP to syn-
thesize ubiquitin C-terminal adenylate, which then serves
as an enzyme bound substrate for the formation of an
E1-ubiquitin thiol ester (Figure 1B) (Haas et al., 1982).
The latter ubiquitin is passed to an E2 cysteine residue
and from there, in an E3-dependent manner, to the sub-
strate (Figure 1C) (Hershko et al., 1983). Although the
true properties of the proteasome were beyond the
wildest imagination of researchers working at that time,
it was clear that the ubiquitin-recognizing protease was
a complex, ATP-dependent entity (Hershko et al., 1984b).

But the most vexing feature of this pathway was the
lack of a biological context. The elegant mechanistic
framework discussed above was developed from exper-
iments conducted in rabbit reticulocyte extracts. De-
spite certain hints (Hershko et al., 1982), it was unclear if
nucleated mammalian cells harbored the same pathway.
The biological purpose of the pathway was even more
uncertain. Although misfolded and truncated polypep-
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Figure 1. Components and Mechanisms in
the Ubiquitin/Proteasome Pathway

(A) Overview of pathway showing how ATP is
used in its conjugative (top) and degradative
(bottom) phases. E1, E2, and E3 are ubiquitin
activating, conjugating, and ligase enzymes,
respectively; K denotes a substrate lysine
residue.

(B) E1-catalyzed reaction. Step 1, ubiquitin
adenylate formation; step 2, transfer of ubi-
quitin from adenylate to cysteine (product not
shown); step 3, second round of adenylate
formation to yield fully loaded enzyme.

(C) The ubiquitin conjugation cascade. Elabo-
ration of a polyubiquitin chain (data not
shown) often involves the same E2/E3 com-
plex, but can also involve a different complex
(Hoege et al., 2002). Certain E3 enzymes form
ubiquitin thiol esters during catalysis of sub-
strate ubiquitination (Figure 2 below).
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tides were known to be targeted in a selective manner
for ubiquitination and proteasome degradation (Hershko
et al.,, 1982), no normal protein was yet known to be
eliminated by this interesting mechanism. Accordingly,
the pathway was viewed by many as an intracellular
garbage disposal. This function did not inspire broad
interest among biologists.

One final player needs to be introduced to appreciate
these classic papers. Histone 2A (H2A) was the first
protein shown to be modified by ubiquitin through an
isopeptide linkage (Goldknopf et al., 1975). It is the most
abundant ubiquitinated protein in most nucleated mam-
malian cells, comprising 10%-20% of the total conju-
gate pool; histone H2B is also subject to ubiquitination
(Jason et al., 2002). Because H2A is a long-lived protein,
its status as a natural substrate of ubiquitination shed
no direct light on the purposes of ubiquitin-dependent
proteolysis. Nonetheless, ubiquitinated H2A played an
important part in the work discussed below.

ts85 Cells, Ubiquitination, and Proteolysis

The mouse mammary carcinoma cell line called ts85
was discovered based on its phenotype of temperature-
sensitive arrest in the G2 phase of the cell cycle, but
the molecular basis of this interesting phenotype was
unknown (Mita et al., 1980). Varshavsky and coworkers
were intrigued by the rapid disappearance of ubiquiti-
nated H2A that occurred when ts85 cells were shifted

to the nonpermissive temperature (Marunouchi et al.,
1980). Reasoning that this event could be explained by
afailure in ubiquitin conjugation, they set out to evaluate
this possibility in a systematic manner.

In the first republished paper, Finley and coworkers
show that extracts of ts85 cells grown at a restrictive
temperature display a marked defect in ubiquitin conju-
gation when compared to extracts of cells grown at a
permissive temperature (Finley et al., 1984). Neither the
parental cells nor temperature-insensitive revertant cells
(both of which had normal cell cycles) displayed this
property, indicating that inhibition of ubiquitination is
tightly correlated with the defect in cell cycle progres-
sion. Inhibition was similar in assays of ubiquitin conju-
gation to lysozyme (a model substrate recognized by
an E3 enzyme in the extract), unidentified cellular pro-
teins, and H2B (Ciechanover et al., 1984; Finley et al.,
1984). Knowing as we do today that there are diverse
substrate-specific E3s, the global character of the ob-
served defect affords virtual proof that the failure occurs
at an early step in the conjugation cascade. To prove
that the very first enzyme was the labile factor, the re-
searchers affinity-purified E1. They found that the homo-
geneous enzyme from ts85 cells, but not E1 from the
parental cells, rapidly lost ubiquitin-activating capacity
at high temperature as measured in assays of ubiquitin
thiol ester formation (Finley et al., 1984). The activity
of E1 disappeared with similar kinetics to activity in
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ubiquitin-substrate conjugation (Ciechanover et al.,
1984; Finley et al., 1984), further supporting a causal
relationship between the two defects and suggesting
that inactivation of E1 underlies temperature-sensitive
cell cycle arrest. Years later, with the advent of routine
cDNA cloning, it was shown that the defect in cell cycle
progression is indeed rescued following transfection of
a wild-type E1 cDNA (Ayusawa et al., 1992).

Recognizing that this conditional defect in ubiquitin
conjugation could be exploited for purposes of func-
tional discovery, Ciechanover and coworkers asked a
simple question: how are rates of intracellular proteo-
lysis affected when the activity of the ubiquitin/pro-
teasome pathway is drastically reduced through the
thermal inactivation of E1? Pulse-chase experiments re-
vealed that the turnover of abnormal or truncated poly-
peptides was inhibited by more than 80% when ts85
cells were shifted to the restrictive temperature, con-
comitant with a profound inhibition of the ubiquitination
of these polypeptides (Ciechanover et al., 1984). This
outcome agreed with earlier indications that misfolded
proteins are selectively recognized for ubiquitin tagging
(Hershko et al., 1982), but it provided a decisive demon-
stration that the ubiquitination of these species in nucle-
ated cells correlates with their degradation. In the most
important experiment, the turnover of short-lived normal
proteins was found to be inhibited by more than 90%
at the restrictive temperature. The turnover of these
polypeptides at the permissive temperature was accom-
panied by their transient appearance in the ubiquitin
conjugate pool, and was ATP-dependent but insensitive
to lysosomotropic agents—all as expected for turnover
in the ubiquitin/proteasome pathway. (The identification
of the proteasome as the relevant protease did not occur
for several more years, however.)

Enduring Lessons

Data published in these papers represented the first
evidence that the ubiquitin/proteasome pathway is the
principal mechanism for turnover of normal short-lived
proteins in mammalian cells. Subsequent research has
confirmed this conclusion in several different ways. For
example, cell-permeable inhibitors of the proteasome
ablate the turnover of short-lived proteins in mammalian
cells (Rock et al., 1994) and mutations in (yeast) protea-
some subunit genes elicit a similar effect, in some cases
concomitant with cell cycle arrest (Ghislain et al., 1993;
Gordon et al., 1993; Heinemeyer et al., 1991; Seufert and
Jentsch, 1992). Confirming an important role of ubiquitin
conjugation, deletion of the UBC4 and UBC5 E2 genes
of Saccharomyces cerevisiae greatly inhibits the turn-
over of short-lived and abnormal proteins (Seufert and
Jentsch, 1990). These two E2s act in concert with many
ES3s; in this respect they resemble E1, which provides
activated ubiquitin for all conjugation processes. (In
most cases, the deletion of E2-encoding genes elicits
rather selective effects because of the pronounced
specificities of E3s, as discussed below.)

The studies of Varshavsky and coworkers also pro-
vided the first clue that ubiquitination regulates the cell
cycle. The argument that proteolysis is the ubiquitin-
dependent process that underlies this regulation, al-
though inferential in 1984, was decisively validated by

the later discovery that the turnover of mitotic cyclins
is ubiquitin-dependent (Glotzer et al., 1991; Hershko et
al., 1991). The recognition that the ubiquitin/proteasome
pathway plays a central role in cell cycle progression
led to a series of key findings that proved to be relevant
not only for this function, but also more generally. In
particular, the defining member of a large family of multi-
subunit E3s, called SCF complexes (Skp/Cullin/F box),
was discovered through investigations of how ubiquitin-
dependent proteolysis regulates the G1/S transition
(Feldman et al., 1997; Skowyra et al., 1997). Another,
distantly related E3, called the APC (Anaphase Promot-
ing Complex), regulates the metaphase-to-anaphase
transition and exit from mitosis (reviewed in Jackson et
al., 2000; Peters, 2002). The substrates targeted by these
ligases are activators and inhibitors of cyclin-dependent
kinases (CDKs). The role of the ubiquitin/proteasome
pathway in regulating cell cycle progression is reviewed
in detail elsewhere in this issue (Murray, 2004 [this issue
of Celll). Studies of SCF substrate susceptibility to ubi-
quitin tagging also provided the first, and still some
of the most notable, examples of how phosphorylation
regulates E3/substrate interactions, as discussed in the
article by Murray and in excellent earlier reviews (De-
shaies and Ferrell, 2001; Jackson et al., 2000; Peters,
2002).

Somewhat ironically, this first genetic experiment in
the ubiquitin/proteasome field involved mammalian
cells (Ciechanover et al., 1984; Finley et al., 1984). How-
ever, the same year saw the cloning of the first ubiquitin
pathway gene in S. cerevisiae (Ozkaynak et al., 1984),
ushering in a long period in which budding yeast domi-
nated molecular genetic investigations of ubiquitin-
dependent signaling. Not only have these investigations
illuminated these processes; they have also generated
powerful tools in the form of plasmids and yeast strains
(Hochstrasser, 1996). Nonetheless, mammalian cell lines
like ts85 remain useful today because in contrast to
the situation with proteasomes, there are still no cell-
permeable inhibitors of ubiquitination. Even though a
thermolabile E1 enzyme is a rather blunt instrument,
cells harboring it can be used to show that a given event
relies on ubiquitin conjugation. Such cell lines have fig-
ured importantly in studies of ubiquitin-dependent pro-
cesses that are proteasome-independent (discussed
below), including endocytosis and protein trafficking (for
example, Strous et al., 1996). These cell lines have also
proved useful for demonstrating the ubiquitin indepen-
dence of other events (Shringarpure et al., 2003).

Do the 1984 papers hold any surprises for today’s
reader? There was at least one for the author. Finley et
al. combined equal volumes and parental and ts85 cell
extracts and found that the mixture displayed 50% of
the parental extract’s ubiquitination activity at several
temperatures (Finley et al., 1984). The authors argued
that if the heat-labile component had been a regulatory
factor such as a kinase, the active factor in the parental
extract should have acted catalytically on its targets in
the ts85 extract and complemented the ubiquitination
defect (Finley et al., 1984). In fact, from today’s point of
view it is rather surprising that the active E1 in the paren-
tal extract did not produce exactly this outcome. E1
is a far more efficient enzyme than most downstream
conjugating factors and is often considered to afford
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ubiquitin activation activity in excess of that required
by subsequent reactions (Pickart, 2001). The result ob-
tained by Finley et al. therefore raises the possibility
that in contrast to current views, the E1 step could be
rate-limiting for certain ubiquitination events.

Then and Now

The two papers discussed above led to a new world-
view; not only was the ubiquitin/proteasome pathway a
major proteolytic mechanism in the average mammalian
cell, but it was also likely to regulate cell cycle progres-
sion. These conclusions are so well accepted today that
it is difficult to appreciate the magnitude of their impact
at the time the two papers appeared. Succinctly put,
this work forced biologists as well as biochemists to
respect the ubiquitin/proteasome pathway.

In what other ways has our view of ubiquitination
changed since 1984? A comprehensive discussion
would greatly exceed the scope of this article but a few
developments are noteworthy, especially when viewed
through the lens of the state of knowledge in 1984.

Ubiquitination Regulates Lysosomal Proteolysis
Researchers studying ubiquitin in the mid-1980’s held it
as atenet of faith that the ubiquitin/proteasome pathway
had no point of intersection with lysosomal proteolysis.
This commandment reflected the fact that agents which
disrupt lysosomal functioning, have no effect on the
ATP-dependent turnover of short-lived and abnormal
proteins (see Ciechanover et al., 1984). In direct contra-
diction of this formerly strict rule, we now know that
ubiquitination is sometimes required for lysosomal pro-
teolysis. This could not be detected in the 1984 study
because only a small fraction of short-lived proteins is
targeted to lysosomes. However, later studies of individ-
ual endocytosed proteins revealed that a subset of these
molecules must be conjugated to ubiquitin as a trigger
for internalization from the plasma membrane (Hicke
and Riezman, 1996; Kolling and Hollenberg, 1994). In
fact, endocytosis is just one of many protein trafficking
steps that depend on ubiquitin conjugation, as recently
reviewed elsewhere (Aguilar and Wendland, 2003; Hicke
and Dunn, 2003). The discovery that retroviruses subvert
certain ubiquitin-dependent trafficking events in order
to achieve budding offers exciting new possibilities for
therapeutic intervention (Garrus et al., 2001).

Truly, a System

If a ubiquitin researcher placed in cryostorage in 1984
were to be thawed out today, there is little doubt about
what he or she would find most remarkable: the com-
plexity of it all. In the mid-1980’s, we knew of one E1,
several E2s, and one E3 (Hershko et al., 1983). Although
this collection of enzymes already seemed too small to
account for the burgeoning biology, no one could have
predicted the system’s actual breadth. Several factors
have combined to produce this knowledge, including
detailed investigations of specific ubiquitination/turn-
over events, newly identified associations with human
disease, genome sequencing projects, and bioinformat-
ics. The recognition that E3s are organized into a small
number of families was particularly important (Deshaies,
1999; Jackson et al., 2000; Joazeiro and Weissman,

2000; Pickart, 2001). From a mechanistic standpoint,
E3s fall into two groups: those that utilize a covalent
mechanism (HECT domain E3s) and those that do not
(most notably RING-domain E3s) (Figure 2). The mam-
malian RING-domain family is very large and it is likely
that a substantial fraction of its members are E3s. Some
consist of just one (multidomain) subunit (Lorick et al.,
1999), whereas others are multiprotein complexes in
which each subunit is a member of a distinct protein
family, with the (small) RING subunit acting to recruit
the E2 (Seol et al., 1999) (see also below). There are
approximately fifty E2s and more than seventy deubiqui-
tinating enzymes in humans, while the 26S proteasome
is composed of at least 64 protein subunits, which are
encoded by 32 independent genes (Baumeister et al.,
1998). (This review largely ignores the fascinating topic
of proteasomes.) Altogether, several percent of the hu-
man genome is likely to be devoted to the ubiquitin
pathway, taking into account both proteolytic and non-
proteolytic functions (Semple, 2003). In 1984, even the
most ardent ubiquitin supporter would have rejected this
number, which also applies in plants and yeast (Semple,
2003; Vierstra, 2003).

Any perspective on the ubiquitin/proteasome path-
way must remark on the hierarchical nature and regula-
tory potential afforded by this multiplicity of conjugation
factors. Each E3 enzyme recognizes a restricted set of
substrates (discussed below) and is served by one or a
few E2s. These properties are areflection of the modular
construction of E3s—the substrate and the E2 enzyme
bind to separate sites, with members of a given E3 family
sharing a conserved E2 binding domain. Originally in-
ferred from functional studies, these molecular proper-
ties are now documented by atomic-resolution struc-
tures of E3s complexed with their cognate E2s (Brzovic
et al., 2003; Huang et al., 1999; Zheng et al., 2000) and
substrates (discussed below).

Dedicated substrate/E3 pairings permit independent
regulation of the ubiquitination of distinct substrates. In
some cases, E3 specificity may be further modulated
through the association of one E3 with different E2s
(Chen et al., 1993). Having many E2s might also control
the flow of activated ubiquitin to the cognate E3s of
different E2s. This mechanism, if operative, would be
most important if the activity of E1 is limiting. Finally,
certain RING-domain E3 families take the modular con-
struction idea to an extreme. As first shown for the SCF
E3s in the context of cell cycle regulation, the E2- and
substrate binding functions can be delegated to sepa-
rate polypeptides, which are brought together through
adaptor-dependent interactions with a scaffold protein
called a cullin (Bai et al., 1996; Feldman et al., 1997;
Skowyra et al., 1997). The existence of substrate binding
(F boxes; SOCs boxes), cullin, and adaptor protein fami-
lies (Skps, Elongins), in conjunction with functional data,
shows that E3 specificity can be reprogrammed by
changing the identity of the substrate recognition sub-
unit (Deshaies, 1999).

Substrate Selection and Its Regulation

The finding that most short-lived proteins are degraded
in the ubiquitin/proteasome pathway (Ciechanover et
al., 1984) raised a pressing question about specificity.
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Did all such substrates share a common recognition
determinant? This was unlikely a priori. The existence
of many E3s solves this problem in principle, but fails to
show how selective recognition is practiced. Elucidating
E3/substrate interactions has been an enduring goal of
researchers over the last two decades.

The first E3 to be characterized was the one that
recognized the denatured lysozyme substrate used in
early biochemical studies. Called E3q, it seemed to re-
quire that model substrates carry a free a-amino group
(Hershko et al., 1984a). In 1986, studies by Varshavsky
and coworkers in yeast unexpectedly uncovered the
complete relationship between the identity of the
N-terminal amino acid and substrate stability, called the
N-end rule (Bachmair et al., 1986). Further investigations
of this mechanism showed that the orthologous yeast
E3 (Ubr1) recognized this determinant, which together
with a lysine residue subject to ubiquitination, was
termed an N-degron (Varshavsky, 1997). These studies
provided the functional definition of a degron (an ele-
ment that is both necessary and sufficient for substrate
ubiquitination) and established the modular organiza-
tion that ultimately proved to apply to all E3s. The N-end
rule is also biologically important, as dramatically shown
by the essentiality of one of its components for cardio-
vascular development in the mouse (Kwon et al., 2002).

New degrons continue to be reported at aregular rate.
In one interesting recent example, the specificity subunit
of a cytosolic SCF E3 was found to recognize N-linked
high-mannose oligosaccharides (Yoshida et al., 2002).
(In a turn of events that would amaze the time-traveling
researcher mentioned above, it was discovered in the
1990’s that misfolded proteins of the endoplasmic retic-
ulum (ER) are ejected from that compartment and de-
graded by the cytosolic ubiquitin/proteasome pathway
in a process known as ERAD (ER-Associated Degrada-
tion) (Kostova and Wolf, 2003). Since proteins can only
acquire these sugars in the ER interior, having the glycan
as a component of the degron may be a clever way
to achieve uniform targeting of a subset of proteins
originating in that compartment. Surprisingly, however,
we still do not fully understand the one example of selec-
tive targeting that was known in 1984, namely that of
misfolded polypeptides. Certain E3s recognize inappro-
priately exposed hydrophobic surfaces (Johnson et al.,

Figure 2. Major E3 Classes

(A) HECT domain E3s (Homologous to E6GAP
C-Terminus) bind cognate E2s via the con-
served HECT domain and transiently accept
ubiquitin at a cysteine residue in this region;
a different region of the same polypeptide
chain binds the substrate (blue) through an
element in the degron (square).

(B) RING-domain E3s (Really Interesting New
Gene) are scaffold proteins that use the RING
domain (red) to bind the E2 and a different
domain (orange) to bind the substrate. In SCF
and other multisubunit RING-domain E3s, the
RING and substrate binding domains occur
in separate polypeptides (text).

1998), whereas other E3s coopt chaperones as their
specificity factors (Cyr et al., 2002), but it is uncertain
if these targeting mechanisms are the whole story. A
burgeoning area of research suggests that inadequate
clearance of misfolded proteins by the ubiquitin/protea-
some pathway may contribute to neurodegenerative
diseases such as Parkinson’s and Huntington’s, giving
new impetus to studies of misfolded protein degradation
(Berke and Paulson, 2003; Giasson and Lee, 2003).

Studies of degron recognition in physiological sub-
strates have revealed a level of regulatory sophistication
that would have been unimaginable in 1984. E3/degron
interactions can be modulated by posttranslational modi-
fications (among other mechanisms) that serves to link
ubiquitination to other cellular events (reviewed in De-
shaies, 1999; Deshaies and Ferrell, 2001; Laney and Hoch-
strasser, 1999; Peters, 2002) (Figure 3). Most famously,
CDK-catalyzed phosphorylation triggers the proteolysis
of CDK regulators at appropriate points in the cell cycle
(see Deshaies and Ferrell, 2001; Peters, 2002 and Mur-
ray, 2004 [this issue of Cell]). Another recent example
is the oxygen-dependent hydroxylation of a specific pro-
line residue in Hypoxia Inducible Factor-1a (HIF-1a),
which triggers recognition by a cullin-based E3 that has
the Von Hippel Lindau (VHL) tumor suppressor protein
as its specificity subunit; the ensuing degradation of
HIF-1a shuts off a hypoxic program of gene expression
(Ivan et al., 2001; Jaakkola et al., 2001). Structural stud-
ies of this E3 show that the hydroxyproline residue of
HIF-1a binds to a region of VHL that is frequently mu-
tated in a hereditary cancer syndrome (Hon et al., 2002;
Min et al., 2002; Stebbins et al., 1999).

Structurally Distinct Ubiquitin Modifications

Impart Diversity in Signaling

In 1984 we knew that histones could be modified with
a single ubiquitin. Although the purpose of this modifica-
tion was mysterious, it definitely did not signal proteoly-
sis. Substrates destined for proteasomes, on the other
hand, were decorated with many ubiquitins and this high
stoichiometry seemed to be important for productive
degradation (Chin et al., 1982; Hershko et al., 1984b;
Hough and Rechsteiner, 1986). Later work proved that
these multiple ubiquitins must be linked together in a
specific type of polyubiquitin chain to order to guarantee
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efficient targeting to proteasomes (Chau et al., 1989;
Finley et al., 1994). In contrast, ubiquitin-dependent pro-
tein trafficking usually requires the ligation of just one
ubiquitin to the substrate (Gregory et al., 2003; Hicke
and Dunn, 2003). Thus, mono- and polyubiquitination
are associated with different functional outcomes.

A different type of polyubiquitin chain, linked through
ubiquitin-K63 instead of K48, is generated during the
autoubiquitination of TRAF family signal-transducing
E3s, apparently leading to the activation of a specific
cytosolic kinase and ultimately to the expression of
NF-«B target genes in mammals (Deng et al., 2000; Ko-
valenko et al., 2003; Trompouki et al., 2003; Wang et
al., 2001). The same type of atypical chain regulates
ribosome function in the cytosol (Spence et al., 2000)
and is necessary for a conserved pathway of DNA dam-
age tolerance in the nucleus (Hofmann and Pickart,
1999; Spence et al., 1995). Exactly how these noncanoni-
cal polyubiquitin chains signal downstream events is
unclear, but they do not evoke substrate proteolysis.
They could be recruitment signals for unidentified fac-
tors or they might modulate the properties of the target
protein to which they are attached. Still, their properties
indicate that different polyubiquitin chains can be asso-
ciated with distinct signaling outcomes. Indeed, ubiqui-
tin-dependent DNA damage tolerance presents a re-
markable example of how signal structure can regulate
downstream effects. Depending on the circumstances,
the DNA polymerase processivity factor PCNA is modi-
fied at a single site by monoubiquitin, a K63-linked poly-
ubiquitin chain, or the ubiquitin-like protein SUMO
(Hoege et al., 2002). The chain signals error-free replica-
tive bypass of DNA lesions (Hoege et al., 2002), whereas
monoubiquitin and SUMO may signal bypass by distinct
translesion polymerases (Stelter and Ulrich, 2003).

Being a protein, ubiquitin offers its downstream sig-
nal-transducing components more abundant and so-
phisticated recognition opportunities than are afforded
by conventional covalent modifiers; polymerization fur-
ther expands these possibilities. This mechanism is not
unique to ubiquitin. Oligo- and polysaccharides richly
embody the principle of structure-based recognition
and polyphosphate chains have unique signaling prop-
erties (Wang et al., 2003). The recent detection of all
seven possible ubiquitin-ubiquitin linkages in the yeast
proteome suggests that new signaling functions of poly-

Figure 3. Mechanisms for Modulating Sub-
strate Recognition by E3s

Shown are posttranslational modifications
and other mechanisms known to regulate the
recognition of cognate substrates by differ-
ent E3s. For discussions of phosphorylation-
based recognition, see Deshaies, 1999; Jack-
son et al.,, 2000; Joazeiro and Weissman,
2000; Murray, 2004; for deacetylation, see
Brooks and Gu, 2003; for aminoacylation, see
Kwon et al., 2002; Varshavsky, 1997; for oxi-
dation, see Kwon et al., 2002; for other exam-
ples, see the text.

ubiquitin chains remain to be discovered (Peng et al.,
2003).

Parallel Universes

From structurally distinct ubiquitin modifications, it is
only a small step to a remarkable recent develop-
ment—structurally distinct ubiquitins (so to speak). We
now know that ubiquitin defines a family of structurally
related signaling proteins which share a common bio-
chemical mechanism of isopeptide tagging. The inter-
feron-induced ISG15 protein was the first such protein
to be discovered (Loeb and Haas, 1992); other examples
followed in short order. The functional range of individual
family members varies widely, as reviewed elsewhere
(Muller et al., 2001; Schwartz and Hochstrasser, 2003).
Nedd8/Rub1, for example, seems to function only as an
activator of cullin-based E3s, whereas SUMO modifies
numerous cellular proteins and may signal several differ-
ent fates for its substrates.

Histone Ubiquitination: Somewhat

Less Mysterious

Why are histones subject to ubiquitination? Studies con-
ducted between 1984 and 2000 suggested several pos-
sible answers, none of which appeared to be definitive,
probably because the modification can serve several
functions (Jason et al., 2002). A recent advance came
from work in budding yeast, which revealed that site-
specific ubiquitination of histone H2B promotes site-
specific methylation of histone H3, with an ultimate read-
out of transcriptional silencing (Sun and Allis, 2002).
This is only one of several newly discovered roles for
ubiquitination in transcriptional regulation (Conaway et
al., 2002).

Forward to the Future

Although many features of ubiquitin biology stand in
clearer relief today than in 1984, the intensity of effort
focused on the pathway has also served to spotlight
features that we do not yet (or still do not) understand.
Because a full discussion of these interesting questions
would require a separate review, only a few are men-
tioned here.
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Deubiquitination: The End at the Beginning

While there is a clear rationale for having many E2s
and E3s, we still lack a satisfactory explanation for the
multiplicity of deubiquitinating enzymes. Many of these
enzymes belong to a large cysteine protease family, the
Ubiquitin processing Proteases (Amerik et al., 2000). A
few UBPs play important roles in regenerating ubiquitin
from proteolytic intermediates (providing the fodder for
new ubiquitination events) and another handful have
been implicated in a specific biological process (Amerik
et al., 2000). But most of them are functionally uncharac-
terized. One attractive hypothesis proposes that certain
UBPs are target-protein specific, but so far only a few
enzymes definitively conform to this paradigm (Cohen
etal., 2003; Li et al., 2002). Meanwhile, additional families
of deubiquitinating enzymes continue to be discovered.
A small zinc-dependent family (JAMM/MPN™) includes
a proteasome subunit that removes polyubiquitin chains
from substrates during proteolysis (Verma et al., 2002;
Yao and Cohen, 2002). A much larger cysteine protease
family (OTU) includes a known negative regulator of the
inflammatory response (Balakirev et al., 2003). However,
it was CYLD, a member of the UBP family that is also
a tumor suppressor, that was recently shown to repress
NF-«B activation, possibly by removing K63-linked poly-
ubiquitin chains from TRAF E3s (Kovalenko et al., 2003;
Trompouki et al., 2003).

How Do E3s Work?

In the prevailing view, RING-type E3 enzymes are bridg-
ing factors that bring the E2 enzyme with its activated
ubiquitin into the vicinity of the substrate, and then hope
for the best. However, while induced proximity can pro-
vide large catalytic rate enhancements, such effects re-
quire an exact placement of the reactants (Fersht, 1984).
It is unclear that E3s can meet this requirement, given
the tens of angstroms that are inferred to separate the
bound E2 and substrate molecules based on recent
crystal structures (Orlicky et al., 2003; Zheng et al., 2002).
Although the E2 enzyme provides catalytic assistance
to RING E3s (Wu et al., 2003), additional mechanisms
presumably come into play and must be characterized
in order to interdict the chemical step of ubiquitin conju-
gation for purposes of research or therapy (Nalepa and
Harper, 2003).

After Ubiquitination, Then What?

The hundreds (thousands?) of ubiquitin-modified pro-
teins present in a cell at any point in time need to be
individually recognized in a manner that correctly trans-
lates the information contained in each ubiquitin signal
into appropriate downstream events. How is this achieved?
As yet we know little about signal recognition that does
not involve proteasomes. The recent discovery of sev-
eral families of ubiquitin binding proteins is thus an excit-
ing development (Aguilar and Wendland, 2003; Buch-
berger, 2002; Hicke and Dunn, 2003). Some members of
these families are already known to function in specific
signaling pathways and studies of their molecular recog-
nition properties should aid greatly in understanding
how ubiquitin signals are transduced.

Ubiquitination and Human Disease

An increasing number of inherited diseases has been
found to be caused dysfunctions in ubiquitination, offer-
ing a challenge for the present and an opportunity for
the future. Typically, a mutation in an E3 enzyme or
its cognate substrate results in substrate stabilization,
leading to deleterious consequences. Stabilization of
HIF-1a by mutations in VHL (see above) may conform
to this paradigm. The inappropriate destabilization of a
cellular protein can also be a pathologic event (Scheffner
et al., 1990). These are just two examples among many,
as recently reviewed elsewhere (Schwartz and Ciechan-
over, 1999). Unfortunately, matching an interesting E3
with its cognate substrate (or vice versa) is often a diffi-
cult proposition (Giasson and Lee, 2003; Huang et al.,
1999). The same difficulty applies in the analysis of de-
ubiquitination, dysfunctions of which occur in several
known diseases (see above). In contrast to the biochem-
ical fractionation approaches that predominated in
1984, enzyme/substrate matching today is frequently
achieved by protein interaction screening. New technol-
ogies, including RNA interference, are also being de-
ployed in the service of this goal (for example, Brummel-
kamp et al., 2003). Finally, global inhibition of the
ubiquitin-proteasome pathway may be an exacerbating
factor in certain diseases (Bence et al., 2001; Berke and
Paulson, 2003; Song et al., 2003), but in other cases it
can have a therapeutically beneficial effect. An active
site inhibitor of the proteasome was recently approved
for treatment of multiple myeloma and is being tested
for efficacy against other cancers (Adams, 2002). Ulti-
mately, E3 enzymes that regulate cell cycle progression
and cell proliferation may provide important new thera-
peutic targets in cancer and other diseases (Nalepa and
Harper, 2003).
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The N-end rule states that the half-life of a protein is
determined by the nature of its N-terminal residue.
This fundamental principle of regulated proteolysis is
conserved from bacteria to mammals. Although prokar-
yotes and eukaryotes employ distinct proteolytic machi-
neries for degradation of N-end rule substrates, recent
findings indicate that they share common principles of
substrate recognition. In eukaryotes substrate recog-
nition is mediated by N-recognins, a class of E3 ligases
that labels N-end rule substrates via covalent linkage to
ubiquitin, allowing the subsequent substrate delivery to
the 26S proteasome. In bacteria, the adaptor protein
ClpS exhibits homology to the substrate binding site
of N-recognin. CIpS binds to the destabilizing N-termini
of N-end rule substrates and directly transfers them to
the CIpAP protease.

Introduction

Intracellular protein degradation plays an essential role
in many physiological processes by removing either
damaged polypeptides or proteins that harbor specific
destruction tags. Whereas the proteases contained within
compartments dedicated to biomolecule destruction, such
as the lysosome and the plant vacuole, hydrolyze proteins
in a rather non-specific manner, protein degradation in
the cytosol of pro- and eukaryotic cells exhibits a high
degree of specificity that is used to protect cellular
proteins from unwanted degradation and to subject
proteins with signaling functions to regulated proteolysis.
The selective removal of regulatory proteins, such as
transcription factors or signal transduction proteins,
represents an efficient and rapid strategy to control check-
points for many cellular processes, including cell growth,
division, differentiation and programmed cell death.
Here, we describe and compare the strategies that are
used by eukaryotes and prokaryotes in regulated proteol-
ysis via the N-end rule pathway. The N-end rule defines
the stability of proteins according to the nature of their N-
terminal residues. Amino acids are classified as stabiliz-
ing and destabilizing residues, which serve as recognition
determinants for protein degradation. Novel findings
highlight the ancient origin of the N-end rule pathway
and indicate common mechanisms in regulated protein
degradation between eukaryotes and prokaryotes, despite
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fundamental differences in key factors involved in the
various proteolytic systems.

Destructive machines: common architecture and
mechanisms of ATP-dependent proteases
In eukaryotic cells, degradation of cytosolic and nuclear
proteins is mainly mediated by the 26S proteasome, a large
protein machine composed of two different complexes. The
20S core complex forms a hollow cylinder that is composed of
four heptameric rings, consisting of «- or B-subunits. It
harbors the proteolytic active sites in its interior chamber,
which is only accessible through narrow pores at either end
[1]. This self-compartmentalization ensures processive sub-
strate hydrolysis to short oligopeptides by providing high
concentrations of active sites and, through the sequestration
of these sites, prevents unregulated protein degradation.
These advantages, however, come at an energetic price
because substrates need to be unfolded and translocated
before they can reach the proteolytic chamber. This task is
fulfilled by the 19S complex, which is located at either end of
the proteolytic 20S complex. The base of each 19S complex
contains six AAA+ (ATPase associated with diverse cellular
activities) proteins that promote the ATP-dependent unfold-
ing and threading of substrates into the proteolytic chamber
of the 20S proteasome (see Figure Ia in Box 1).
Proteolysis of either misfolded or specifically tagged
proteins in the cytosol of prokaryotes is mediated by pro-
teasome-like machines that also consist of an ATPase
module (e.g. ClpA, ClpX) and a proteolytic component that
is either covalently attached (e.g. Lon) or diffusible (e.g.
ClpP) [2]. The peptidase ClpP from Escherichia coli, which
does not exhibit sequence homology to the «- and B-sub-
units of the eukaryotic 20S complex, forms, however, a
structure of similar architecture. It consists of two hepta-
meric rings that form a barrel-shaped proteolytic core with
the active sites hidden in an interior chamber. Access to
these sites is controlled by narrow pores that do not allow
the passage of folded polypeptides. ATP-fueled substrate
unfolding and translocation is mediated by various Hsp100
proteins (e.g. ClpA), which associate with either end of the
ClpP core. Hsp100 proteins are members of the class of
heat-shock proteins and represent a subgroup of the large
AAA+ protein family. During substrate processing, they
fulfill the very same function as their distant cousins
present in the 19S cap of eukaryotic proteasomes (see
Figure Ib in Box 1).
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Box 1. Principles of regulated proteolysis in eukaryotes and prokaryotes: comparison of substrate selection and processing

In eukaryotic cells (Figure la), substrates (green) are mainly recognized
by E3 ligases that mediate, in conjunction with associated E2
ubiquitylating enzymes, the covalent labeling of bound substrates with
ubiquitin (Ub). The initial Ub attachment is followed by the formation of
a substrate-linked polyubiquitin chain, which is recognized by compo-
nents of the 19S cap complex of the proteasome. AAA+ proteins
present in the base of the 19S complex mediate the ATP-driven
unfolding and translocation of bound substrates into the core of the
proteolytic 20S complex. Ubiquitin is spared from degradation through
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Figure I. Regulated proteolysis in (a) eukaryotes and (b) prokaryotes. Pi, inorganic phosphate.

Selection of unstable proteins: different strategies in
Eukaryota and Prokaryota
Each proteolytic system must exhibit a high degree of
substrate specificity to prevent uncontrolled degradation
of bulk proteins and to ensure its regulatory function in
signal transduction pathways. Unstable proteins harbor
specific degradation signals, termed degrons, that are
recognized by components of the proteolytic systems and
subsequently delivered to hydrolyzing proteases. Although
this basic strategy is shared by eukaryotes and prokar-
yotes, the underlining mechanisms for substrate selection
turns out to be entirely different.

In Eukaryota, the conserved protein ubiquitin (Ub)
plays an essential role as a secondary signal for protein
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its release from the substrate by deubiquitylating enzymes. In
prokaryotic cells (Figure Ib), substrates (red) can be directly recognized
by extra domains (e.g. N-domain) of AAA+ proteins (e.g. CIpA).
Alternatively, substrates (green) are initially recognized by adaptor
proteins that deliver their bound cargo following binding to N-domains
of the cognate AAA+ partner protein. AAA+ proteins form ATP-
dependent proteolytic machines upon complex formation with pepti-
dases (e.g. CIpP) and mediate the unfolding and translocation of bound
substrates into the proteolytic chamber of the associated peptidase.
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degradation and is covalently attached to target proteins
[3]. Short-lived regulatory or misfolded proteins are con-
jugated to Ub through the action of three enzymes: E1 (Ub-
activating enzyme), E2 (Ub-conjugating enzyme) and E3
(Ub-protein ligase). A ubiquitylated substrate bears a
covalent linkage between an internal Lys residue and a
Ub moiety. The selectivity of ubiquitylation represents the
crucial step in substrate selection and is mainly deter-
mined by E3 enzymes (see Figure Ia in Box 1). Each E3
enzyme recognizes a restricted set of substrates and is
served by one (or a few) E2 enzyme. Their function as
specificity factors is reflected in the large number of E3
enzymes with more than 500 distinct Ub ligases in mam-
mals. The E3-dependent recognition of the various primary



degradation signals leads to the enzymatic addition of a
branched poly-Ub chain that serves as a secondary signal
for targeting of the substrates to the proteasome. This step
allows the 19S complex of the 26S proteasome to integrate
the signals from different degrons and to interact with a
large variety of substrates. Ubiquitin itself is spared from
degradation through its release from the substrate by
deubiquitylating enzymes that are present in the 19S
complex of the proteasome.

Regulated proteolysis in Prokaryota also involves
specific degrons and recognition proteins; this process,
however, is entirely independent of ubiquitin, which is
absent in bacteria. The absence of ubiquitin conjugation
in prokaryotes is remarkable and points to an entirely
different strategy through which these cells select sub-
strates for degradation. Here, substrate specificity is
mediated by the Hspl00 components of the proteolytic
machinery. Hsp100 proteins gain functional diversity with
the presence of additional domains that are missing in
other family members. Such extra domains (e.g. N-domain)
either directly interact with substrates or serve as binding
platforms for adaptor proteins that recognize specific
substrates and transfer them to their cognate Hsp100
partner protein (see Figure Ib in Box 1). The multiplicity
of E3 enzymes in Eukaryota is replaced in prokaryotic cells
by a smaller number of recognition determinants, which,
however, still target a large variety of substrates for degra-
dation [4].

The N-terminus matters: lessons from the N-end rule
pathway
In 1986, Varshavsky and coworkers reported that different
genetic constructs of B-galactosidase proteins from Escher-
ichia coli exhibited very different half-lives when produced
in Saccharomyces cerevisiae, ranging from more than 20 h
to less than 3 min [6]. The stability of the model proteins
was dependent on the nature of their N-terminal amino
acid residues, which allowed for a classification of amino
acids as either stabilizing or destabilizing residues. The
resulting degradation signals, termed N-degrons, were
the first characterized degrons in eukaryotes, defining
the half-lives of proteins according to the nature of their
N-terminal residues. The N-end rule pathway is present in
all organisms examined so far, including the Gram-nega-
tive model bacterium E. coli [5], the yeast S. cerevisiae [6],
the plant Arabidopsis thaliana [7] and mammalian cells
[8]. The signals for substrate degradation via the N-end
rule are similar in these organisms, but also show distinct
differences. In mammalian and yeast cells, the N-degron
comprises an N-terminal destabilizing residue of either
type 1 (Arg, Lys, His) or type 2 (Phe, Leu, Trp, Ile, Tyr) and
an accessible Lys residue for ubiquitylation (Figure 1b,c)
[9]. In plants, the N-end rule includes basic and aromatic
residues [7,10,11]. In E. coli, only aromatic amino acids and
Leu of the eukaryotic type 2 N-degron (except Ile)
represent the destabilizing residues (Figure 1la,c) [5].
The characteristics of the N-degrons raise the issue of
how destabilizing N-termini are generated. Newly synthes-
ized proteins contain N-terminal Met (fMet in prokaryotes),
which is a stabilizing residue in all organisms according to
the N-end rule. Therefore, an N-degron of an N-end rule
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substrate can only be produced from a pre-N-degron.
N-terminal Met is removed cotranslationally from the
majority of newly synthesized proteins by methionine
aminopeptidases (MetAPs). This processing step, however,
only occurs if the residue at position 2, destined to be N-
terminal after cleavage, has a small side chain (e.g. Gly, Cys,
Ala, Ser) representing a stabilizing residue (Figure 1d) [12].
This specificity of MetAPs is conserved from prokaryotes to
eukaryotes, indicating a coevolution of the N-end rule path-
way and the specificity of MetAPs, which is tailored not to
create N-end rule substrates, enabling the N-end rule path-
way to be operative in regulated proteolysis. Hence, it is
either the removal of stabilizing N-terminal residues and/or
the generation of novel destabilizing N-termini that func-
tion as the regulated entry point to the N-end rule pathway
and, therefore, need to be tightly controlled.

How can pre-N-degrons be converted into functional
N-degrons? N-degrons can be buried in the interior of a
protein sequence and rendered accessible only after endo-
proteolytic cleavage (Figure 1e). Processing proteases can
convert pre-N-degrons into N-degrons either directly
through the generation of novel N-termini harboring
primary destabilizing residues [1] or the creation of sec-
ondary/tertiary destabilizing amino acids (see below) [14].
A special way to enter the N-end rule pathway has been
reported for some unstable viral proteins that are synthes-
ized as part of stable polyproteins. The large precursor
protein is processed into its individual components harbor-
ing novel N-terminal residues, which could represent
N-degrons. Degradation of such generated proteins via
the N-end rule pathway has been demonstrated for
HIV-1 Integrase and the RNA polymerase (nsP4) of the
Sindbis a-virus [15,16].

A second strategy to create destabilizing residues relies
on the enzymatic modification of certain N-termini that
function as entry points into the N-end rule pathway
(Figure 1f). The N-end rule pathway is indeed organized
hierarchically in the sense that, in addition to destabilizing
N-terminal ‘primary’ residues, ‘secondary’ and ‘tertiary’
destabilizing residues are also found, which are initially
located N-terminally as well. These secondary and tertiary
destabilizing residues differ from the primary ones in that
they are not directly mediating protein degradation but,
instead, are converted to primary destabilizing residues
through an enzymatic cascade. A tertiary destabilizing
residue is first converted to a secondary destabilizing
residue, followed by the addition of a primary destabilizing
residue, thereby labeling the protein for degradation. In
yeast and mammalian cells, for example, Asn and GIn
represent tertiary destabilizing residues that can be con-
verted by N-terminal amidases (e.g. NTA1) into the sec-
ondary destabilizing residues Asp and Glu [17,18].
Secondary residues, in turn, function through their conju-
gation to Arg by the ATEI-encoded arginyl-tRNA protein
transferase (R-transferase). Arg is finally directly recog-
nized as a primary destabilizing residue and targets the
substrate to Ub-dependent protein degradation (Figure 1f)
[19]. Interestingly, the hierarchical N-end rule organiz-
ation is evolutionarily conserved, although the enzymatic
reactions that mediate the conversion of secondary desta-
bilizing residues into primary ones differ. Thus, in E. coli,
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Figure 1. The N-end rule: code and generation of N-degrons. (a-c) Comparison of the N-end rule determinants in different model organisms. (a,c) In E. coli, large
hydrophobic (Leu, Phe, Trp, Tyr) and basic residues (Arg, Lys) represent primary and secondary destabilizing residues, and both contribute to the N-degron code. In
addition the N-end rule substrate harbors a flexible linker that separates the N-terminal degradation signal from the substrate moiety is required for transfer to and
degradation by the CIpA/ClIpP protease. (b,c) In eukaryotes, basic residues (Arg, Lys, His) and large hydrophobic residues (Leu, Phe, Trp, Tyr, lle) function independently as
type 1 and type 2 primary destabilizing residues. (¢) Table summarizing the characteristics of individual amino acids according to the present N-end rule. C* indicates an
oxidized Cys residue. (d) Newly synthesized proteins harbor a stabilizing N-terminal Met and do not function as N-end rule substrates. Methionine aminopeptidases can
remove Met from the N-terminus if the adjacent residue has a small side chain, generating proteins that still harbor stabilizing N-terminal residues with the exception of
Cys, which can act as a secondary destabilizing residue in mammals. (e) Endoproteolytic cleavage events generate protein fragments with novel N-termini including both,
stabilizing and destabilizing residues. (f) Enzymatic cascades convert tertiary and secondary destabilizing residues into primary ones. Tertiary destabilizing residues (e.g.
Asn) can be converted by N-terminal amidases (NTAN1) into secondary destabilizing residues. Secondary residues function through their ATE1-mediated conjunction to
Arg in eukaryotes or through the Aat-mediated attachment of Leu/Phe in bacteria. Oxidized Cys (C*), generated in the presence of nitric oxide or oxygen, acts as a secondary
destabilizing residue in mammalian cells and is converted into primary destabilizing Arg via R-transferase. Note: amino acids are represented in the figure using the IUPAC
one-letter code. Red, primary destabilizing residues; purple, prokaryotic secondary destabilizing residues; blue, eukaryotic secondary destabilizing residues; green, tertiary

destabilizing residues; black: stabilizing residues.

Arg and Lys function as secondary destabilizing residues
and recruit primary destabilizing residues (Phe, Leu) by
conjugation by a leucyl/phenylalanyl-tRNA protein trans-
ferase (L/F-transferase or Aat) (Figure 1f) [5]. Interest-
ingly, the human pathogen Vibrio vulnificus encodes for a
second L-transferase (Bpt). In contrast to E. coli Aat, the V.
vulnificus Bpt L-transferase is homologous to eukaryotic
ATE1 (R-transferase) and exhibits a ‘hybrid’ specificity:
like ATE1, it recognizes Asp or Glu as secondary destabi-
lizing residues but adds a Leu instead of an Arg residue
[20]. Accordingly, the eukaryotic pathogen Plasmodium
falciparum harbors the transferase ATEL1, which is hom-
ologous to prokaryotic L/F-transferases but has the same
activity as eukaryotic R-transferases. The recently deter-
mined crystal structure of E. coli L/F-transferase suggests
a rationale for the change in enzymatic specificity by
pointing to differences in the aminoacyl-tRNA binding
pockets of E. coli L/F-transferase and P. falciparum ATEL1
[21]. This switch in enzymatic activities suggests that the
already established primary destabilizing residues of the
corresponding N-end rule dictated the evolution of the
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enzymatic cascade that act on secondary destabilizing
residues.

N-recognin and ClpS: the N-degron specificity factors

Which components mediate the recognition of N-degrons?
Hershko and colleagues described UBR1 as the first
characterized E3 enzyme that directly interacts with
primary destabilizing residues [22]. Later, more E3 ubi-
quitin ligases that recognize N-degrons were identified
and collectively termed N-recognins. The mouse genome
encodes for seven N-recognins (UBR1-7) that share a Zinc
finger-like domain, termed the Ubr box [23]. The contri-
bution of most of these N-recognins to the N-end rule
pathway is still largely unknown. Evidence for overlap-
ping functions of UBRs is provided by the analysis
of knockout mice. Double-knockout Ubri~'~/Ubr2~'-
mutant mice, in contrast to the corresponding single
knockouts, are inviable. Rescued fibroblasts of such
double-mutants still retain a functional N-end rule path-
way, albeit with a lower activity that is mainly dependent
on the N-recognin UBR4 [23]. Together, these findings



point to common and specific functions of N-recognins
that potentially act on overlapping but also different
substrate pools. A molecular basis for varying substrate
specificities of N-recognins is provided by genetic studies
that led to the identification of two distinct binding
sites for primary destabilizing residues within these E3
ligases [24]. The type 1 site mediates the recognition of
basic residues (Arg, Lys, His) and is present within the
conserved Ubr box of all N-recognins. The type 2 site
interacts with bulky hydrophobic and aromatic residues
(Leu, Ile, Phe, Tyr, Trp) and is only present in a subset of
N-recognins (e.g. UBR1), providing a rationale for diverse
substrate specificities [23]. Interestingly, A. thaliana
encodes the E3 ligase PRT1, which recognizes aromatic
residues (Trp, Tyr, Phe) as N-degrons. PRT1 is distinct
from N-recognins and potentially recognizes N-degrons
via its so-called ZZ domain. Surprisingly, PRT1 can func-
tionally replace Ubrl of yeast, although it is not evolu-
tionarily related to N-recognins [7,25].
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Bacteria neither encode N-recognin nor PRT1 homologs
despite the existence of a functional N-end rule pathway.
Intriguingly, a bioinformatics analysis revealed a limited
homology between the type 2 binding site of the N-recognin
UBR1 and ClpS, an specific adaptor protein of the ClpA/
ClpP protease in E. coli [26,27]. This region of homology is
enriched in acidic and hydrophobic residues, providing a
complementary surface for the interaction with N-degrons
(Figure 2). E. coli mutants lacking either the Hsp100 protein
ClpA or its adaptor protein ClpS are deficient in degrading
N-end rule model substrates in vivo [5,28]. ClpS directly
interacts with N-end rule model substrates, qualifying ClpS
as the primary recognition determinant of the N-end rule in
E. coli [28]. The function of ClpS in bacterial N-end rule
degradation and its limited homology to eukaryotic N-recog-
nins suggest that, despite obvious differences in the degra-
dation pathway, the first decisive step of substrate
recognition is conserved between bacteria and eukaryotes
and underline the ancient origin of the N-end rule pathway.
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Figure 2. Eukaryotic N-recognin UBR1 and the bacterial adaptor protein ClpS serve as N-degron specificity factors by sharing a limited homology in the substrate binding
site for N-end rule substrates. (a) Sequence alignment of the putative type 2 N-end rule substrate recognition site of N-recognins and the N-end rule binding site of ClpS
homologs. Color-coding: blue, conserved hydrophobic residues; red, conserved charged residues; green box, surface-exposed residues in CIpS. (b) Space-filling model of
ClpS in complex with the N-domain of ClpA. The detailed view of the ClpS structure highlights surface-exposed, conserved residues that mediate N-degron recognition.
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Whereas, in eukaryotes, the specificity of the N-end rule
pathway was mainly determined through genetic studies,
the molecular features of the N-degron in E. coli were
characterized by the direct determination of the substrate
specificity of ClpS using combinatorial peptide libraries
[28]. ClpS only binds to peptides with primary destabiliz-
ing residues (Phe, Tyr, Trp, Leu) at the N-terminus with a
free a-amino group. Secondary destabilizing residues (Arg,
Lys), positioned next to a destabilizing N-terminal residue,
strengthen this interaction, thereby, directly contributing
to the formation of N-degrons of E. coli, an additional role
to that they already play as a target for L/F-transferases. A
third requirement for N-end rule degradation in E. coli
involves the handover of N-end rule substrates from the
ClpS adaptor to its Hsp100 partner protein, ClpA. Sub-
strate transfer to and subsequent processing by ClpA
require the additional presence of an unstructured linker
between the N-degron and the folded moiety of the sub-
strate protein. This feature adds an additional layer to the
high selectivity of the bacterial N-end rule, causing a
further restriction of the potential substrate pool and
enabling the pathway to regulate specifically biological
processes. Remarkably, ClpS plays a dual function in
the control of the substrate flow to the ClpA/ClpP proteo-
lytic machinery. Indeed, ClpS does not only confer the
specificity for N-degrons, it also inhibits the degradation
of non-N-end rule substrates by ClpA/ClpP, thereby acti-
vating the protease on demand. ClpS homologs are present
in many bacterial species as well as in plant chloroplasts.
Residues that are crucial for the interaction with N-
degrons are conserved within ClpS proteins, suggesting
that the determinants of the E. coli N-end rule are also
operative in these organisms.

Substrates and physiological functions of N-end rule
pathways

Owing to its early discovery, the N-end rule pathway was
initially believed to represent the major pathway that
determines the half-life of proteins in eukaryotic cells. It
is now known that the pathway is operative in regulated
proteolysis. This change in opinion was initiated by the
puzzling finding that mutations in the machinery that
recognizes N-degrons had, at the first glance, no severe
phenotype. At present, however, the list of substrates and
processes regulated by the N-end rule is growing con-
stantly.

S. cerevisiae SCC1, a subunit of cohesin, represents one
of the first identified in vivo substrates of the N-end rule
pathway [13]. Cohesin is a large protein complex that
establishes the cohesion of sister chromatides during
DNA replication. At the onset of anaphase, the protease
ESP1, termed separase, is activated and cleaves SCC1,
thereby generating an unstable C-terminal SSC1 fragment
that bears a destabilizing primary residue at its N-termi-
nus. Stabilization of the C-terminal SCC1 fragment in S.
cerevisiae ubrlA mutants is linked to an increased fre-
quency of chromosome loss, demonstrating a function of
the N-end rule during mitosis in yeast cells. In Drosophila
melanogaster, the N-end rule pathway plays a crucial role
in controlling apoptosis [14]. DIAP1, a key inhibitor of
apoptosis, is cleaved by activated caspases, generating
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an N-terminal truncated fragment bearing a tertiary
destabilizing residue (Asn), which is converted into a
primary destabilizing residue via the deamidation/arginy-
lation branch of the N-end rule pathway. Remarkably, the
conversion of DIAP1 into an N-end rule target was found to
be essential for its anti-apoptotic activity, suggesting a
potential codegradation of associated pro-apoptotic factors
[29].

Recently, the first mammalian substrates of the N-end
rule were identified encompassing regulators of G protein
signaling (RGS4, RGS5 and RGS16) [30,31]. Interestingly,
these substrates harbor an N-terminal Cys residue that
was known to function as a secondary destabilizing residue
in mammalian cells but not in yeast. Oxidation of the N-
terminal Cys was a prerequisite for its ATE1-mediated
arginylation, resulting in the exposure of a classical
primary destabilizing residue. Notably, oxidized Cys struc-
turally mimics Asp, the classical recognition determinant
of R-transferases, providing a rationale for its function as a
secondary destabilizing residue. Cys oxidation requires
nitric oxide as well as oxygen, but also necessitates the
presence of a basic residue at position 2 of the substrate
(thereby restricting this branch of the N-end rule pathway
to a limited set of substrates). It has been suggested that,
via this mechanism, N-degrons can serve as nitric oxide
sensors, thereby potentially controlling multiple signal
transduction pathways [30]. The identified substrates
(RGS4, RGS5 and RGS16) act as important negative reg-
ulators of G-protein-mediated cardiovascular signaling
and, in striking correlation, the embryos of Atel ™~ knock-
out mice, deficient in substrate arginylation, die as a result
of defects in cardiovascular development [32]. This severe
phenotype points to an important role of the N-end rule
pathway in mammalian cells, a role that is further sub-
stantiated by the recent analysis of mutant mice lacking
individual or multiple N-recognins. Ubrl~'~ mice exhibit
pancreatic insufficiencies, similar to the Johanson—Bliz-
zard syndrome that is caused by mutations of UBRI in
humans [33]. Ubr2~~ mice exhibit a gender-dependent
lethality. Whereas most Ubr2 '~ females die during
embryogenesis, male Ubr2 '~ are viable but infertile
[34]. An even more severe phenotype was obtained when
both N-recognins-encoding genes, UBR1 and UBR2, were
deleted [35]. These double knockouts die as early embryos,
exhibiting severe defects in neurogenesis and cardiovas-
cular development.

The phenotypes that result from the absence of
individual components of the N-end rule pathway vary
strongly in their severity amongst different organisms.
Although S. cerevisiae atelA mutant cells deficient in sub-
strate arginylation have no obvious phenotype, A. thaliana
plants lacking ATE1 display a delayed leaf senescence and
Atel™’~ mice even die as embryos [19,32,36]. Similarly, the
physiological function of the prokaryotic N-end rule is still
enigmatic. E. coli cells lacking ClpS have no reported
phenotype and in vivo substrates of this N-end rule path-
way remain to be identified.

Conclusions
Recent progress in the analysis of the N-end rule pathway
demonstrates that prokaryotes and eukaryotes share
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Figure 3. The N-end rule pathway in prokaryotes and eukaryotes. (a) In bacteria, bulky hydrophobic residues (Phe, Leu, Trp, Tyr) function as primary destabilizing residues
(d1) and basic residues (Arg, Lys) as secondary destabilizing residues (d2) for the recognition of N-end rule substrates. The adaptor protein ClpS binds directly to target
proteins containing primary or primary and secondary residues at the N-terminus and serves as a functional homolog of eukaryotic N-recognin. ClpS-bound substrates are
directly delivered to the AAA+ chaperone ClpA via a specific interaction between ClpS and the N-terminal extra domain of ClpA. Efficient transfer of N-end rule substrates
from ClpS to ClpA requires the presence of an unstructured linker region between the N-terminal destabilizing residues and the substrate moiety, allowing ClpA-mediated
ATP dependent unfolding and translocation into the proteolytic chamber of CIpP where degradation occurs. (b) In eukaryotes, primary destabilizing residues (d1, type 1:
Arg, Lys, His; type 2: Phe, Leu, Trp, Tyr, lle) of the substrate are recognized by the E3 ligase N-recognin that contains distinct binding sites for type 1 and type 2 N-end rule
substrates. N-recognin associates with an ubiquitin-conjugating enzyme (E2) and targets an internal Lys (K) residue of the N-end rule substrate for ubiquitylation by E2. The
multiubiquitylated substrate is recognized by the 19S cap complex of the proteasome and subsequently unfolded and translocated by AAA+ proteins into the 20S core for

proteolysis.

common principles in regulated proteolysis despite the
involvement of different players. The selection of N-
degrons is based on similar recognition determinants
and is mediated by either N-recognins (E3 ligase) in
eukaryotes or by the prokaryotic adaptor protein ClpS.
Both specificity factors exhibit only a limited homology
that is restricted to the site of substrate interaction; how-
ever, both fulfill the same function by linking substrate
recognition to processive substrate hydrolysis via either
the ubiquitin/proteasome system in Eukaryota or, more
directly, by direct transfer to proteasome-like machineries
in Prokaryota (Figure 3).

www.sciencedirect.com

The processes that are controlled by the N-end rule
in different organisms are merely beginning to be
unraveled and only a few in vivo substrates have been
identified. The actual number of substrates can be
expected to be much higher as based on the known
substrate specificities of endopeptidases, which can gen-
erate protein fragments bearing destabilizing N-term-
inal residues [13,29] and recent direct approaches aimed
to estimate the number of mammalian N-end rule sub-
strates [37]. The N-end rule pathway has not lost its
glamour and will still surprise with new twists and
turns.
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The proteasome is the main proteolytic machine in the cytosol
and nucleus of eukaryotic cells where it degrades hundreds of
regulatory proteins, removes damaged proteins, and produces
peptides that are presented by MHC complexes. New
structures of the proteasome particle show how its subunits are
arranged and provide insights into how the proteasome is
regulated. Proteins are targeted to the proteasome by tags
composed of several ubiquitin moieties. The structure of the
tags tunes the order in which proteins are degraded. The
proteasome itself edits the ubiquitin tags and drugs that
interfere in this process can enhance the clearance of toxic
proteins from cells. Finally, the proteasome initiates
degradation at unstructured regions within its substrates and
this step contributes to substrate selection.
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Introduction

Cellular protein concentrations are controlled through
their rates of synthesis and degradation. In the cytosol
and nucleus of eukaryotic cells, most of this degradation is
by the ubiquitin proteasome system (UPS). At the center of
the UPS is a single proteolytic machine, the proteasome,
which controls the concentrations of hundreds of regulat-
ory proteins and clears misfolded and damaged proteins
from the cell. Thus, the proteasome has to be able to
degrade any protein but do so while avoiding the accidental
destruction of the rest of the cellular proteome. Here we
review recent advances in our understanding of how the
proteasome selects its substrates. Just as protein synthesis
isregulated at many different levels, it is becoming increas-
ingly clear how protein degradation is also.

The basic principle of proteasome substrate selection is
well understood [1,2]. The proteasome is a large particle

of ~33 different subunits that add up to a molecular
weight of approximately 2.5 MDa. It combines three
different proteolytic sites with broad and complementary
sequence preferences to allow it to degrade many differ-
ent amino acid sequences. The proteasome particle con-
trols the activity of these sites by encapsulating them
inside its structure and controlling access to them. Most
proteins are targeted to the proteasome by the covalent
attachment of ubiquitin molecules. The proteasome
recognizes the ubiquitin signal and initiates degradation
at an unstructured region in the protein. The substrate is
then unfolded and translocated to the proteolytic sites in
an A'TP-dependent reaction. However, many questions
remain. For example, the proteasome is able to extract
individual subunits from complexes without degrading
their binding partners, the proteasome degrades ubiqui-
tinated proteins in a specific order and ubiquitin signals
target proteins to processes that do not involve degra-
dation. We do not know how the proteasome makes these
distinctions. At the same time, some proteins that lack
ubiquitin signals are degraded by the proteasome. Over
the last few years, new proteasome structures and bio-
chemical investigations have brought new insights into
these questions.

Proteasome

The proteasome particle is functionally and structurally
divided into two parts. Its core is formed by a cylindrical
20S particle composed of four heptameric rings that are
stacked onto top of each other. The inner two rings each
consist of seven related B-subunits that are arranged to
form a large internal cavity and three of the subunits in
each ring contain a proteolytic site that faces the internal
cavity. A ring of seven related a-subunits on each side
flanks the B-rings and substrates have to enter the proteo-
lytic cavity formed by the B-rings through a pore at the top
of the a-ring. The pore is too narrow to allow folded
proteins to pass through it. In free core particle, access to
the pores is further hindered by the N-termini of the a-
subunits so that even unfolded peptides are degraded
only poorly.

The core particle is activated by regulatory particles or
caps that bind to the ends of the core particle and induce
conformational changes that open the pores. Four differ-
ent caps are known and the best understood of them is
the19S regulatory particle. It consists of 19 subunits that
add up to a molecular weight of ~900 kDa. The complex
of one or two of these caps with the 20S core particle is
called the 26S proteasome and this seems to be the most
common form of the proteasome in cells. The subunits of
the 19S cap recognize substrates, unfold and translocate
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Structure of the 26S proteasome. Molecular surface of the 19S activator particle bound to the 20S core particle (PDB 4CO0V) (left). The 20S core particle
is composed of two central B rings (dark red) and one « ring (light red) at each end. The 19S regulatory particle, which contains AAA ATPase subunits
(blue) and non-ATPase subunits (yellow), caps each end of the 20S. Cross section reveals the degradation channel that connects the proteolytic
chamber in the 20S core particle to the entrance into the 19S activator (middle). Structures are produced by PyMOL. Schematic drawing of the 26S
proteasome indicates the approximate locations of the enzymatic activities and binding platforms on the 19S activator cap (right). « (light red) and B8
(dark red) subunits of the 20S particle, ATPase domain (dark blue) and OB domain (light blue) of ATPase subunits, backbone of lid subparticle (yellow),
docking subunits Rpn1 (light purple) and Rpn2 (dark purple), ubiquitin receptors Rpn10 (light green) and Rpn13 (dark green), and DUB metallo-

protease subunit Rpn11 (sky blue).

them into the core particle for degradation into short
peptides.

Structure of the 26S proteasome

The structure of the 26S proteasome proved difficult to
determine, perhaps because a number of accessory factors
associate with the particle non-stoichiometrically or
because the structure undergoes conformational changes.
In a major breakthrough, a series of studies published
over the last two years describe the structure of the 19S
cap bound to the core particle at high resolution by
combining cryo-electronmicroscopy, crystallography, bio-
chemical data and computer modeling [3°°,4°°,5°°,6°°,7°°,
8°°,9°°,10°°] (Figure 1).

The heart of the 19S cap is a ring of six ATPase subunits
(Rpt1-Rpt6), which make up the motor that feeds sub-
strates to the proteolytic sites. The subunits form a long
channel at their center that runs through approximately
two-thirds of the 19S particle and ends in a ring of the
AAA+ domains at the C-terminal end of the ATPase
subunits. The very C-termini of the AAA+ domains dock
into the 20S core particle and trigger pore opening. T'wo
large subunits that serve as interaction platforms bind to
the ATPase ring, Rpnl to the outside of the ring, and

Rpn2 to the top of the ring. Rpnl provides the binding
sites for a series of non-stoichiometric proteasome sub-
units called UbLL-UBA proteins, which serve as additional
ubiquitin receptors and we will discuss these briefly later,
and Rpn2 organizes the two ubiquitin receptors Rpn10
and Rpn13 subunit near the outer end of the 19S cap. No
single one of these receptors is essential in yeast [11°°] so
that it seems that the different receptors work together to
form a versatile binding platform to capture proteasome
substrates (Figure 3). The cap also contains a pair of
JAMM or MPN domain metallo-protease subunits called
Rpn11 and Rpn8. Only Rpn11 is enzymatically active and
it cleaves entire ubiquitin chains off the substrates as
these are degraded. Rpn11 is located near the entrance of
the substrate channel formed by the ATPase subunits so
that it is well placed to interact with substrate protein
feeding into the proteasome. Thus, the activities required
for protein degradation are ordered sequentially along the
long axis of the proteasome particle [2] (Figure 1).

The remainder of the cap is formed by seven scaffolding
subunits that form a clamp that binds to the side of the cap
reachingall the way from the end of the proteasome particle,
where it interacts with Rpn2 and the ubiquitin receptor
Rpn10, via the ATPase subunits, down to the a-ring of the
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core particle. The clamp subunits complete a network of
interactions that seems to stabilize the proteasome particle
and may allow allosteric regulation and coordination be-
tween the activities on the proteasome particle. Biochemical
experiments have shown that substrate and ATP binding
can affect gating of the substrate channel and proteolytic
activity [12—14]. Comparison of the proteasome structures in
the presence of ATP but without substrate, in the presence
of ATP and with substrate bound, and in the presence of a
slowly hydrolysable ATP analog reveal substantial confor-
mational changes in the proteasome structure [9°°,10°°]. For
example, substrate or ATP analog binding switches the cap
from a presumably inactive conformation in which the
substrate channel is discontinuous to a conformation in
which the channel is properly aligned through the entire
proteasome particle and the active site of Rpnl1 swings in
and out of alignment with the channel entrance. The
A'TPase subunits switch between arrangements in which
they form a spiral or a planar ring but it is not clear to what
extent these changes reflect motor action that drives sub-
strate into the proteasome or switches between resting and
active states.

Alternative proteasome activators

Recently, Barthelme and Sauer found that the chaperone
Cdc48 can also form a complex with the 20S core particle
and support the degradation of substrate proteins
[15°°,16]. Cdc48, called p97 or VCP in animals, is a
cytosolic chaperone distantly related to ATPase subunits
in the 19S regulatory particle and involved in the degra-
dation of a subset of proteasome substrates by a poorly
defined mechanism. For example, it is part of the quality
control process for endoplasmic reticulum proteins
(ERAD) where it is required for the translocation of
misfolded proteins from the ER to cytosolic proteasomes
[17]. It now appears that Cdc48/p97/VCP may be directly
involved in degradation by serving as an alternative
proteasome cap, perhaps to unfold different subsets of
proteins than the 19S cap. Proteasome with Cdc48 caps
would resemble the archaeal proteasome and the analo-
gous bacterial AAA+ proteases. These proteases fulfill
similar functions as the eukaryotic proteasome and share
the same overall architecture [18].

T'wo other further types of proteasome caps are known,
called the 11S particle and the PA200 activator. These
caps neither recognize ubiquitin nor hydrolyze ATP and
their role seems to be to degrade a specific subset of
substrate and some unstructured proteins [1,19].

Ubiquitination

Ubiquitination system

Most proteins are targeted to the proteasome by ubiquitin
tags or degrons. Ubiquitin is attached to the target
proteins through the sequential action of a ubiquitin
activating enzyme (E1), a ubiquitin conjugating enzyme
(E2), and a ubiquitin ligase (E3). In most cases, ubiquitin

forms an isopeptide bond through its C-terminal carboxy
group (Gly76 of ubiquitin) with the g-amino group of
lysine residues in the substrate, and more rarely with the
N-terminus of the polypeptide chain or the side chain of a
cysteine residue in the substrate protein [20-22]. Typi-
cally ubiquitin is attached to more than one residue in the
target proteins and in many cases, a second ubiquitin is
then attached to a lysine residue in the first ubiquitin and
so on to create polyubiquitin chains. In addition, cells
contain large numbers of deubiquitinating enzymes
(DUBs) that remove ubiquitin chains again [23].

Ubiquitin signals

Thousands of proteins are ubiquitinated in yeast cells,
but almost half of the ubiquitinated proteins are not
targeted to the proteasom for degradation [24] and it is
not clear how the cell differentiates between the different
ubiquitin signals. The canonical view is that ubiquitin
chains linked through Lys48 of ubiquitin target to the
proteasome and biochemical experiments show that
chains of at least four ubiquitin moieties are required
for proper recognition [20,25]. Modification with a single
ubiquitin molecule or through polyubiquitin chains
linked through other Lys residues such as Lys63 and
even linear ubiquitin chains play roles in cellular pro-
cesses that do not involve the proteasome such as the
regulation of chromatin structure, membrane trafficking
and signal transduction. However, the distinctions are not
strict and Lys63-linked polyubiquitin chains [26,27] and
even monoubiquitin tags [28-30] can target some sub-
strates to the proteasome for degradation. Purified pro-
teasome binds the Lys63-linked polyubiquitin chain with
almost the same affinity as the Lys48-linked polyubiqui-
tin chain [31°] and so specificity may come from accessory
proteins. For example the ESCRT complex involved in
membrane trafficking binds Lys63-linked polyubiquitin
chains better than Lys48-linked chains whereas the UbL-
UBA proteins that can serve as non-stoichiometric ubi-
quitin receptors for the proteasome have the opposite
preference [31°]. Therefore, a Lys48-linked polyubiqui-
tin chain has a greater chance to be delivered to the
proteasome than the Liys63-linked polyubiquitin chain. A
different possibility is that physical properties of the
substrate proteins themselves, such as their stability
against unfolding [32] and the presence of initiation sites
for the proteasome [33°°,34] contribute to specificity as
processes such as membrane trafficking or the formation
of signaling complexes do not require protein unfolding
and do not involve initiation.

Dynamic regulation of ubiquitination

Ubiquitination is not a simple switch that turns degra-
dation on and off, but rather an adjustable signal that fine-
tunes degradation and can determine the order in which
proteins in a regulatory pathway are degraded. For
example, the progression of cells through the cell division
cycle requires the degradation of regulatory proteins in
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the correct sequence. Degradation can be ordered by
timing the ubiquitination event and many E3s recognize
their substrates only when their interaction site is first
phosphorylated by a kinase [22]. Degradation order is also
controlled by the nature of the ubiquitin modification
and, during the cell cycle, regulators that acquire long
ubiquitin chains are degraded before regulators that are
ubiquitinated with multiple shorter chains [35°,36°]. The
regulators are ubiquitinated by the same E3 but for the
early substrates ubiquitination is more processive than for
the late substrates probably because the substrates have
different dissociation rates, from the E3 [35°,36°].

Ubiquitin tags on proteins can grow and shrink even while
bound to the proteasome through the action of E3 and
DUB enzymes associated with the proteasome. In yeast,
the DUB Ubp6 and in mammalian cells the Ubp6 homo-
log Usp14 and the DUB Uch37 bind to the 19S protea-
some cap [1]. These DUBs trim ubiquitin chains from the
distal end of the chain in steps of one or a few ubiquitin
moieties at a time and thus limit the time that a substrate
remains associated with the proteasome [37,38°°]. Hence,
proteins that are difficult to degrade because they cannot
be unfolded or because they lack good initiations sites
would dissociate from the proteasome after it tried to
degrade them for a limited time, freeing up the protea-
some for a different substrate and preventing it from
clogging up. On the flipside, inhibitors of proteasome
DUB Usp14 show promise as drug for the treatment of
neurodegenerative diseases by increasing the protea-
some’s ability to degrade resistant substrates, presumably
by increasing their interaction with the proteasome [38°°].
Small molecular inhibitors of proteasomal DUBs are also
tested in cancer therapy but here the drugs affect degra-
dation differently and lead to the accumulation of ubi-
quitinated proteins [39] so that the biological effect may
be similar to that of the proteasome inhibitors already
used to treat multiple myeloma [40].

E3s also bind the proteasome [41]. In particular, the E3
Hul5 associates with Ubp6 on the 19S activator of the
proteasome where it counteracts the activity of Ubp6 by
increasing the length of polyubiquitin chains [42°°]. Ubi-
quitin chain editing may serve to fine-tune degradation
rates or to make protein targeting more robust by buffer-
ing fluctuations in ubiquitin chains and substrate stability.
Another possibility is that ubiquitin ligation on the pro-
teasome makes degradation more processive to avoid the
formation of partially degraded protein fragments [43] by
re-ubiquitinating long proteins as the proteasome runs
along their polypeptide chain [44].

A second component to the proteasome
targeting code?

Initiation of degradation

The proteasome recognizes and binds its substrates
through their polyubiquitin tag but initiates degradation

at a disordered region in the substrate [33°°45] (Figure 2).
Once the substrate is engaged at the initiation site, the
proteasome proceeds along the polypeptide chain from
there to unfold and degrade the entire protein sequen-
tially [32]. The initiation region is reminiscent of the
linear targeting signals found in substrates of the archaeal
and bacterial analogs of the proteasome [18]. Bacterial
AAA+ proteases recognize their linear degrons through
loops that line the pore at the center of the ring of ATPase
subunits and it seems likely that the proteasome recog-
nizes its initiation sites similarly [46]. In the proteasome,
the equivalent loops line the degradation channel at a
position some 30-60 A from the entry pore. The diameter
of the pore is too narrow to allow folded proteins to pass
through it so that a disordered polypeptide tail would
have to be at least 20-30 amino acids long to be able to
reach the ATPase loops. This length requirement agrees
roughly with the results of iz vitro degradation exper-
iments with model proteasome substrates, where proteins
become degraded rapidly by purified yeast proteasome
once they contain an unstructured tail of approximately
30 amino acids in length [33°°,45,47].

The requirement of unstructured initiation regions may
also be reflected in the global stability profiles of proteins.
At least 30% of eukaryotic proteins contain intrinsically
disordered regions (IDRs) and these are involved in
various cellular activities [48,49]. There is some evidence
from bioinformatics studies that proteins that contain
disordered regions have on average shorter half-lives than
proteins lacking these regions [50,51] but so far the
evidence for this relationship is not consistent. Other
studies do not find these correlations [52—-54] and there
is some evidence that ubiquitination sites of proteasome
substrates are preferentially located in unstructured
regions [55,56]. Even when the a protein lacks an unstruc-
tured region, ubiquitination itself may induce the local
unfolding near the ubiquitinated residue, which, in turn,
could create an initiation site for the proteasome [57].

Degradation of protein complexes

Ubiquitin tag and initiation site do not have to be located
on the same polypeptide chain but can work together in
frans so that a ubiquitinated subunit in a complex can
target a binding partner for degradation [34]. The ubi-
quitinated subunit serves as an adaptor that binds to the
proteasome and presents the bound protein for proteol-
ysis. Presumably, UbL-UBA proteins function in this
manner to serve as non-stoichiometric ubiquitin receptors
for the proteasome [1,58]. These proteins bind to the
proteasome through their UbL (ubiquitin-like) domains
and to ubiquitinated proteins through their UBA (ubiqui-
tin associated) domains and stimulate degradation of the
ubiquitinated protein while the UbL-UBA proteins
themselves escape degradation. The mechanism behind
this unexpected stability of UbL proteins has been
investigated for yeast Rad23 [59-61]. These experiments
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Figure 2
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Schematic representation of the degradation cycle of the ubiquitin proteasome system. Proteins are targeted to the proteasome by a two-part
degradation signal or degron. It consists of a disordered region within the substrate and a reversibly attached polyubiquitin tag (Ub,,). Polyubiquitin tag
is attached by a E1-E2-E3 ubiquitination cascade and this process can be reversed by DUBs (top left). The proteasome recognizes its substrates at
the ubiquitin tag through ubiquitin receptors (Rpn10 and Rpn13; green) (top) and initiates degradation at the unstructured region (right). Once the
proteasome has engaged its substrate, it unravels the protein by translocating it into a central cavity in the core particle, where the protein is
proteolysed (bottom). The polyubiquitin tag is cleaved off by the intrinsic DUB Rpn11 (skyblue) as unfolding and degradation begins.

showed that Rad23 escapes degradation because it lacks
an effective proteasome initiation site [60,61].

The flipside of this mechanism is also observed and the
proteasome is able to remodel protein complexes by
degrading only the ubiquitinated subunit and leaving
other proteins in the complex intact [62,63]. This remo-
deling activity is important in many regulatory processes.
For example, during cell cycle regulation in yeast, the
proteasome extracts the cyclin-dependent kinase inhibi-
tor Sicl from its complex with cyclin and cyclin-depend-
ent kinase to degrade solely Sicl [64]. Shortly afterwards,
the cyclin is ubiquitinated and then degraded to release
intact but inactive kinase [65]. Since the proteasome is
able to degrade proteins that are bound to the proteasome
indirectly it is unlikely that ubiquitination by itself spe-
cifies target selection. Presumably, the proteasome
instead determines which subunit is degraded by where
it initiates degradation. Once the polypeptide chain of a
subunit is fed into the degradation channel, the protea-
some proceeds along that chain and hydrolyzes the

protein sequentially [32]. The most likely initiation site
for the proteasome is probably the unstructured region
closest to the entrance to the degradation channel.
Indeed, biochemical experiments show that initiation
regions must be placed at the appropriate distance from
the ubiquitin tag for a protein to be degraded, presumably
so that the proteasome can bind the ubiquitin tag and
engage the initiation region simultaneously [47]. Thus,
under some circumstances, the proteasome may select
substrates at the initiation step.

Ubiquitin-independent substrates

A range of proteins is degraded by the proteasome without
being ubiquitinated [66] and the best understood example
is ornithine decarboxylase (ODC) [67,68]. Degradation of
ODC requires A'TP as well as an accessory protein called
antizyme and begins a 37 amino acid long unstructured
region at the C terminus of ODC [68]. To some extent, this
ODC tail can function as a transferable degradation signal
and induce the degradation of some proteins. One
plausible explanation for the ubiquitin-independent

Current Opinion in Structural Biology 2014, 24:156-164
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Figure 3
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The proteasome recognizes substrates in three different modes; ubiquitin-dependent (left), adapter-mediated (middle), and ubiquitin-independent
(right) modes. In all three modes, an intrinsically disordered region in the substrate is recognized by the ATPase motor to allow the proteasome to
initiate degradation. This aspect of proteasomal degradation resembles the targeting mechanisms predominant with the bacterial and archaeal
analogs of the proteasome. Ubiquitin tags can be either recognized by the two intrinsic proteasome receptors Rpn10 and Rpn13 (left), or by non-
stoichiometric proteasome subunits that serve as substrate adaptors such as UbL-UBA proteins (middle). The UbL-UBA proteins might bind
substrates by themselves (second right) or together with the intrinsic substrate receptors (second from left) and facilitate degradation of by positioning
the disordered region properly. Finally, some substrates may be recognized only by their initiation sites.

degradation is that the unstructured regions themselves
have bind sufficiently tightly to the ATPase ring loops so
that ubiquitin is not required for proteasome association
(Figure 3). Thus, this targeting mechanism can be taken
as a variation of the conventional proteasome degron in
which the ubiquitin tag component is missing and which
resembles the degrons observed in the archaeca and
bacteria [18].

Several other proteasome substrates including p21/Cip1, c-
Jun, c-Fos, p53, p73 IkBa, T-cell antigen receptor chain
Fra-1, and Hif-1a, can also be degraded in an ubiquitin-
independent manner [69-71]. The mechanisms of these
processes are not well understood and it is possible that
these proteins are degraded by isolated 20S core particle in
the absence of ATP [69], though iz vive perhaps more
likely by 20S core particle activated by alternative caps [70]
or even by 26S proteasome [71]. The proteins in this group
of ubiquitin-independent proteasome substrates are large-
ly wunstructured, but their degradation can still be
regulated. The best understood example of this regulation
is given by NQO1 [72,73°]. NQO1 is largely unstructured
and can be degraded by 20S proteasome 7z vitro. Binding of
NQOT1’s cofactor FAD stabilizes the protein’s structure
and inhibits its proteasomal degradation. Quite interest-
ingly, FAD binding to NQO1 also stabilizes other ubiqui-
tin-independent proteasome substrates, setting up a
regulatory circuit controlled by the availability of FAD
and thus the metabolic state of the cell.

System-wide studies of the UPS

The mechanisms described above are largely derived
from investigations of the behavior specific proteins 7
vitro or in the cell. Over the last five years, high-through

studies have begun to provide a system-level picture of
how the UPS regulates protein concentrations. Improve-
ments in mass spectroscopy technology and in the strat-
egies for sample preparation are making it possible to
define the proteins that are ubiquitinated in the cells and
the nature of their ubiquitin modifications [74-76]. So far,
the sets of ubiquitinated proteins identified in different
studies overlap only partially suggesting that current
experiments do not yet capture all ubiquitinated proteins
[74]. The studies still provide valuable insights, for
example by describing the wide range of polyubiquitin
chains made in cells [27] and the fraction of nascent
proteins that are ubiquitinated as part of protein quality
control surveillance [77,78].

Other approaches measure the stability and turnover rates
of a large fraction of the proteins in cells. The first
experiments used the tagged protein collection in yeast
and followed their degradation by cycloheximide shut-off
and Western blotting [79] and later measurements in
mammalian cells use SILAC [80] or fluorescent protein
fusions [52,81]. These studies show that protein halftimes
in cukaryotic cells range over at least two orders of
magnitudes and thus that the protein concentrations
are indeed adjusted by the balance of synthesis and
degradation. Combining protein stability measurements
with the ubiquitination databases, or with chemical inhi-
bition of protein ubiquitin ligases provides increasing
depth to our understanding of the regulation of cellular
protein stability [50-53,82].

Summary
As we begin to understand the mechanism of the UPS in
increasing biochemical detail it is becoming clear that the
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regulation of degradation is far richer than the binary
decision between degradation or no degradation. Just like
protein synthesis is tuned by a myriad of processes, we are
discovering new ways in which their degradation is tuned.
Recent structural and biochemical discoveries have pro-
vided a range of novel paradigms that govern proteasome
action and new experimental strategies make it possible
to observe protein ubiquitination and degradation sys-
tem-wide. It will be interesting to see whether and how
they are used in the cell.
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other key regulatory cellular proteins. Thus, the proteasome regulates either directly or indirectly many impor-
tant cellular processes. Altered regulation of these cellular events is linked to the development of cancer. There-
fore, the proteasome has become an attractive target for the treatment of numerous cancers. Several proteasome
inhibitors that target the proteolytic active sites of the 26S proteasome complex have been developed and tested

'z(?évﬁgiiasome complex for anti-tumor activities. These proteasome inhibitors have displayed impressive anti-tumor functions by induc-
Proteasome inhibitors ing apoptosis in different tumor types. Further, the proteasome inhibitors have been shown to induce cell cycle
Cancers arrest, and inhibit angiogenesis, cell-cell adhesion, cell migration, immune and inflammatory responses, and
DNA repair response. A number of proteasome inhibitors are now in clinical trials to treat multiple myeloma
and solid tumors. Many other proteasome inhibitors with different efficiencies are being developed and tested
for anti-tumor activities. Several proteasome inhibitors currently in clinical trials have shown significantly im-
proved anti-tumor activities when combined with other drugs such as histone deacetylase (HDAC) inhibitors,
Akt (protein kinase B) inhibitors, DNA damaging agents, Hsp90 (heat shock protein 90) inhibitors, and lenalido-
mide. The proteasome inhibitor bortezomib is now in the clinic to treat multiple myeloma and mantle cell lym-
phoma. Here, we discuss the 26S proteasome complex in carcinogenesis and different proteasome inhibitors

with their potential therapeutic applications in treatment of numerous cancers.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The 26S proteasome complex is a non-lysosomal proteolytic ma-
chine in eukaryotes [1,2]. It consists of a 20S core particle (CP) and
a 19S regulatory particle (RP). The 20S CP confers the proteolytic ac-
tivities of the proteasome, whereas the 19S RP shows an ATP-
dependence and specificity for ubiquitin protein conjugates. The 20S
CP resembles a cylinder composed of four rings (two o and two
rings) [1,3]. These rings are flush with each other, giving the 20S CP
a seven-fold symmetry. Each « ring is composed of seven different
o components (a1-a7). Similarly, seven different 3 components
(P1-p7) form a P ring. Three of the seven B-components in the B
ring are catalytically active, and are named by their substrate specific-
ities: chymotrypsin-like (R5), trypsin-like (2), and post-acidic or
caspase-like (31). The chymotrypsin-like activity cleaves proteins
after hydrophobic residues, while the trypsin and caspase-like activi-
ties cleave after basic and acidic residues, respectively [4,5]. The sub-
strate protein is translocated into the catalytic chamber of the 20S CP
with the help of the 19S RP. The substrate protein is targeted to the
26S proteasome via its polyubiquitylation (Fig. 1). The ubiquitin
chains are added to the protein substrate by three enzymes:
ubiquitin-activating E1, ubiquitin-conjugating E2, and ubiquitin-ligase
E3 (Fig. 1). E1 ubiquitin activating enzyme binds with a ubiquitin mol-
ecule, passes the ubiquitin to E2 ubiquitin conjugating enzyme, and E3
ubiquitin ligase enzyme enables the linking of C-terminal glycine resi-
dues of ubiquitin to lysine (K) residue on the substrate protein (Fig. 1).
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Fig. 1. The schematic diagram showing ubiquitylation of substrate protein and its sub-
sequent degradation by the 26S proteasome complex. A ubiquitin activating enzyme
(E1) first forms a thio-ester bond with ubiquitin (a highly conserved protein with 76
amino acids) in an ATP-dependent manner. Ubiquitin then binds to a ubiquitin conju-
gating enzyme (E2). Subsequently, the carboxy-terminus of ubiquitin forms an isopep-
tide bond with a K residue on the substrate protein in the presence of a ubiquitin ligase
enzyme (E3). Multiple ubiquitylation cycles result in polyubiquitylation of the sub-
strate protein. The 26S proteasome complex recognizes, unfolds and degrades
polyubiquitylated-substrate protein into small peptides. Ub, ubiquitin.

Polyubiquitylation occurs through the linkage on one of the seven K
residues of ubiquitin. The 19S RP recognizes the K48-linked
polyubiquitylated-substrate protein, unfolds it, and finally feeds it
into the catalytic chamber of the 20S CP for proteolysis in an ATP-
dependent manner [6-8]. Further, the 19S RP cleaves off the ubiquitin
from the substrate protein, and recycles it for future use. While K48-
mediated polyubiquitylated-form of the substrate protein is recognized
and degraded by the proteasome, K63-linked polyubiquitylation is not
targeted for degradation by the 26S proteasome complex, but plays a
crucial role in cellular signaling.

The proteasome complex is found in both the cytoplasm and
nucleus of eukaryotic cell where they regulate the ebb and flow of
proteins involved in progression through the cell cycle, inflammatory
mechanisms, antigen presentation, signal transduction, apoptosis,
and other key regulatory cellular processes. Through these processes,
the 26S proteasome complex plays a crucial role in maintaining
normal cellular functions. The proteasome exists in two isoforms:
the constitutive proteasome or the 26S proteasome, and the immuno-
proteasome [9]. While the constitutive proteasome is found in most
cells, the immunoproteasome is tissue-specific and abundant in
immune-related cells. The immunoproteasome is formed in response
to cytokine signaling. The immunoproteasome differs from its more
common counterpart in that it contains a variation of the normal 3-
components. The 31, 32 and 35 components of the constitutive pro-
teasome are replaced by B1i (LMP2), 32i (MECL1 or LMP10) and
51 (LMP7) in the immunoproteasome. The immunoproteasome
also has an 11S regulatory structure or PA28 instead of the 19S RP
of the 26S proteasome. Stimulation from the <y-interferon (IFN-vy)
can instigate the switch of constitutive B-components to the immuno
B-components. Similarly, tumor necrosis factor-alpha (TNF-at)
has also been shown to induce the expression of immuno p-
components and 11S regulatory cap to form the immunoproteasome.
Such modifications help the immunoproteasome to generate antigen-
ic peptides in a major histocompatibility complex (MHC) class I-
mediated immune response [10].

2. The 26S proteasome complex in different cellular events and
carcinogenesis

The 26S proteasome regulates many cellular functions, the most
prominent of which includes the advancement through mitosis,
growth, chemotaxis, antigen presentation, angiogenesis, apoptosis,
and the expression of several genes which in turn regulate other
processes. These mechanisms influenced by the 26S proteasome
are some of the processes altered or deregulated in cancers. The
most prominent substrates and related molecules of the 26S protea-
some involved in cellular processes and carcinogenesis are discussed
below.

2.1. Nuclear factor-kappaB (NFkB)

NF«B was originally discovered as a regulator for the expression of
the kappa light-chain gene in murine B-lymphocytes [11]. Later on,
NFKB has been found in nearly all animal cell types. NF<B is a tran-
scription factor, and is involved in the activation of the genes encod-
ing for cytokines, chemokines, growth factors, cell-adhesion
molecules, and surface receptors [12-15] (Fig. 2). Through transcrip-
tional regulation of a number of genes, NF<B controls various immune
and inflammatory responses. Further, it suppresses apoptosis, and in-
duces angiogenesis, cell proliferation and migration (Fig. 2), and
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Fig. 2. The schematic diagram showing the regulation NF«B functions by the 26S pro-
teasome complex.

thereby plays a crucial role in tumorigenesis [16-18]. NF«<B is a het-
erodimer of p50 and p65. The 26S proteasome is involved in generat-
ing p50 from the precursor protein p105. p50 then binds to p65 and
becomes the active dimer or NF<B. In the cytoplasm, IkB binds to
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NFKB and inhibits the translocation of NF«B to the nucleus for gene
activation (Fig. 2). External stimuli (e.g. ionizing and ultraviolet irra-
diation, pathogens, stress, free radicals, and cytokines) induce phos-
phorylation of IkB (Fig. 2). This phosphorylation triggers
polyubiquitylation of I<B for degradation by the 26S proteasome com-
plex (Fig. 2). The proteasomal degradation of IxB promotes the trans-
location of NF«B to the nucleus to switch on the transcription of its
target genes (Fig. 2). Thus, the 26S proteasome complex plays a piv-
otal role in regulating the function of NF«<B and associated key intra-
and inter-cellular events. Therefore, misregulation of NF«B function
would lead to various types of cancers. Incidentally, several cancers
like breast cancer, myeloma, prostate cancer, and leukemias show
constitutive activity of NF<B [14,19-24]. This confers chemoresis-
tance and increased aggression in phenotypes through the continued
expression of factors associated with anti-apoptosis, angiogenesis,
cell growth/proliferation, and metastasis [14,24-26]. In addition to
its involvement in cancer, NF«B is also linked to inflammatory and au-
toimmune diseases, septic shock, viral infection, improper immune
development, processes of synaptic plasticity and memory as well
as neurodegenerative and heart diseases [27-29].

2.2. Apoptosis

Cancer is characterized by an uncontrolled growth and spread of
abnormal cells. Thus, the induction of apoptosis would promote the
killing of abnormal cancer cells. However, cancer cells often have a
disregulation of apoptotic signaling pathways, leading to the suppres-
sion of apoptosis. Such an aberrant regulation of apoptosis provides a
survival advantage to the cancer cells and therefore resistance to che-
motherapy. Intriguingly, the key factors involved in controlling the
apoptosis are regulated by the 26S proteasome complex [9,30]. For
example, the levels of the pro-apoptotic factors such as p53, Bax,
and NOXA are increased following inhibition of the proteolytic func-
tion of the 26S proteasome. Further, the inhibition of the proteasome
activity has been shown to downregulate the anti-apoptotic factors
such as Bcl-2 and IAP (inhibitor of apoptosis) proteins. Therefore,
inhibition of the proteolytic function in cancer cells would promote
apoptosis by upregulating the functions of the pro-apototic factors
and suppressing the anti-apoptotic factors, hence killing cancer
cells. Indeed, inhibition of the proteolytic function of the 26S protea-
some has been shown to enhance apoptosis in a number of cancer
cells [9] (Fig. 3).
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Fig. 3. The schematic diagram showing the effects of the proteasome inhibition on different pathways, contributing to cancer prevention.
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As mentioned above, p53 is a pro-apoptotic factor that plays a critical
role in apoptosis. Normally an unstable protein, its enhanced levels result
in the initiation of the apoptosis cascade. Down-regulation of 26S protea-
somal degradation causes the pro-apoptotic accumulation of p53, and
hence induction of apoptosis (Fig. 3). Activation of an E3 ubiquitin ligase,
MDM_2, ubiquitylates p53 and subsequently leads to its proteasomal deg-
radation [31]. This downregulation of p53 activity leads to tumor pro-
gression and drug resistance. Further, in high-risk HPV (human
papilloma virus)-related cancer cases, the E6 oncoprotein and E6-AP
(E6 associated protein, an E3 ubiquitin ligase) bind to p53, and ubiquity-
late it for subsequent 26S proteasomal degradation [32,33]. Thus, the 26S
proteasome complex plays a key role in regulating the level of p53, and
through it apoptosis and cancer progression. Therefore, the inhibition
of the proteolytic function of the 26S proteasome in cancer cells would
augment the level of p53, and would eventually impair cancer progres-
sion by inducing apoptosis (Fig. 3). Unsurprisingly, the inhibition of the
proteasome activity has been shown to induce p53-dependent apoptosis
in renal cancer cell lines [34], colon cancer [35], melanoma, and multiple
myeloma [36]. Proteasome inhibition has also been demonstrated to ac-
tivate the downstream target genes of p53 such as Bax, p21, PUMA (p53
upregulated modulator of apoptosis) and Fas ligand [37].

2.3. Cell cycle

Regulation of cell cycle progression is a pivotal step in controlling
carcinogenesis. In general, rapid cell cycle progression leads to cell
proliferation and uncontrolled growth, ultimately developing trans-
formed cancerous cells. Cyclins and cyclin dependent kinases
(CDKs) tightly control the progression of cell cycle. However, the
functions of several cyclins, CDKs, and their interplay are regulated
by the proteolytic activity of the 26S proteasome complex, conferring
proteasomal regulation of cell cycle progression in a number of ways.
For example, CDK inhibition by tumor suppressor p27 downregulates
cyclins D and E, and subsequently negatively controls the cell cycle
progression through G1/S phase [38] (Fig. 3). The 26S proteasome
complex is involved in the degradation of p27, and thus promotes
cell cycle progression (Fig. 3). The E3 ubiquitin ligase, Skp-2 (S-
phase kinase protein 2) targets p27 for ubiquitylation for its 26S pro-
teasomal degradation. Due to this, low levels of p27 would lead to
rapid cell cycle progression and hence oncogenesis. In fact, low levels
of p27 are observed in various malignancies such as lymphoma,
breast, lung, colon, prostate, ovarian, and brain cancers [39]. Further,
high levels of Skp-2 contributing to enhanced proteasomal degrada-
tion of p27 have been demonstrated in several cancers including
non-small cell lung carcinoma [40]. Similarly, the 26S proteasome is
also involved in the regulation of CDK-inhibiting protein p21 levels,
hence controlling cell cycle progression [41-43] (Fig. 3).

Like cyclins D and E, cyclins A and B are also regulated by the 26S
proteasome. The anaphase-promoting complex/cyclosome (APC/C)
serves as an E3 ubiquitin ligase, and ubiquitylates both cyclins A
and B, marking them for degradation by the 26S proteasome complex
[44-46]. The 26S proteasomal degradation of cyclins A and B guaran-
tees that the cell completes mitosis and can enter the next cell cycle.
In fact, cyclin B is rapidly degraded by the proteasome as the cell exits
mitosis [47-49]. Clearly, an alteration of the proteasomal degradation
of cyclins A and B, or their enhanced level would be correlated with a
number of cancers. Indeed, cyclin B has been found to be overex-
pressed in numerous cancer cell lines [50].

Further, the 26S proteasome complex has been shown to regulate
cell cycle progression via an oncogenic transcription factor, Forkhead
Box M1 (FoxM1). FoxM1 induces the expression of the genes that are
involved in cell cycle progression (Fig. 3). It is expressed at a low level
in normal cells. However, its overexpression can lead to a rapid cell
cycle progression. In fact, FoxM1 has been shown to be overexpressed
in numerous cancers such as non-small cell lung carcinoma [51]
breast cancer [52], colorectal cancer [53], glioblastomas [54],

pancreatic carcinomas [55] and squamous cell carcinomas [56]. Addi-
tionally, the inhibition of the proteolytic activity of the 26S protea-
some has been demonstrated to suppress the expression of FoxM1
and its transcriptional activity in cancer cell lines [57,58] (Fig. 3).
Thus, the proteasome plays an important role in regulation of onco-
genesis via controlling the expression and activity of FoxM1.

2.4. Endoplasmic reticulum (ER) stress

Following the translation of mRNA at the ER, proteins are folded
into their functional forms. When proteins are not folded properly,
they are directed to 26S proteasomal degradation. If misfolded or un-
folded proteins are not degraded by the proteasome, they form aggre-
gates and lead to the ER stress. The ER stress triggers unfolded protein
response (UPR) to reduce the accumulation of unfolded proteins and
restore the ER function. When protein aggregation or ER stress per-
sists, especially in cancerous cells with high rates of protein synthesis,
the UPR signaling switches from the pro-survival to pro-apoptotic.
Consequently, the 26S proteasome complex also plays an important
role in regulating the ER stress and cell survival. Therefore, inhibition
of the proteasomal function in cancer cells would promote apoptosis
and have an anti-tumor function (Fig. 3). In fact, the inhibition of the
proteolytic activity of the 26S proteasome has been shown to induce
pro-apoptotic ER stress in multiple myeloma [59], pancreatic [60],
head and neck cancer [61], and non-small cell lung carcinoma [62].

2.5. Androgen receptor (AR)

AR is a ligand-dependent transcription factor, and belongs to the
family of nuclear receptors. It plays an important role during differen-
tiation and growth of the prostate and accompanying urogenital
structures [24,63]. In presence of its ligand androgen, it binds to the
promoters of a set of genes and regulates their expression [24,63].
With the ability to upregulate or downregulate under certain condi-
tions, AR influences the expression of many genes. Some include: ker-
atinocyte growth factor, probasin, prostate specific antigen (PSA),
p21, Kallikrein, ornithine decarboxylase, and the AR gene itself.
When the strict regulation of AR slips, it causes tumorigenesis, espe-
cially prostate cancer. Androgen plays a crucial role in the develop-
ment of prostate cancer by activating AR. Prostate cancer is the
second leading cause of cancer death among American males. Due
to this, great importance is placed on androgen and its part in the de-
velopment of prostate cancer. When AR is inactivated in AR-
dependent prostate cancer, those cells can no longer replicate DNA
or enter S phase, causing cell death [24] (Fig. 3). Interaction between
calmodulin (CaM) and AR can cause CaM-dependent protein kinases
to phosphorylate AR, thus manipulating its molecular stability and
nuclear localization via the 26S proteasome [24]. Proteasome inhibi-
tor MG-132 arrests AR interaction with co-regulators ARA70 or TIF2,
as well as preventing nuclear translocation of AR, repressing AR trans-
activation [24,63]. Further, the inhibition of the proteolytic activity of
the 26S proteasome by bortezomib reduces the basal level of AR, and
subsequently induces the apoptosis of androgen-dependent human
prostate cancer LNCaP cells [24]. However, some prostate cancers
grow in the absence of androgen, named androgen-independent
AR-positive prostate cancer. Interestingly, decreasing active AR levels
in these cells still inhibits growth [24]. Together, these studies have
implicated the 26S proteasome complex in regulating AR expression
and function, and hence carcinogenesis. Thus, proteasome inhibition
has anti-tumor effects via modulating the activity of AR. Likewise,
proteasome inhibition has also been shown to regulate GR (glucocor-
ticoid receptor) and ER (estrogen receptor) target genes in MCF-7
breast cancer cells [64]. Further, Alarid and colleagues [65] have re-
cently provided a new link of proteasomal function in estrogen sig-
naling in breast cancers, by demonstrating the repression of ER gene
expression in response to proteasome inhibition.
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2.6. Chemokines

Chemokines are a family of chemotactic cytokines, and cause cells to
move along a chemical gradient. This mechanism is very important in
terms of angiogenesis, cell migration, and metastasis, all playing enor-
mous roles in cancer [66-69]. The role of chemokines in metastasis is
the outcome of modified presentation of G-protein coupled receptors.
When the production of the chemokine receptor CXCR4 is upregulated
in cancer cells (e.g., metastatic breast cancer, ovarian cancer and malig-
nant melanoma cells), the cell migration is increased towards tissues
that constitutively express the cognate chemokines ligand CXCL12,
like liver, bone marrow, lymph nodes, and lung. To the contrary, the
chemokine CXCL14/BRAK exhibits tumor suppressing activity but its
expression is often modified in several cancers including prostate as
well as squamous cell carcinomas of the head, neck, and cervix
[69-71]. The ubiquitin-proteasome system is responsible for degrading
chemokine CXCL14 in cancer and other immortalized cells, but the pro-
teasome does not degrade CXCL14 in normal epithelial cells [69]. Treat-
ment with proteasome inhibitor lactacystin resulted in the expression
of CXCL14 in cancer cell lines that had previously shown impaired
CXCL14 expression. Also, when LNCaP prostate cancer cells were trea-
ted with proteasome inhibitor MG-132, polyubiquitylated CXCL14
was found. These results demonstrate that cancer cells prevent their
own CXCL14 expression as well as degradation by the proteasome.
When overexpressed, CXCL14 inhibits angiogenesis and hence tumor
growth [69,72] (Fig. 3). Further, normal and lower levels of CXCL14
would increase the chances of dendritic cells penetrating the tumor,
leading to detection of the tumor by the immune system [69,71-73].
Thus, CXCL14 has anti-tumor activities via impairing angiogenesis and
enhancing the detection of tumor by the immune system. The absence
of CXCL14 in head and neck and prostate cancers favors cancer progres-
sion. Therefore, the inhibition of the proteolytic function of the protea-
some in the cancer cells would increase the level of CXCL14, and hence
would produce anti-tumor effects (Fig. 3).

2.7. Cell-surface receptors

Cell-surface receptors, growth factors and their signaling pathways
play important roles in carcinogenesis. Cell-surface receptors have
been demonstrated to be ubiquitylated and degraded by the 26S pro-
teasome complex. Proteasomal degradation of the cell-surface recep-
tors is very relevant in cancer chemotherapy. For example, tyrosine
kinase receptors are degraded by the 26S proteasome, and such degra-
dation provides anti-tumor activity to herbimycin A which inhibits
multiple tyrosine protein kinases [74]. Similarly, protein kinase C
(PKC) inhibitor downregulates PKC via 26S proteasomal degradation
[75,76]. Other cell-surface receptors such as T-cell antigen receptor
(TCR) and platelet-derived growth factor (PDGF) are also degraded
by the 26S proteasome. These receptors are ubiquitylated in response
to ligand binding for proteasomal degradation [77,78]. Thus, the 26S
proteasome complex plays an important role in regulating the stabili-
ties of the cell-surface receptors, and hence their signaling pathways.

2.8. AP-1

The proto-oncogene products ¢-JUN and c-FOS interact to form the
transcription factor, AP-1 (activator protein 1). These two proto-
oncoproteins form AP-1 as a heterodimer of c-JUN and c-FOS or a homo-
dimer of c-JUN, and are known to be degraded by the 26S proteasome
complex [79-84]. The delta region, a 27 amino acid long segment of c-
JUN, enables ubiquitylation and proteasomal degradation of the protein.
This segment is missing in v-JUN, the transforming retroviral counter-
part of c-JUN. As a result, v-JUN is upregulated, and such an increased
stability is very likely to contribute to its oncogenicity [79]. Therefore,
an impaired proteasomal degradation of c-JUN can lead to oncogenesis.
Moreover, the proteasomal degradation of c-JUN is essential to

maintain normal function of AP-1 factors. The AP-1 factors play impor-
tant roles in handling oxidative stresses [85,86]. AP-1 upregulation has
been correlated with drug resistance in several cancer cell lines [87-89].

2.9. DNA repair

The DNA damage and regulation of its repair mechanisms are strongly
correlated with carcinogenesis. The proteasome complex plays a crucial
role in DNA repair [90]. The inhibition of the proteolytic function would
impair DNA repair (Fig. 3), and trigger apoptosis. Therefore, DNA damag-
ing agents have been used to kill cancer cells. Further, the combination of
DNA damaging agents with proteasome inhibitor would have synergistic
effects in killing cancer cells. Indeed, proteasome inhibitors have shown
more effective anti-tumor activities when combined with the DNA dam-
aging agents such as radiation and camptothecin (CPT) [9,90].

2.10. MHC-restricted class I antigens

As mentioned above, MHC-restricted class I antigens are vitally pro-
cessed by the immunoproteasome and presented on the cell surface for
recognization by cytotoxic T lymphocytes. Proteins LMP2, LMP7, and
LMP10 are interchanged with the three components of the 20S catalytic
core to form the immunoproteasome in the instance of [FN-y induction
[91-95]. Substitution of LMP2, LMP7, and LMP10 yields more types of
peptides expressed on the cell surface [96,97]. Thus, the low levels of
LMP2, LMP7, and LMP10 can lead to a decrease in MHC class I-
restricted peptide presentation, and cause an escape from immune sur-
veillance, leading to cancer. Indeed, very low levels of LMP2, LMP7, and
lower antigen presentation are found in 3 small-cell lung carcinoma
lines [98]. Further, the mouse T-cell lymphoma cell line SP-3 has been
shown to display an underexpression of LMP2 and an impairment of an-
tigen presentation [99]. Oncogenic viruses have been found to down-
regulate LMP2 and LMP7 upon viral transformation of the cell [100].
However, the expression of LMP2 and LMP7 has been shown to be in-
creased with an enhancement of antigen presentation in these cancer
cell lines by expressing IFN-y following transfection [99,101]. By
expressing fewer peptides, cancerous cells may avoid detection by the
immune system. Thus, the immunoproteasome plays an important
role in antigen presentation, and its malfunction would lead to the es-
cape from immune surveillance (Fig. 3), and hence cancer. In fact, a
low level of immunoproteasome activity is present in certain cancer
cells [98-100]. A down-regulation of LMP2 and LMP7 has also been ob-
served in hepatocellular carcinoma [102]. Likewise, a decreased level of
26S proteasomal activity has also been observed in lung cancer stem-
like cells in vitro[103]. Further, an altered level of the proteasome com-
ponent MB1 (35) is found in ovarian cancer [104].

As discussed above, the 26S proteasome is involved in nearly
every kind of pathway cancer uses for survival and growth. By under-
standing these pathways and their relationship with the proteasome,
it becomes clear that the manipulation of the 26S proteasome in turn
would determine the fate of cancer cells. Undoubtedly, the proteaso-
mal inhibition has been proven to be an attractive anti-cancer tool as
discussed below.

3. Proteasome inhibition to treat cancer

When proteasome inhibitors prevent the proteasome from acti-
vating NFkB, factors of angiogenesis, survival, and growth are down-
regulated while apoptosis is up-regulated in multiple tumor cell
lines [16,105-115] (Fig. 3). This effect is also noticed in
chemotherapy-resistant cells, additionally due to disruption of pro-
teasomal regulation of caspases and Bcl-2. Further, proteasome inhi-
bition enhances the levels of p21 and p27 [116,117] (Fig. 3). Such
enhancement inhibits CDKs and consequently arrests cell cycle, halting
the growth of cancer cells (Fig. 3). The inhibition of the proteolytic func-
tion of the 26S proteasome has also been shown to impair the
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development of new blood vessels from endothelial cells or angiogene-
sis (Fig. 3) that is a vital factor for tumor growth and metastasis
[115,118]. Disruption of angiogenesis by proteasome inhibition also oc-
curs by decreasing microvessel density and the expression of vascular
endothelial growth factor (VEGF) [115,118,119] (Fig. 3). Thus, the pro-
teasome inhibition impairs angiogenesis as well as disturbs cellular ho-
meostasis, hence leading to an anti-tumor activity. Overall, these studies
demonstrated that the inhibition of the proteolytic function of the 26S
proteasome induces apoptosis and cell cycle arrest, and represses angio-
genesis as well as metastasis (Fig. 3). In fact, apoptosis and other anti-
tumor effects of proteasome inhibition have been observed in various
cancer cell lines and xenograft models including lymphoma, leukemia,
melanoma, pancreatic, prostate, head and neck, breast, and lung cancers
[36,119-126]. Further, cancer cells are more sensitive to the cytotoxic ef-
fects of the proteasome inhibition as compared to the normal cells
[127,128]. Also, cessation of all proteasomal function is not required to
achieve anti-tumor effects [14,129]. Together, these studies have impli-
cated the proteasome inhibition as an attractive way of treating cancer
cells (Fig. 3). Therefore, a large number of studies are focused on a vari-
ety of proteasome inhibitors for effectively treating cancer.

There is a wide variety of natural and synthetic proteasome inhib-
itors. These inhibitors are clustered into five groups: peptide
aldehydes, peptide vinyl sulfones, peptide boronates, peptide epoxy-
ketones, and p-lactones (lactacystin and its derivatives). Small-
molecule proteasome inhibitors mimic the peptide substrates of the
active sites in the 20S catalytic core subunit of the 26S proteasome
complex. Lactacystin is a microbial metabolite isolated from Strepto-
myces, and is the first compound found to have an inhibiting effect
on the proteasome. Lactacystin effectively and irreversibly inhibits
the B5-component of the proteasome by selectively modifying
N-terminal threonine residues, and also reversibly binds to the (31-
and B2-components. MG-132 (Z-Leu-Leu-Leu-aldehyde) and PSI (Z-
lle-Glu-(OtBu)-Ala-Leu-aldehyde) are two of the first proteasome in-
hibitors synthesized. These are peptide aldehydes that reversibly bind
to the R2- and p5 components by forming covalent hemiacetal ad-
ducts. At high concentrations, they also inhibit calpains and
cathepsins proteases. However, these compounds exhibit low speci-
ficity and high metabolic instability, limiting to use as research reagents.
The peptide vinyl sulfone proteasome inhibitor has a vinyl sulfone
group which is less reactive than the aldehyde group of the peptide al-
dehyde proteasome inhibitor. The vinyl sulfone group irreversibly
binds to the active site. One most potent peptide vinyl sulfone protea-
some inhibitor is AdaAhx3-LLL-vs. This inhibitor binds to the active
sites of both the constitutive and immunoproteasome with almost
equal efficiencies [130,131]. Peptide boronates, epoxomicin (peptide
epoxyketone), and lactacystin have shown higher specificity to the
proteasome, and therefore show the most promise for drug develop-
ment. Two of the peptide boronates, MG-262 and bortezomib, form
more stable tetrahedral intermediates with N-terminal threonine resi-
dues of the 20S CP, lending them a greater efficacy.

In addition to the synthetic and natural proteasome inhibitors, a va-
riety of proteasome inhibiting compounds can also be found in foods.
Some of these inhibitors are: apigenin, epigallocatechin-gallate
(EGCG), and ajoene. Apigenin is a polyphenolic flavone found in a
broad range of fruits and vegetables [ 132,133]. It has demonstrated che-
mopreventive properties in several cancer models such as lung, skin,
cervical, prostate, and leukemia by scavenging the free radicals, anti-
inflammation, and proteasome inhibition [ 134-141]. It comes as no sur-
prise that frequent ingestion of apigenin and other polyphenolic com-
pounds correlates with a lowered cancer risk and even a suppression
of tumor growth [132,133]. Apigenin achieves its proteasomal inhibit-
ing effect by interrupting the chymotrypsin-like activity of the 5-
component of the proteasome [133]. In a study using MDA-MB-231
breast cancer cells, Chen et al. [ 133] found that at the highest concentra-
tion tested, apigenin reduced proliferation and viability of cancer cells
by 50% after 24 h. Western blot analysis confirmed that apigenin caused

40% proteasome inhibition, a buildup of ubiquitylated-Bax and IkBc, as
well as increased caspase-3, caspase-7, and cleaved PARP (poly ADP-
ribose polymerase) levels, indicating apoptosis [133,136,141]. In addi-
tion to a significant proteasome inhibition, apigenin also seems to in-
duce the expression of death receptor 5 and an apoptosis-inducing
TNF-associated ligand in leukemia, prostate, and colon cancer cells
without having a toxic effect on normal cells [133,142]. This cancer-
targeted toxicity is echoed in animal models in vitro and in vivo[133].
Like apigenin, EGCG present in green, but not black, tea has been dem-
onstrated to inhibit the proteolytic function of the 26S proteasome. It is
a polyphenolic compound, and has an anti-tumor activity [143,144].
Further, ECGC has been shown to attenuate the release of pro-
inflammatory cytokines, thereby terminating inflammation [143,144].
Likewise, ajoene is an organo sulfur compound present in garlic [130].
It has been shown to inhibit the trypsin-like activity of the 20S CP of
the proteasome complex [145]. It induces apoptosis as well as cell
cycle arrest of tumor cells by inhibiting G2/M phase. Consequently,
ajoene has cytotoxic effects in tumor cells [146].

Like the proteasome inhibitors found in foods, naturally occurring
gallium has also shown anti-neoplastic activity in clinical trials in blad-
der cancer, lymphomas, and a variety of other malignancies [147-152].
Gallium IIl complex demonstrates anti-tumor activity via the inhibition
of the proteasomal activity of the 26S proteasome [152]. Further, galli-
um disturbs iron homeostasis by competing with Fe>* for uptake into
cells, the mediator for which is the transferrin receptor system that is
overexpressed in cancerous cells [152-155]. Chen et al. [ 152] have dem-
onstrated that a certain gallium complex tested inhibited 81% of protea-
somal activity in C4-2B prostate cancer cells. This complex also induces
apoptosis, as evidenced by PARP cleavage, TUNEL positivity, nuclei con-
densation, and activation of caspase-3/caspase-7 [152].

4. Bortezomib: a proteasome inhibitor in the clinic to treat cancer

As mentioned above, the proteasome complex plays crucial roles
in many important biological events, and its malfunction is strongly
correlated to carcinogenesis. Thus, the proteasome inhibitors have
shown a broad spectrum of anti-proliferative and pro-apoptotic activ-
ities against haematological and solid tumors. However, many of
these proteasome inhibitors have low potency, specificity or stability
[156-161]. Therefore, new proteasome inhibitors with greater poten-
cy and selectivity were developed. Thirteen boron-containing protea-
some inhibitors were synthesized, and subsequently screened for
anti-cancer activity using a panel of 60 human tumor cell lines of Na-
tional Cancer Institute, USA [162]. One compound showed extremely
high potency against a wide range of cancer cell lines. This compound
is known as bortezomib, velcade, or PS-341 (originally synthesized as
MG-341 at a company called Myogenics, and marketed as velcade by
Millennium Pharmaceuticals, Inc., Cambridge, MA, USA) (Table 1).

Table 1
26S Proteasome inhibitors with theirs tagets and clinical status.

26S Proteasome  Target in 26S proteasome Clinical status

inhibitor
Bortezomib Chymotrypsin-like activity ~ -Approved for MM and MCL.
Carfilzomib Chymotrypsin-like activity ~ -Phase IIl in MM.
-Phase | in AML, ALL, and CLL.
-Phase Ib/II in solid tumors.
ONX0912 Chymotrypsin-like activity ~ -Phase [ in solid tumors
NPI-0052 Chymotrypsin-like, trypsin-  -Phase I in MM, solid tumors,
like, Caspase-like activities refractory lymphoma, and
non-small cell lung carcinoma.
CEP-18770 Chymotrypsin-like activity -Phase I/Il in MM.
MLN9708 Chymotrypsin-like activity -Phase I/Il in MM.

-Phase I in lymphoma and non-
haematological malignancies.

MM, multiple myeloma; MCL, mantle cell lymphoma; AML, acute myeloid leukemia;
ALL, acute lymphoblastic leukaemia; and CLL, chronic lymphocytic leukaemia.
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Bortezomib is a water-soluble dipeptide boronic acid which contains
pyrazinoic acid, phenylalanine and Leucine with boric acid instead of
a carboxylic acid.

Bortezomib is a stable proteasome inhibitor that binds covalently
and reversibly with the 35 component of the 20S catalytic core subu-
nit of the proteasome forming tetrahedral intermediates on the N-
terminal threonine residues [156]. Further, it does not have any
known activity against other cellular proteases [163]. Due to these
qualities, bortezomib entered into clinical phase 1 trials
[19,20,164-166]. In phase I clinical trials, bortezomib demonstrated
an effective proteasome inhibition with fair tolerance levels, and
thus moved into phase II clinical trials. Bortezomib had success in
this clinical phase with refractory multiple myeloma patients [167],
spurring its rapid approval by the Food and Drug Administration
(FDA) and European Medicines Agency (EMEA). Interestingly, in the
phase III clinical trials in refractory multiple myeloma, the survival
rate of the patients treated with bortezomib exceeded that of the pa-
tients treated with dexamethasone [168]. Also, this proteasome in-
hibitor is consistently able to surmount the factors that normally
cause treatment resistance including y-radiation and the chemother-
apeutic agent CPT-11 by preventing the activation of NF<B [18,169].
Though accumulation of p53 can initiate apoptosis, bortezomib kills
tumor cells independently of p53 levels, even drug resistant multiple
myeloma cell lines with mutant p53 [16,170].

Bortezomib specifically shows a high efficacy in multiple myeloma,
non-small lung cancer, mantle cell lymphomas, and pancreatic cancer
[125,164,167,171,172]. Though not all tumor cell types react similarly
to bortezomib, its substantial activity in a variety of cancer cell lines
and tumor types in clinical trials propelled it into FDA approval. The
FDA first approved bortezomib in 2003 for the third-line treatment of
multiple myeloma [173]. Later on, it was approved for the first-line
treatment in 2008. It has also been approved in treating mantle cell
lymphoma (a fast-growing cancer that begins in the cells of the immune
system) in 2006 [174]. As the first FDA approved proteasome inhibitor,
bortezomib exhibits around 1000-fold improvement over its aldehyde
predecessors and more specificity to the 35 component of the 20S cat-
alytic core of the proteasome. Although bortezomib has shown a signif-
icant anti-tumor activity, it is also used to overcome chemoresistance
[175-177]. Due to this, bortezomib has been successfully combined
with several other agents such as doxorubicin, thalidomide, melphalan,
and dexamethasone. Thus, there is a great hope in developing better
combinatorial therapy without increasing toxicity in treating numerous
cancer patients. Currently, there are a large number of clinical trials
going on for combinatorial therapy involving bortezomib against hae-
matological malignancies and solid tumors.

Combinatorial therapies have shown great potential for cancer
treatment. The combination of bortezomib with other drugs such as
Hsp90 inhibitor, HDAC inhibitor, Akt inhibitor, and lenalidomide
have more clinical benefits as compared to bortezomib alone
[115,178]. Bortezomib with DNA damaging agent works well with re-
lapsed and/or refractory cancer patients [110,115,179,180]. Hsp90 in-
hibitor has been shown to overcome bortezomib resistance in mantle
cell lymphoma [108,178]. Lenalidomide has been combined with ste-
roids, proteasome inhibitors, mTOR (target of rapamycin) inhibitors,
humanized monoclonal antibodies, and Akt inhibitors. Lenalidomide
with bortezomib or Akt inhibitor has shown very impressive re-
sponses in the cancer patients [115]. Overall, the combinatorial ther-
apies have shown very promising results, and the most successful
combination is likely to be approved soon to treat cancer patients.

Although bortezomib has been approved to treat multiple myelo-
ma and mantle cell lymphoma patients, it also sensitizes pancreatic
cancer cells to ER stress-mediated apoptosis [30,181-183]. Further,
an induction of ER stress is a novel strategy to enhance bortezomib-
induced apoptosis in pancreatic cancer cells. The combination of bor-
tezomib with HDAC inhibitor, SAHA (Suberoylanilide hydroxamic
acid), entered clinical trials in 2007. Additionally, the combination

of bortezomib with HDACG6 inhibitor (more specific) may have better
clinical benefits in treating pancreatic cancer or other solid malignan-
cies [30,182].

Though bortezomib kills cancer cells, the cellular mechanisms for
clinical efficacy of bortezomib are not clearly known. However, several
mechanisms-of-action of bortezomib have been implicated in killing
cancer cells, which include disruption of cell adhesion- and cytokine-
dependent survival pathways (e.g., NF«B signaling pathway), inhibition
of angiogenesis, activation of a misfolded protein stress response (or ER
stress), upregulation of pro-apoptotic or downregulation of anti-
apoptotic genes. DNA microarray analysis revealed upregulation of
genes involved in hypoxia, ER stress/UPR, oxidative stress, apoptosis,
and amino acid starvation following proteasomal inhibition
[184-194]. Thus, bortezomib seems to kill cancer cells by hypoxic re-
sponse deregulation in tumor cells, mTOR inhibition, and ER stress-
induced apoptosis. Further, bortezomib has been shown to upregulate
AP-1 activity and activating transcription factor (ATF) families
[192,193,195-199]. ATF4 contributes to apoptosis, thus implicating
ATFs in bortezomib-induced apoptosis. Like other cancer therapies,
some factors contribute resistance to bortezomib treatment [115]. An
increased expression of HSPs reduces the efficacy of bortezomib. For ex-
ample, HSP27 directly correlates with bortezomib resistance [200], and
HSP90 inhibition overcomes bortezomib resistance in mantle cell lym-
phoma [115,178]. Bortezomib has also been shown to promote IFN-a
and TRAIL (TNF-related apoptosis-inducing ligand)-induced apoptosis
in human bladder cancer cells [201]. Therefore, bortezomib manifests
its anti-tumor activity via multiple mechanisms.

Bortezomib is metabolized primarily by cytochrome P450 3A4
[202,203]. Though intensely effective in treating many types of cancer,
bortezomib is not without its side effects. Bortezomib has a dose limiting
toxicity and pain associated with intravenous administration. Patients
treated with bortezomib have experienced peripheral neuropathy, py-
rexia, adverse gastrointestinal events, myelosuppression, orthostatic
hypotension, asthenia, thrombocytopenia, cardiac and pulmonary dis-
orders, and pain [128,167,168,204,205]. Bortezomib is also associated
with a high rate of shingles [206]. Further, it has not shown promising
results in treating solid tumors [9]. These facts have demanded the
need to develop a new generation of proteasome inhibitors. In this di-
rection, several proteasome inhibitors have been developed, and are
currently under clinical trials as presented below.

5. Proteasome inhibitors in clinical trials to treat cancer

There are several promising proteasome inhibitors that are currently
in clinical trials. These are: carfilzomib (PR-171), ONX0912 (PR-047),
marizomib (NPI-0052), CEP-18770, and MLN9708 (Table 1). Several
immunoproteasome inhibitors (Table 2) have also been developed,
which have shown impressive results in the pre-clinical studies. These
inhibitors are described below.

Table 2
Immunoproteasome inhibitors with theirs tagets and pre-clinical results.

Immunoproteasome Target in Pre-clinical results

inhibitor immunoproteasome
PR-957 Chymotrypsin-like  -Inhibits inflammatory response.
activity
PR-924 Chymotrypsin-like  -Inhibits tunor growth in animal
activity models without significant
toxicities.
-Inhibits growth of primary cell lines
and primary tumor cells.
-Anti-tumor activity against MM.
IPSI-001 Caspase-like activity -Inhibits haematological

malignancies in in vitro models.
-Inhibits proliferation in myeloma
patient samples.

-Overcomes other drug resistance.
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5.1. Carfilzomib

Carfilzomib (also known as PR-171) is an epoxomicin-based pro-
teasome inhibitor with improved pharmaceutical properties. Proteo-
lix Inc. (California, USA) has developed carfilzomib as a second
generation proteasome inhibitor to treat multiple myeloma patients
[129]. Carfilzomib irreversibly binds to the catalytic site of the protea-
some, and inhibits the chymotrypsin-like activity. Unlike bortezomib,
carfilzomib has shown minimal cross-reactivity with the other cata-
lytic sites of the 20S CP. Further, carfilzomib shows minimal reactivity
with other protease classes. Thus, carfilzomib has a better selectivity
than bortezomib for chymotrypsin-like activity of the 26S protea-
some in in vitro and in vivo studies [129,207,208]. Carfilzomib has
also shown better tolerability and dosing flexibility in xenograft
models [129,208]. Pre-clinical studies indicate that carfilzomib is ac-
tive against models of solid tumors, lymphomas, and myeloma
[129,208-210]. Carfilzomib inhibits cell proliferation, and induces ap-
optosis which is associated with activation of JNK (c-Jun N-terminal
protein kinase), depolarization of mitochondrial membrane, release
of cytochrome C, and activation of both intrinsic and extrinsic caspase
pathways in patient-derived multiple myeloma cells as well as neo-
plastic cells from patients with other haematologic malignancies
[129,209,210]. The phase I clinical trials of carfilzomib demonstrated
that multiple myeloma patients who have relapsed or progressed fol-
lowing a number of therapies (including bortezomib and stem cell
transplant) can also achieve durable anti-tumor responses with carfil-
zomib. Carfilzomib is well tolerated in patients at doses that suppress
chymotrypsin-like proteasome activity by >80% in whole blood. The
phase II clinical trials of carfilzomib provided promising results in pa-
tients with relapsed or refractory multiple myeloma. Currently, clini-
cal phase III trials are ongoing for carfilzomib in multiple myeloma
[9,211,212]. Further, carfilzomib is now under clinical phase I trials
for acute myeloid leukemia (AML), acute lymphoblastic leukaemia
(ALL), and chronic lymphocytic leukemia (CLL) [9,129]. It is also in
phase 1b/II trials in solid tumors [118,213]. Like bortezomib, carfilzo-
mib may work better in combination with other therapies. In fact, it
has been shown to function better in leukemia and lymphoma in
combination with HDAC inhibitors in vitro [214,215]. Carfilzomib
has also been shown to interact synergistically with HDAC inhibitors
in mantle cell lymphoma cells [211]. Furthermore, carfilzomib acts
synergistically with dexamethasone, and has shown an increased
level of anti-multiple myeloma activity as compared to bortezomib
[129].

5.2. ONX0912

Both bortezomib and carfilzomib are administered intravenously.
However, an oral proteasome inhibitor could be easily administered
in the multi-drug treatment regimens. Proteolix, Inc. has developed
an oral analogue, ONX0912 (also known as PR-047) that has N-cap
with significant pre-clinical anti-tumor activities [216]. This agent
shows an improved therapeutic window over carfilzomib in experi-
mental animal models. It has been demonstrated to reduce tumor
progression and prolong survival in animal models of multiple myelo-
ma, non-Hodgkin's lymphoma and colorectal cancer [216-218].
Further, it has been shown to enhance the anti-tumor activity in com-
bination with HDAC inhibitor, lenolidomide and bortezomib
[216-218]. This proteasome inhibitor is currently under clinical trials.
The clinical phase I trials of this compound are also ongoing in ad-
vanced solid tumors [9].

5.3. NPI-0052
NPI-0052 (also known as salinosporamide A or marizomib) is an ir-

reversible second generation proteasome inhibitor, and orally bioac-
tive [219]. It has been developed by Nereus Pharmaceuticals, Inc.

(San Diego, CA, USA) [220]. It is a non-peptide, p-lactone compound
that is related to lactacystin. It has been derived from the marine bac-
terium Salinospora tropica[221], and possesses anti-tumor activity
through caspase-8 activation [222,223]. It stimulates apoptosis pre-
dominantly via caspase-8-mediated pathway [222,223]. Thus, NPI-
0052 induces apoptosis via mechanisms that are unique from those
evoked by bortezomib [108,222,223]. NPI-0052 also differs from bor-
tezomib or carfilzomib in terms of its inhibitory effects on the three
major enzymatic activities of the 20S CP. It binds irreversibly to all cat-
alytic sites for proteolysis of the 26S proteasome [223]. At the maxi-
mum tolerated dose without apparent toxicity, NPI-0052 shows as
high as 90% proteasome inhibition as compared to 70% inhibition
by bortezomib [169,219]. The proteasome inhibition by NPI-0052 in-
creases progressively over 24 h, and remained essentially unchanged
for 72 h. On the other hand, the proteasome inhibition by bortezomib
reaches the maximum level of inhibition at 1.5 h, and then significant-
ly decreases over the next 24 h [219]. Therefore, NPI-0052 appears to
be a more effective compound in treating cancer patients. The cellular
response to NPI-0052 occurs much earlier than bortezomib. Further,
it has shown effectiveness in multiple myeloma cell lines that are
resistant to bortezomib [223]. It has also been demonstrated to be sig-
nificantly effective in pre-clinical studies in Waldenstrom's macro-
globulinemia, acute leukemia, CLL, prostate, pancreatic and colon
cancers [219,222,224-228]. However, NPI-0052 may be less specific
since its analog lactacystin binds to several proteasome subunits as
well as inhibits other cellular proteases. Although NPI-0052 blocks a
wider range of proteasome activities, it appears to be less toxic to nor-
mal cells [223,229]. In mice implanted with human myeloma tumor
cells, NPI-0052 was well tolerated and showed prolonged survival as
well as significantly reduced the rate of cancer recurrences. Further,
the cancer cells were killed more effectively by the combination of
NPI-0052 with bortezomib and HDAC inhibitors, MS-275 and valproic
acid (VPA) without additional toxicity to normal cells [222]. The clin-
ical phase I trials of NPI-0052 are ongoing in advanced solid tumors,
refractory lymphoma and non-small cell lung carcinoma [9].

5.4. CEP-18770

It is a boronic acid-based proteasome inhibitor. Like bortezomib, it
is a reversible proteasome inhibitor, and primarily inhibits the
chymotrypsin-like activity of the proteasome [118,230]. It is a water
soluble and orally bioactive proteasome inhibitor [118,230]. CEP-
18770 abrogates the production of VEGF in multiple myeloma cells
[118]. Such a decreased level of VEGF production inhibits cell migra-
tion and vasculogenesis from the endothelial progenitors [118]. Fur-
ther, the role of CEP-18770 in angiogenesis is corroborated by its
direct inhibitory effect on endothelial cell proliferation, survival, and
capillary tubular morphogenesis [118]. CEP-18770 has also been
shown to promote apoptosis in human multiple myeloma cell lines
[118,230]. It is a potent inhibitor of constitutive and TNF-o-
triggered NF<B activation [118]. CEP-18770 has been demonstrated
to have a significantly reduced toxicity towards human bone marrow
progenitors, bone marrow stromal cells, and normal human intestinal
cells as compared to bortezomib [118]. Although CEP-18770 has a sig-
nificant anti-tumor activity, it is more effective in combination with
bortezomib and melphalan in animal tumor models [231]. The clinical
phase I trials of CEP-18770 have been completed for solid tumors and
non-Hodgkin's lymphoma [9]. Currently, it is under phase I/II clinical
trials for multiple myeloma [9].

5.5. MLN9708

It is a small molecule boron-containing peptide inhibitor (Millenni-
um Pharmaceuticals, Inc.). In contrast to bortezomib, MLN9708 is orally
bioavailable [232]. Like bortezomib, it inhibits the chymotrypsin-like
activity of the proteasome. However, the proteasome dissociation
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half-life of MLN9708 is shorter than bortezomib. Further, it has im-
proved pharmacokinetics, pharmacodynamics, and anti-tumor activity
in xenograft models [233]. It is biologically inactive. However, it is
hydrolyzed quickly in plasma to MLN2238 that is biologically active. It
has shown strong anti-cancer activity against numerous cancer cell
lines [232,233]. It has also been demonstrated to be effective in
human prostate xenograft, colon cancer and lymphoma models [233].
Very recently, Chauhan et al. [232] have demonstrated that MLN9708
has synergistic anti-multiple myeloma activity when combined with
bortezomib, HDAC inhibitor, lenalidomide or dexamethasone. This
proteasome inhibitor is currently in phase I clinical trials in patients
with lymphoma and non-haematological malignancies [9]. Further,
clinical phase I/II trials of MLN9708 for multiple myeloma are ongoing
[9].

5.6. Immunoproteasome inhibitors

The immunoproteasome is present in immune cells at a lower
level. Thus, the inhibition of the immunoproteasome will provide
specificity over constitutive proteasome. Such specificity will attenu-
ate the toxicities associated with constitutive proteasome inhibition.
Several immunoproteasome inhibitors such as PR-957, PR-924
and IPSI-001 have been developed. Pre-clinical studies of these inhib-
itors have shown impressive anti-tumor and anti-inflammatory re-
sponses. PR-957 (also known as ONX0914) has recently been
developed by Proteolix, Inc [234,235]. Like carfilzomib, it is a peptide
epoxyketone proteasome inhibitor. It inhibits chymotrypsin-like
activity of the immunoproteasome. PR-957 inhibits the functions of
IL-1 (interleukin-1), IL-6 and TNF. Further, it blocks the production
of IL-23 by activated monocytes and interferon-vy and IL-2 by T cells.
Therefore, PR-957 has immunosuppressive effects [234,235]. Hence,
PR-957 may be effective against autoimmune diseases in conjunction
with cancer treatment. PR-957 induces an anti-inflammatory re-
sponse at a low dose as compared to the non-selective inhibitors
such as bortezomib and carfilzomib [234,236,237]. Like PR-957, PR-
924 is a peptide epoxyketone proteasome inhibitor, and inhibits
chymotrypsin-like activity of the immunoproteasome [238]. It im-
pairs the growth of multiple myeloma cell lines and primary tumor
cells. It has also been shown to inhibit the tumor growth in animal
models without significant toxicities. Unlike PR-957 and PR-924,
IPSI-001 is a peptide aldehyde type of inhibitor [239]. It inhibits pref-
erentially the p1i component of the immunoproteasome. It has been
shown to inhibit the haematological malignancies in in vitro models.
It also potently inhibits proliferation in myeloma patient samples
[239]. Further, IPSI-001 overcomes conventional and novel drug re-
sistance [239]. Together, these immunoproteasome inhibitors have
great potential to be in the clinic in future with more selectivity and
less toxicity.

6. Concluding remarks

Here, we have discussed the 26S proteasome complex in different
key cellular events and carcinogenesis. It is clear from a large number
of studies that the 26S proteasome complex regulates a multitude of
cellular processes like cell cycle progression, inflammation, antigen
presentation, apoptosis, DNA repair, transcription, and indirectly:
cell growth, chemotaxis, angiogenesis, and cell adhesion. Many of
these mechanisms are altered to the benefit of cancer cells. For this
reason, the 26S proteasome complex has become an attractive target
for cancer therapy. In fact, the proteasome inhibition has led to an in-
creased apoptosis and other anti-tumor effects such as cell cycle ar-
rest, and inhibition of angiogenesis and metastasis in various cancer
cell lines and xenograft models. The proteasome inhibitor bortezomib
is in the clinic to treat multiple myeloma and mantle cell lymphoma
patients. Several proteasome inhibitors are now in clinical trials to
treat multiple myeloma and solid tumors. Additional proteasome

inhibitors with different efficacies are being developed and tested
for anti-tumor activities. Several proteasome inhibitors have shown
significantly improved anti-tumor activities when combined with
other drugs such as HDAC inhibitor, Akt inhibitor, DNA damaging
agent, Hsp90 inhibitor, and lenalidomide. In summary, proteasome in-
hibitors alone or in combination with other therapies have shown
very promising results to treat cancer patients in the clinic more
effectively.
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