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2.1 CONNECTING MODELS TO DATA

In Part 1, we introduced

probabilities graphs structural equations Causal 

Networks
+ + =

Independence

𝑃 𝑥|𝑦 = 𝑃 𝑥 ∀ 𝑥, 𝑦

Algebraic Equalities

𝑃 𝑦|𝑥 = 𝑃 𝑦 ∀ 𝑥, 𝑦

𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃 𝑦 ∀ 𝑥, 𝑦

Graphical 

Representation

𝑋 𝑌

𝑍

Embedded 

Probabilistic 

Information

𝑍 = 2𝑋 + 𝑌
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2.1 CONNECTING MODELS TO DATA

The researcher who has scientific knowledge in the 

form of structural equation model is able to predict 

patterns of independencies in the data, based solely 

on the structure of the model’s graph, without relying 

on any quantitative information carried by the 

equations or by the distributions of errors.

𝑀 = 𝑈, 𝑉, 𝐹

𝑋6 ⊥ 𝑋3 | 𝑋5

𝑋6 ⊥ 𝑋1 | 𝑋5

𝑋6 ⊥ 𝑋1 | 𝑋3

patterns of 

independencies 

in the data

X 1 X 2 X 3 X 4 X 5 X 6

0 1 1 1 0 1

0 1 0 1 1 1

1 0 1 1 0 0

0 0 1 0 1 1

0 1 0 0 0 0

1 1 0 1 0 1

1 0 1 1 1 1

0 1 1 1 0 1

Data Set

𝑋1

𝑋2
𝑋3

𝑋4
𝑋5

𝑋6

𝑋1 ⊥ 𝑋2
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2.1 CONNECTING MODELS TO DATA

Conversely, it means that observing patterns of 

independencies in the data enables us to say 

something about whether a hypothesized model 

is correct.

X 1 X 2 X 3 X 4 X 5 X 6

0 1 1 1 0 1

0 1 0 1 1 1

1 0 1 1 0 0

0 0 1 0 1 1

0 1 0 0 0 0

1 1 0 1 0 1

1 0 1 1 1 1

0 1 1 1 0 1

Data Set Hypothesized Model

𝑋1

𝑋2
𝑋3

𝑋4
𝑋5

𝑋6
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2.2 CHAIN AND FORKS

X 1 X 2 X 3 X 4 X 5 X 6

0 1 1 1 0 1

0 1 0 1 1 1

1 0 1 1 0 0

0 0 1 0 1 1

0 1 0 0 0 0

1 1 0 1 0 1

1 0 1 1 1 1

0 1 1 1 0 1

𝑀 = 𝑈,𝑉, 𝐹

Causal Model

Data Set

represent the causal 

story behind the data

mechanism by which data 

were generated
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2.2 CHAIN AND FORKS

𝑈1

𝑋1
𝑋2

𝑋3
𝑋4

𝑋5

𝑈2

math test score

𝑀 = 𝑈, 𝑉, 𝐹

𝑈 = 𝑈1, 𝑈2

𝑉 = 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5

𝐹 = 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5

Given a truly complete causal model for, say, math test score in high school juniors, and given complete list of 

values for every exogenous variable in that model, we could theoretically generate a data point (i.e., a test 

score), for each individual (student).
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2.2 CHAIN AND FORKS

𝑈1 𝑈2

math test score

𝑀 = 𝑈, 𝑉, 𝐹

𝑈 = 𝑈1, 𝑈2

Given a truly complete causal model for, say, math test score in high school juniors, and given complete list of 

values for every exogenous variable in that model, we could theoretically generate a data point (i.e., a test 

score), for each individual (student).

𝐹 = 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5

𝑉 = 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5
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2.2 CHAIN AND FORKS

𝑈1 𝑈2

math test score

𝑀 = 𝑈, 𝑉, 𝐹

𝑈 = 𝑈1, 𝑈2

Given a truly complete causal model for, say, math test score in high school juniors, and given complete list of 

values for every exogenous variable in that model, we could theoretically generate a data point (i.e., a test 

score), for each individual (student).

𝐹 = 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5

𝑋2 = 𝑓2 𝑈1
𝑋1 = 𝑓1 𝑈1, 𝑈2

𝑉 = 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.2 CHAIN AND FORKS

𝑈1

𝑋1𝑋2

𝑈2

math test score

𝑀 = 𝑈, 𝑉, 𝐹

𝑈 = 𝑈1, 𝑈2

Given a truly complete causal model for, say, math test score in high school juniors, and given complete list of 

values for every exogenous variable in that model, we could theoretically generate a data point (i.e., a test 

score), for each individual (student).

𝐹 = 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5

𝑋4 = 𝑓4 𝑋2 𝑋3 = 𝑓3 𝑋1, 𝑋2
𝑉 = 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5
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2.2 CHAIN AND FORKS

𝑈1

𝑋3𝑋4

𝑈2

math test score

𝑀 = 𝑈, 𝑉, 𝐹

𝑈 = 𝑈1, 𝑈2

Given a truly complete causal model for, say, math test score in high school juniors, and given complete list of 

values for every exogenous variable in that model, we could theoretically generate a data point (i.e., a test 

score), for each individual (student).

𝐹 = 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5

𝑉 = 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5

𝑋5 = 𝑓5 𝑋3, 𝑋4

𝑋1𝑋2



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.2 CHAIN AND FORKS

Given a truly complete causal model for, say, math test score in high school juniors, and given complete list of 

values for every exogenous variable in that model, we could theoretically generate a data point (i.e., a test 

score), for each individual (student).

𝑈1

𝑋5

𝑈2

math test score

𝑀 = 𝑈, 𝑉, 𝐹

𝑈 = 𝑈1, 𝑈2

We can compute test 

score for each student.  

This would necessitate 

specifying all factors that 

may have an effect on a 

student’s test score, an 

unrealistic task.𝐹 = 𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5

𝑉 = 𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5

𝑋1𝑋2

𝑋3𝑋4
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2.2 CHAIN AND FORKS

In many cases, we will not have such a precise knowledge about a model M.

𝑈1 𝑈2

math test score

We might instead have a probability 

distribution characterizing the exogenous 

variables U, which would allow us to generate 

a distribution of test scores approximating that 

of the entire student population and relevant 

subgroups of students.

For each student we do not 

get the corresponding math 

test score X5 but we get a 

distribution for its value

𝑀 = 𝑈, 𝑉, 𝐹

probability 

distribution

𝑋1𝑋2

𝑋3𝑋4

𝑋5
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2.2 CHAIN AND FORKS

Suppose, however, that we do not have even a probabilistically specified causal model, but only a graphical 

structure of the model.

𝑈1 𝑈2

math test score

We know which variables are caused by which 

other variables, but we do not know the strength 

or nature of the relationships.

𝑀 = 𝑈,𝑉, 𝐹 𝐹 =? ? ?

Even with such limited information, we can 

discern a great deal about the data set 

generated by the model.

Unspecified Causal Model

We can learn which variables 

in the data set are independent 

of each other and which are 

independent of each other 

conditional on other variables.

These independencies will be 

true of every data set 

generated by a causal model 

with that graphical structure, 

regardless of the specific 

functions attached to the SCM.

𝑋1𝑋2

𝑋3𝑋4

𝑋5
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2.2 CHAIN AND FORKS

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑈 = 𝑈𝑋, 𝑈𝑌, 𝑈𝑍

𝑉 = 𝑋, 𝑌, 𝑍

𝐹1 = 𝑓𝑋 , 𝑓𝑌 , 𝑓𝑍

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌 𝑀1 = 𝑈, 𝑉, 𝐹1

SCM 2.2.1 (School Funding, SAT Scores, and College Acceptance)

𝑋: High School′s funding in dollars

𝑌: Average SAT Score

𝑍: College acceptance rate

Consider the following three hypothetical SCMs, all share the same graphical model.

𝑈𝑋

𝑍

𝑌

𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1
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2.2 CHAIN AND FORKS

𝑈 = 𝑈𝑋, 𝑈𝑌, 𝑈𝑍

𝑉 = 𝑋, 𝑌, 𝑍

𝐹2 = 𝑓𝑋, 𝑓𝑌, 𝑓𝑍

𝑀2 = 𝑈, 𝑉, 𝐹2SCM 2.2.2 (Switch, Circuit, and Light Bulb)

𝑋: State of a light switch

𝑌: State of the associated electrical circuit

𝑍: State of a light bulb

𝑌 = 𝑐𝑙𝑜𝑠𝑒𝑑, 𝑜𝑝𝑒𝑛

𝑍 = 𝑜𝑛, 𝑜𝑓𝑓

𝑓𝑌: 𝑌 = ቊ
𝑐𝑙𝑜𝑠𝑒𝑑 IF 𝑋 = 𝑢𝑝 AND 𝑈𝑌 = 0 OR 𝑋 = 𝑑𝑜𝑤𝑛 AND 𝑈𝑌 = 1
𝑜𝑝𝑒𝑛 otherwise

𝑓𝑍: 𝑍 = ቊ
𝑜𝑛 IF 𝑌 = 𝑐𝑙𝑜𝑠𝑒𝑑 AND 𝑈𝑍 = 0 OR 𝑌 = 𝑜𝑝𝑒𝑛 AND 𝑈𝑍 = 1
𝑜𝑓𝑓 otherwise

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1

𝑋 = 𝑢𝑝, 𝑑𝑜𝑤𝑛𝑈𝑋 = 𝑢𝑝, 𝑑𝑜𝑤𝑛

𝑈𝑌 = 0,1

𝑈𝑍 = 0,1



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.2 CHAIN AND FORKS

𝑓𝑋: 𝑋 = 𝑈𝑋

SCM 2.2.3 (Work Hours, Training, and Race Time)

𝑋: Hours of work at jobs each week

𝑌: Hours of training each week

𝑍: Completion time of the race

𝑓𝑌: 𝑌 = 84 − 𝑥 + 𝑈𝑌

𝑓𝑍: 𝑍 =
100

𝑦
+ 𝑈𝑍

𝑈 = 𝑈𝑋, 𝑈𝑌, 𝑈𝑍

𝑉 = 𝑋, 𝑌, 𝑍

𝐹3 = 𝑓𝑋, 𝑓𝑌, 𝑓𝑍

𝑀3 = 𝑈, 𝑉, 𝐹3

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1
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2.2 CHAIN AND FORKS

𝑓𝑌: 𝑌 = 84 − 𝑥 + 𝑈𝑌

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑈 = 𝑈𝑋, 𝑈𝑌, 𝑈𝑍

𝑉 = 𝑋, 𝑌, 𝑍
𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑌: 𝑌 = ቊ
𝑐𝑙𝑜𝑠𝑒𝑑 IF 𝑋 = 𝑢𝑝 AND 𝑈𝑌 = 0 OR 𝑋 = 𝑑𝑜𝑤𝑛 AND 𝑈𝑌 = 1
𝑜𝑝𝑒𝑛 otherwise

𝑓𝑍: 𝑍 = ቊ
𝑜𝑛 IF 𝑌 = 𝑐𝑙𝑜𝑠𝑒𝑑 AND 𝑈𝑍 = 0 OR 𝑌 = 𝑜𝑝𝑒𝑛 AND 𝑈𝑍 = 1
𝑜𝑓𝑓 otherwise

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

𝑓𝑍: 𝑍 =
100

𝑦
+ 𝑈𝑍

𝑀1 = 𝑈, 𝑉, 𝐹1

𝑀2 = 𝑈, 𝑉, 𝐹2

𝑀3 = 𝑈, 𝑉, 𝐹3

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1
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2.2 CHAIN AND FORKS

𝑓𝑌: 𝑌 = 84 − 𝑥 + 𝑈𝑌

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑌: 𝑌 = ቊ
𝑐𝑙𝑜𝑠𝑒𝑑 IF 𝑋 = 𝑢𝑝 AND 𝑈𝑌 = 0 OR 𝑋 = 𝑑𝑜𝑤𝑛 AND 𝑈𝑌 = 1
𝑜𝑝𝑒𝑛 otherwise

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

𝑍

𝑌

𝑋
Exogenous variables stand for any unknown or random effects

that may alter the relationship between endogenous variables.

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑓𝑍: 𝑍 = ቊ
𝑜𝑛 IF 𝑌 = 𝑐𝑙𝑜𝑠𝑒𝑑 AND 𝑈𝑍 = 0 OR 𝑌 = 𝑜𝑝𝑒𝑛 AND 𝑈𝑍 = 1
𝑜𝑓𝑓 otherwise

𝑓𝑍: 𝑍 =
100

𝑦
+ 𝑈𝑍
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2.2 CHAIN AND FORKS

𝑓𝑌: 𝑌 = 84 − 𝑥 + 𝑈𝑌

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

𝑍

𝑌

𝑋

UY and UZ are additive factors that account 

for variations among individuals.

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑓𝑍: 𝑍 =
100

𝑦
+ 𝑈𝑍
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2.2 CHAIN AND FORKS

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑌: 𝑌 = ቊ
𝑐𝑙𝑜𝑠𝑒𝑑 IF 𝑋 = 𝑢𝑝 AND 𝑈𝑌 = 0 OR 𝑋 = 𝑑𝑜𝑤𝑛 AND 𝑈𝑌 = 1
𝑜𝑝𝑒𝑛 otherwise

𝑓𝑍: 𝑍 = ቊ
𝑜𝑛 IF 𝑌 = 𝑐𝑙𝑜𝑠𝑒𝑑 AND 𝑈𝑍 = 0 OR 𝑌 = 𝑜𝑝𝑒𝑛 AND 𝑈𝑍 = 1
𝑜𝑓𝑓 otherwise

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

UY and UZ take value 1 if there is some unobserved 

anomaly, and 0 if there is none.

Figure 2.1
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2.2 CHAIN AND FORKS

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

M1 and M3 deal with continuous variables.

𝑓𝑌: 𝑌 = 84 − 𝑥 + 𝑈𝑌

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

M2 deals with categorical variables.

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑓𝑍: 𝑍 =
100

𝑦
+ 𝑈𝑍
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2.2 CHAIN AND FORKS

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

In 2.2.1, the relationships between variables are all 

positive, i.e., 

▪ the higher the value of the parent variable, the 

higher the values of the child variable.

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍
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2.2 CHAIN AND FORKS

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

In 2.2.3, for variables Y and Z, the correlation between 

them and their parents are all negative, i.e., 

▪ the higher the value of the parent variable, the 

lower the value of the child variable.

𝑓𝑌: 𝑌 = 84 − 𝑥 + 𝑈𝑌

𝑓𝑋: 𝑋 = 𝑈𝑋

Figure 2.1

𝑓𝑍: 𝑍 =
100

𝑦
+ 𝑈𝑍
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

𝑓𝑌: 𝑌 = ቊ
𝑐𝑙𝑜𝑠𝑒𝑑 IF 𝑋 = 𝑢𝑝 AND 𝑈𝑌 = 0 OR 𝑋 = 𝑑𝑜𝑤𝑛 AND 𝑈𝑌 = 1
𝑜𝑝𝑒𝑛 otherwise

𝑓𝑍: 𝑍 = ቊ
𝑜𝑛 IF 𝑌 = 𝑐𝑙𝑜𝑠𝑒𝑑 AND 𝑈𝑍 = 0 OR 𝑌 = 𝑜𝑝𝑒𝑛 AND 𝑈𝑍 = 1
𝑜𝑓𝑓 otherwise

𝑓𝑋: 𝑋 = 𝑈𝑋
In 2.2.2, the correlations between the variables are not 

linear at all, but logical.

Figure 2.1
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2.2 CHAIN AND FORKS

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

The three SCMs share no functions, except for 𝑓𝑋, but they share 

the same graphical structure.

The data sets generated by all three SCMs must share certain 

independencies, and we can predict those independencies simply by 

examining the graphical model to the left.

Figure 2.1
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2.2 CHAIN AND FORKS

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

The independencies shared by data sets generated by these three SCMs, and the 

dependencies that are likely shared by all such SCMs are the following:

𝑃 𝑍 = 𝑧|𝑌 = 𝑦 ≠ 𝑃 𝑍 = 𝑧

1. Z and Y are likely dependent, i.e., for some pair of values z, y

2. Y and X are likely dependent, i.e., for some pair of values y, x

𝑃 𝑌 = 𝑦|𝑋 = 𝑥 ≠ 𝑃 𝑌 = 𝑦

3. Z and X are likely dependent, i.e., for some pair of values z, x

𝑃 𝑍 = 𝑧|𝑋 = 𝑥 ≠ 𝑃 𝑍 = 𝑧

4. Z and X are independent, conditional on Y, i.e., for all values x, y, z

𝑃 𝑍 = 𝑧|𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑍 = 𝑧|𝑌 = 𝑦Figure 2.1
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

To understand why these independencies and dependencies hold, let’s examine the 

graphical model.

▪ Any two variables with an edge between them are likely dependent.

An arrow from one variable to another indicates that the first variable causes 

the second, that is, the value of the first variable is part of the function that 

determines the value of the second variable.

Figure 2.1
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Y causes Z

To understand why these independencies and dependencies hold, let’s examine the 

graphical model.

▪ Any two variables with an edge between them are likely dependent.

An arrow from one variable to another indicates that the first variable causes 

the second, that is, the value of the first variable is part of the function that 

determines the value of the second variable.

Z depends on Y, there is some case in which 

changing the value of Y changes the value of Z.

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑓𝑍: 𝑍 = ቊ
𝑜𝑛 IF 𝑌 = 𝑐𝑙𝑜𝑠𝑒𝑑 AND 𝑈𝑍 = 0 OR 𝑌 = 𝑜𝑝𝑒𝑛 AND 𝑈𝑍 = 1
𝑜𝑓𝑓 otherwise

𝑓𝑍: 𝑍 =
100

𝑦
+ 𝑈𝑍

Figure 2.1
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To understand why these independencies and dependencies hold, let’s examine the 

graphical model.

▪ Any two variables with an edge between them are likely dependent.

When we examine those variables in the data set, the probability that one 

variable takes a given value will change, given that we know the value of the 

other variable. 

𝑈𝑋

𝑈𝑌

𝑈𝑍

The probability that Z takes value z, when we know that the value of the 

variable Y is equal to y, is different from the probability that Z takes the value z, 

when we do not know which value Y takes, i.e.,

𝑃 𝑍 = 𝑧|𝑌 = 𝑦 ≠ 𝑃 𝑍 = 𝑧

Figure 2.1

𝑍

𝑌

𝑋
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▪ X and Y are likely dependent

𝑈𝑋

𝑈𝑌

𝑈𝑍

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

Figure 2.1

𝑍

𝑌

𝑋

Therefore, we can conclude that in a typical causal model, regardless of the 

specific functions, two variables connected by an edge are likely dependent.
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▪ X and Y are likely dependent

𝑈𝑋

𝑈𝑌

𝑈𝑍

▪ Y and Z are likely dependent

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑍

𝑌

𝑋

Therefore, we can conclude that in a typical causal model, regardless of the 

specific functions, two variables connected by an edge are likely dependent.
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▪ X and Y are likely dependent

𝑈𝑋

𝑈𝑌

𝑈𝑍

▪ Y and Z are likely dependent

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑍

𝑌

𝑋

Why in general we say likely dependent and not simply dependent?

Therefore, we can conclude that in a typical causal model, regardless of the 

specific functions, two variables connected by an edge are likely dependent.
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▪ X and Y are likely dependent

𝑈𝑋

𝑈𝑌

𝑈𝑍

▪ Y and Z are likely dependent

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑍

𝑌

𝑋

Consider 𝑋 and 𝑈𝑌 be fair coins, and let 𝑌 = 1 if and only if 𝑋 = 𝑈𝑌, then

𝑃 𝑌 = 1|𝑋 = 1 = 𝑃 𝑌 = 1|𝑋 = 0 = 𝑃 𝑌 = 1 =
1

2
. 

Such pathological cases require precise numerical probabilities to achieve 

independence

𝑃 𝑋 = 1 = 𝑃 𝑈𝑋 = 1 =
1

2

they are rare, and can be ignored for all practical purposes. 

Therefore, we can conclude that in a typical causal model, regardless of the 

specific functions, two variables connected by an edge are likely dependent.

Why in general we say likely dependent and not simply dependent?
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𝑈𝑋

𝑈𝑌

𝑈𝑍

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍 =

𝑥
3
+ 𝑈𝑌

16
+ 𝑈𝑍

Figure 2.1

▪ X and Z are likely dependent

𝑍

𝑌

𝑋
Furthermore, in a typical causal model, regardless of the specific functions, two 

variables connected by a directed path are likely dependent.

There are pathological cases in which the above is not true!!!

This the reason why we say likely dependent and not just dependent.

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌
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SCM 2.2.4 (Pathological Case of Intransitive Dependence)

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

𝑈 = 𝑈𝑋, 𝑈𝑌, 𝑈𝑍

𝑉 = 𝑋, 𝑌, 𝑍

𝐹4 = 𝑓𝑋, 𝑓𝑌 , 𝑓𝑍

𝑀4 = 𝑈, 𝑉, 𝐹4

Figure 2.1

𝑌 = 𝑎, 𝑏, 𝑐

𝑍 = 𝑖, 𝑗

𝑋 = 1,2𝑈𝑋 = 1,2

𝑈𝑌 = 1,2

𝑈𝑍 = 1,2
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SCM 2.2.4 (Pathological Case of Intransitive Dependence)

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

𝑈 = 𝑈𝑋, 𝑈𝑌, 𝑈𝑍

𝑉 = 𝑋, 𝑌, 𝑍

𝐹4 = 𝑓𝑋, 𝑓𝑌 , 𝑓𝑍

𝑀4 = 𝑈, 𝑉, 𝐹4

𝑓𝑌: 𝑌 = ൞
𝑎 IF 𝑋 = 1 AND 𝑈𝑌 = 1

𝑏 IF 𝑋 = 2 AND 𝑈𝑌 = 1
𝑐 IF 𝑈𝑌 = 2

𝑓𝑍: 𝑍 = ቊ
𝑖 IF 𝑌 = 𝑐 𝑂𝑅 𝑈𝑍 = 1

𝑗 IF 𝑌 ≠ 𝑐 𝐴𝑁𝐷 𝑈𝑍 = 2

𝑓𝑋: 𝑋 = 𝑈𝑋

Figure 2.1

𝑌 = 𝑎, 𝑏, 𝑐

𝑍 = 𝑖, 𝑗

𝑋 = 1,2𝑈𝑋 = 1,2

𝑈𝑌 = 1,2

𝑈𝑍 = 1,2
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SCM 2.2.4 (Pathological Case of Intransitive Dependence)

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

In this case, no matter what value UY and UZ take, 

X will have no effect on the value that Z takes; 

▪ changes in X account for variation in Y

between a and b, but Y does not affect Z 

unless it takes value c.

Therefore, X and Z vary independently in this 

model.

Intransitive Case

By now it should be clear why previously we 

talked about likely dependent and not about 

dependent.Figure 2.1

𝑓𝑌: 𝑌 = ൞
𝑎 IF 𝑋 = 1 AND 𝑈𝑌 = 1

𝑏 IF 𝑋 = 2 AND 𝑈𝑌 = 1
𝑐 IF 𝑈𝑌 = 2

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑓𝑍: 𝑍 = ቊ
𝑖 IF 𝑌 = 𝑐 𝑂𝑅 𝑈𝑍 = 1

𝑗 IF 𝑌 ≠ 𝑐 𝐴𝑁𝐷 𝑈𝑍 = 2
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▪ X and Y are likely dependent

𝑈𝑋

𝑈𝑌

𝑈𝑍

▪ Y and Z are likely dependent

𝑓𝑌: 𝑌 =
𝑥

3
+ 𝑈𝑌

Figure 2.1

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍

𝑍

𝑌

𝑋

To summarize we have

𝑓𝑍: 𝑍 =
𝑦

16
+ 𝑈𝑍 =

𝑥
3
+ 𝑈𝑌

16
+ 𝑈𝑍▪ X and Z are likely dependent
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Now, let’s consider the following point

▪ Z and X are independent, conditionally on Y, i.e., for all values x, y, z

𝑃 𝑍 = 𝑧|𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑍 = 𝑧|𝑌 = 𝑦 𝑍 ⊥ 𝑋 |𝑌

Remember that when we condition on Y, we filter the data into groups based on the 

value of Y.

Figure 2.1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 0 0 2 2 2

1 -1 0 1 2 2

1 -1 0 1 2 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

2 0 0 2 2 2

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

U x U y U z X Y Z

2 0 0 2 2 2

1 -1 0 1 2 2

1 -1 0 1 2 2

2 0 0 2 2 2

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 0 0 2 2 2

1 -1 0 1 2 2

1 -1 0 1 2 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

2 0 0 2 2 2

𝑋 = 𝑈𝑋; 𝑌 = 𝑋 − 𝑈𝑌; 𝑍 = 𝑌 + 𝑈𝑍;
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

We compare X and Z on all the cases where Y = 1, and on all the cases where Y = 2. 

Let’s assume that we are looking at the cases where Y = 1.

We want to know whether, in these cases only, the value of Z is independent of the 

value of X.

Previously, we determined that X and Z are likely dependent, because when the 

value of X changes, the value of Y likely changes, and when the value of Y

changes, the value of Z is likely to change.

𝒀 = 𝟏

Figure 2.1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝑃 𝑍 = 𝑧|𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑍 = 𝑧|𝑌 = 𝑦 , ∀ 𝑥, 𝑧 𝑌 = 1

We compare X and Z on all the cases where Y = 1, and on all the cases where Y = 2. 

Let’s assume that we are looking at the cases where Y = 1.

We want to know whether, in these cases only, the value of Z is independent of the 

value of X.

𝒀 = 𝟏
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝑃 𝑍 = 1|𝑋 = 1, 𝑌 = 1 =
2

3

𝑃 𝑍 = 2|𝑋 = 1, 𝑌 = 1 =
1

3

𝑃 𝑍 = 𝑧|𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑍 = 𝑧|𝑌 = 𝑦 , ∀ 𝑥, 𝑧 𝑌 = 1

We compare X and Z on all the cases where Y = 1, and on all the cases where Y = 2. 

Let’s assume that we are looking at the cases where Y = 1.

We want to know whether, in these cases only, the value of Z is independent of the 

value of X.

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝑋 = 1, 𝑌 = 1

𝒀 = 𝟏
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝑃 𝑍 = 1|𝑋 = 1, 𝑌 = 1 =
2

3

𝑃 𝑍 = 2|𝑋 = 1, 𝑌 = 1 =
1

3

𝑃 𝑍 = 1|𝑋 = 2, 𝑌 = 1 =
2

3

𝑃 𝑍 = 2|𝑋 = 2, 𝑌 = 1 =
1

3

𝑃 𝑍 = 𝑧|𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑍 = 𝑧|𝑌 = 𝑦 , ∀ 𝑥, 𝑧 𝑌 = 1

We compare X and Z on all the cases where Y = 1, and on all the cases where Y = 2. 

Let’s assume that we are looking at the cases where Y = 1.

We want to know whether, in these cases only, the value of Z is independent of the 

value of X.

𝑋 = 2, 𝑌 = 1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝒀 = 𝟏
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Figure 2.1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝑃 𝑍 = 1|𝑋 = 1, 𝑌 = 1 =
2

3

𝑃 𝑍 = 2|𝑋 = 1, 𝑌 = 1 =
1

3

𝑃 𝑍 = 1|𝑋 = 2, 𝑌 = 1 =
2

3

𝑃 𝑍 = 2|𝑋 = 2, 𝑌 = 1 =
1

3

𝑃 𝑍 = 1|𝑌 = 1 =
4

6
=
2

3

𝑃 𝑍 = 𝑧|𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑍 = 𝑧|𝑌 = 𝑦 , ∀ 𝑥, 𝑧 𝑌 = 1

We compare X and Z on all the cases where Y = 1, and on all the cases where Y = 2. 

Let’s assume that we are looking at the cases where Y = 1.

We want to know whether, in these cases only, the value of Z is independent of the 

value of X.

𝑃 𝑍 = 2|𝑌 = 1 =
2

6
=
1

3

𝑌 = 1

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝒀 = 𝟏
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𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

Now, however, examining only the cases where Y = 1, when we select cases with 

different values of X, the value of UY changes so as to keep Y at Y = 1, but since Z

depends only on Y and UZ, not on UY , the value of Z remains unaltered.

changes 

to ensure 

Y = 1

Figure 2.1

We compare X and Z on all the cases where Y = 1, and on all the cases where Y = 2. 

Let’s assume that we are looking at the cases where Y = 1.

We want to know whether, in these cases only, the value of Z is independent of the 

value of X.

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

U x U y U z X Y Z

1 0 0 1 1 1

1 0 0 1 1 1

1 0 1 1 1 2

2 1 0 2 1 1

2 1 0 2 1 1

2 1 1 2 1 2

𝒀 = 𝟏

𝑌 = 𝑋 − 𝑈𝑌
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So, in the case where Y = 1, X is independent of Z.

This is of course true no matter which specific value of Y we condition on, i.e. Y = 2.

Therefore, X is independent of Z, conditionally on Y.Figure 2.1

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

U x U y U z X Y Z

2 0 0 2 2 2

1 -1 0 1 2 2

1 -1 0 1 2 2

2 0 0 2 2 2

𝑃 𝑍 = 1|𝑋 = 1, 𝑌 = 2 =
0

2
= 0

𝑃 𝑍 = 2|𝑋 = 1, 𝑌 = 2 =
2

2
= 1

𝑃 𝑍 = 1|𝑋 = 2, 𝑌 = 2 =
0

2
= 0

𝑃 𝑍 = 2|𝑋 = 2, 𝑌 = 2 =
2

2
= 1

𝑃 𝑍 = 1|𝑌 = 2 =
0

4
= 0

𝑃 𝑍 = 𝑧|𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑍 = 𝑧|𝑌 = 𝑦 , ∀ 𝑥, 𝑧 𝑌 = 2

𝑃 𝑍 = 2|𝑌 = 2 =
4

4
= 1

𝒀 = 𝟐



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.2 CHAIN AND FORKS

The previous, gives the following rule:

In any graphical model, given any two variables X and Y, if the only path between 

X and Y is composed entirely of chains, then X and Y are Independent conditional 

on any intermediate variable on the path.

This independence relation holds regardless of the functions that connect the 

variables.

Figure 2.1

WARNING

Two variables, X and Y, are conditionally independent given Z, if there is only 

one unidirectional path between X and Y, and Z is any set of variables that 

intercepts that path.

Rule 1 (Conditional Independence in Chains)

X, Y and Z in Rule 1 do 

not refer to Figure 2.1.

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

This configuration of variables, three nodes and two edges, with one edge 

directed into and one edge directed out of the middle variable, is called a chain.
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2.2 CHAIN AND FORKS

Rule 1 only holds when we assume that the error terms UX, UY, and UZ are 

independent of each other.

If, for instance, UX were a cause of UY (dashed arrow in Figure 2.1), then 

conditioning on Y would not necessarily make X and Z independent, because 

variations in X could still be associated with variations in Y, through their error terms.

Figure 2.1

𝑍

𝑌

𝑋

𝑈𝑋

𝑈𝑌

𝑈𝑍

The previous, gives the following rule: WARNING

X, Y and Z in Rule 1 do 

not refer to Figure 2.1.

Two variables, X and Y, are conditionally independent given Z, if there is only 

one unidirectional path between X and Y, and Z is any set of variables that 

intercepts that path.

Rule 1 (Conditional Independence in Chains)
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2.2 CHAIN AND FORKS

Now, consider the graphical model in Figure 2.2.

This structure might  represent, for example, the causal mechanism that connects a day’s temperature in a city 

in degrees Fahrenheit (X), the number of sales at a local ice cream shop on that day (Y), and the number of 

violent crimes in the city on that day (Z).

Figure 2.2

𝑍𝑌

𝑋

𝑈𝑋

𝑈𝑌 𝑈𝑍

𝑓𝑍: 𝑍 =
𝑥

10
+ 𝑈𝑍𝑓𝑌: 𝑌 = 4𝑥 + 𝑈𝑌

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑈 = 𝑈𝑋, 𝑈𝑌, 𝑈𝑍

𝑉 = 𝑋, 𝑌, 𝑍

𝐹3 = 𝑓𝑋, 𝑓𝑌, 𝑓𝑍

𝑀 = 𝑈,𝑉, 𝐹

SCM 2.2.5 (Temperature, Ice Cream Sales, and Crime)
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2.2 CHAIN AND FORKS

Now, consider the graphical model in Figure 2.2.

Causal mechanism that connects the state (up or down) of a switch (X), the state (on or off) of one light bulb (Y), 

and the state (on or off) of a second light bulb (Z).

Figure 2.2

𝑍𝑌

𝑋

𝑈𝑋

𝑈𝑌 𝑈𝑍

SCM 2.2.6 (Switch and Two Light Bulbs)

𝑓𝑌: 𝑌 = ቊ
𝑜𝑛 IF 𝑋 = 𝑢𝑝 AND 𝑈𝑌 = 0 OR 𝑋 = 𝑑𝑜𝑤𝑛 AND 𝑈𝑌 = 1
𝑜𝑓𝑓 otherwise

𝑓𝑍: 𝑍 = ቊ
𝑜𝑛 IF 𝑋 = 𝑢𝑝 AND 𝑈𝑍 = 0 OR 𝑋 = 𝑑𝑜𝑤𝑛 AND 𝑈𝑍 = 1
𝑜𝑓𝑓 otherwise

𝑓𝑋: 𝑋 = 𝑈𝑋

𝑀 = 𝑈,𝑉, 𝐹
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2.2 CHAIN AND FORKS

If we assume that the error terms UX, UY, and UZ are independent, then by examining the graphical model in 

Figure 2.2, we can determine that the SCMs 2.2.5/2.2.6 share the following dependencies and independencies:

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 ≠ 𝑃 𝑋 = 𝑥

1. X and Y are likely dependent, i.e., for some pair of values x, y

2. X and Z are likely dependent, i.e., for some pair of values x, z

𝑃 𝑋 = 𝑥|𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥

3. Z and Y are likely dependent, i.e., for some pair of values z, y

𝑃 𝑍 = 𝑧|𝑌 = 𝑦 ≠ 𝑃 𝑍 = 𝑧

4. Y and Z are independent, conditional on X, i.e., for all values x, y, z

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥 Figure 2.2

𝑍𝑌

𝑋

𝑈𝑋

𝑈𝑌 𝑈𝑍
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2.2 CHAIN AND FORKS

If we assume that the error terms UX, UY, and UZ are independent, then by examining the graphical model in 

Figure 2.2, we can determine that the SCMs 2.2.5/2.2.6 share the following dependencies and independencies:

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 ≠ 𝑃 𝑋 = 𝑥

1. X and Y are likely dependent, i.e., for some pair of values x, y

2. X and Z are likely dependent, i.e., for some pair of values x, z

𝑃 𝑋 = 𝑥|𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥

Follow, once again, by the fact that Y and Z are both directly connected 

to X by an arrow.

When the value of X changes, the values of both Y and Z likely change.

Figure 2.2

𝑍𝑌

𝑋

𝑈𝑋

𝑈𝑌 𝑈𝑍
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2.2 CHAIN AND FORKS

If we assume that the error terms UX, UY, and UZ are independent, then by examining the graphical model in 

Figure 2.2, we can determine that the SCMs 2.2.5/2.2.6 share the following dependencies and independencies:

This tells us something further, however: If Y changes when X changes, 

and Z changes when X changes, then it is likely (though not certain) that 

Y changes together with Z, and vice versa.

Therefore, since a change in the value of Y gives us information about an 

associated change in the value of Z, Y and Z are likely dependent variables.

3. Z and Y are likely dependent, i.e., for some pair of values z, y

𝑃 𝑍 = 𝑧|𝑌 = 𝑦 ≠ 𝑃 𝑍 = 𝑧

Figure 2.2

𝑍𝑌

𝑋

𝑈𝑋

𝑈𝑌 𝑈𝑍
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2.2 CHAIN AND FORKS

Why, then, are Y and Z independent conditional on X?

We filter the data based on the value of X. So now, we are only comparing 

cases where the value of X is constant.

What happens when we condition on X?

Since X does not change, the values of Y and Z do not change in 

accordance with it, they change only in response to UY and UZ, which 

we have assumed independent.

Therefore, any additional changes in the values of Y and Z must be 

independent of each other.

4. Y and Z are independent, conditional on X, i.e., for all values x, y, z

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥 Figure 2.2

𝑍𝑌

𝑋

𝑈𝑋

𝑈𝑌 𝑈𝑍

If we assume that the error terms UX, UY, and UZ are independent, then by examining the graphical model in 

Figure 2.2, we can determine that the SCMs 2.2.5/2.2.6 share the following dependencies and independencies:



Figure 2.2

𝑍𝑌

𝑋

𝑈𝑋

𝑈𝑌 𝑈𝑍

2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.2 CHAIN AND FORKS

This configuration of variables, three nodes, with two arrows emanating from the middle variable, is called a fork.

The middle variable in a fork (X) is a common cause of the other two variables (Y and Z), and of any of their 

descendants.

If two variables share a common cause, and if that common cause is part of the 

only path between them, then analogous reasoning to the above tells us that 

these dependencies and conditional independencies are true of those variables. 

Therefore, we come by another rule:

If a variable X is a common cause of variables Y and Z, and there is only 

one path between Y and Z, then Y and Z are independent conditional on X.

Rule 2 (Conditional Independence in Forks)
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2.3 COLLIDERS

So far we have looked at two simple configurations of edges and nodes that can occur on a path between two 

variables: chains and forks.

There is a third such configuration that we speak of separately, because it carries with it unique considerations 

and challenges.

The third configuration contains a collider node, and it occurs when one 

node receives edges from two other nodes.

The simplest graphical causal model containing a collider is illustrated 

in Figure 2.3, representing a common effect Z, of two causes X and Y.

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

As is the case with every graphical causal model, all SCMs that have 

Figure 2.3 as their graph share a set of dependencies and 

independencies that we can determine from the graphical model alone.
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2.3 COLLIDERS

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Assume that the error terms UX, UY, and UZ are independent, then by examining the graphical model in Figure 2.3, 

we can determine that any corresponding SCMs share the following dependencies and independencies:

𝑃 𝑋 = 𝑥|𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥

1. X and Z are likely dependent, i.e., for some pair of values x, z

2. Y and Z are likely dependent, i.e., for some pair of values y, z

𝑃 𝑌 = 𝑦|𝑍 = 𝑧 ≠ 𝑃 𝑌 = 𝑦

3. X and Y are independent, i.e., for all pairs of values x, y

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥

4. X and Y are likely dependent, conditional on Z, i.e., for some values x, y, z

𝑃 𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥|𝑍 = 𝑧
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2.3 COLLIDERS

The truth of the first two points was established in Section 2.2 Chain and Forks.

𝑃 𝑋 = 𝑥|𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥

1. X and Z are likely dependent, i.e., for some pair of values x, z

2. Y and Z are likely dependent, i.e., for some pair of values y, z

𝑃 𝑌 = 𝑦|𝑍 = 𝑧 ≠ 𝑃 𝑌 = 𝑦

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌
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2.3 COLLIDERS

The third point is self-evident,

▪ neither X nor Y is a descendant or an ancestor of the other,

▪ nor do they depend for their value on the same variable,

▪ X and Y respond only to UX and UY, which we assumed to be 

independent,

so there is no causal mechanism by which variations in the value of X

should be associated with variations in the value of Y.

3. X and Y are independent, i.e., for all pairs of values x, y

𝑃 𝑋 = 𝑥|𝑌 = 𝑦 = 𝑃 𝑋 = 𝑥

This independence also reflects our understanding of how causation 

operates in time; events that are independent in the present do not become 

dependent merely because they may have common effects in the future. Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌
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2.3 COLLIDERS

Why, then, does Point 4 hold?

Why would two independent variables suddenly become 

dependent when we condition on their common effect?

4. X and Y are likely dependent, conditional on Z, i.e., for some values x, y, z

𝑃 𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥|𝑍 = 𝑧

To answer this question, we return again to the definition of conditioning as filtering by the value of the 

conditioning variable.

When we condition on Z, we limit our comparison to cases in which Z

takes the same value.

But remember that Z depends, for its value, on X and Y.  So, when 

comparing cases where Z takes some value, any change in value of X must 

be compensated for by a change in the value of Y, otherwise, the value of Z

would change as well.

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌
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2.3 COLLIDERS

Why, then, does Point 4 hold?

Why would two independent variables suddenly become 

dependent when we condition on their common effect?

4. X and Y are likely dependent, conditional on Z, i.e., for all values x, y, z

𝑃 𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥|𝑍 = 𝑧

The reasoning behind this attribute of colliders, that conditioning on a collider node produces a dependence 

between the node’s parents, can be difficult to grasp at first.

𝑍 = 𝑋 + 𝑌

3 ?

From the X value we learn nothing 

about the Y value, because the two 

numbers are independent

𝑌 = 𝑍 − 3

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌
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2.3 COLLIDERS

Why, then, does Point 4 hold?

Why would two independent variables suddenly become 

dependent when we condition on their common effect?

4. X and Y are likely dependent, conditional on Z, i.e., for all values x, y, z

𝑃 𝑋 = 𝑥|𝑌 = 𝑦, 𝑍 = 𝑧 ≠ 𝑃 𝑋 = 𝑥|𝑍 = 𝑧

The reasoning behind this attribute of colliders, that conditioning on a collider node produces a dependence 

between the node’s parents, can be difficult to grasp at first.

𝑍 = 𝑋 + 𝑌

10 7

𝑌 = 10 − 3

3

We are implicitly assuming UX, UY, and UZ to be zero.

Thus X and Y are dependent, 

given that Z = 10.

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌
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2.3 COLLIDERS

Consider a simultaneous (independent) toss of two fair 

coins and a bell that rings whenever at least one of the 

coin lands on heads.

𝑌𝑋 𝑍
𝑍 ∈ 𝑠𝑖𝑙𝑒𝑛𝑐𝑒, 𝑟𝑖𝑛𝑔𝑠

We know the following:

▪ coin 1 landed on heads (X = heads)

Tells us nothing about 

the outcome of the 

toss of coin 2 (Y)

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑋, 𝑌 ∈ ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠
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2.3 COLLIDERS

Consider a simultaneous (independent) toss of two fair 

coins and a bell that rings whenever at least one of the 

coin lands on heads.

𝑌𝑋 𝑍

We know the following:

▪ we hear the bell ringing (Z = rings)

▪ coin 1 landed on tails (X = tails)

Tells us that coin 2 

must have landed on 

heads, i.e., Y = heads.

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑍 ∈ 𝑠𝑖𝑙𝑒𝑛𝑐𝑒, 𝑟𝑖𝑛𝑔𝑠𝑋, 𝑌 ∈ ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠
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2.3 COLLIDERS

𝑌𝑋 𝑍

We know the following:

▪ we know that coin 2 landed on heads (Y = heads)

Consider a simultaneous (independent) toss of two fair 

coins and a bell that rings whenever at least one of the 

coin lands on heads.

Figure 2.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

▪ we hear the bell ringing (Z = rings)

𝑍 ∈ 𝑠𝑖𝑙𝑒𝑛𝑐𝑒, 𝑟𝑖𝑛𝑔𝑠𝑋, 𝑌 ∈ ℎ𝑒𝑎𝑑𝑠, 𝑡𝑎𝑖𝑙𝑠

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑍 = 𝑟𝑖𝑛𝑔𝑠 ≠ 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠, 𝑍 = 𝑟𝑖𝑛𝑔𝑠≠ 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠, 𝑍 = 𝑟𝑖𝑛𝑔𝑠
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2.3 COLLIDERS

To see the latter calculation, consider the initial probabilities in Table 2.1. We see that

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5
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2.3 COLLIDERS

To see the latter calculation, consider the initial probabilities in Table 2.1. We see that

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

= 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠
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2.3 COLLIDERS

To see the latter calculation, consider the initial probabilities in Table 2.1. We see that

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

= 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠 = 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠
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2.3 COLLIDERS

To see the latter calculation, consider the initial probabilities in Table 2.1. We see that

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

= 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠 = 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠

= 𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠
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2.3 COLLIDERS

To see the latter calculation, consider the initial probabilities in Table 2.1. We see that

X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

= 𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

= 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠 = 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠

= 𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠
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2.3 COLLIDERS

To see the latter calculation, consider the initial probabilities in Table 2.1. We see that

X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

= 𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

= 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠 = 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠

= 𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠

X and Y are 

independent
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2.3 COLLIDERS

Now let’s condition on Z = rings and Z = silence, the resulting data subsets are shown in Table 2.2.

X Y

Coin 1 Coin 2

heads heads 0

heads tails 0

tails heads 0

tails tails 1

X Y

Coin 1 Coin 2

heads heads 0.333

heads tails 0.333

tails heads 0.333

tails tails 0

P(X, Y|Z=silence)

P(X, Y|Z=rings)

Table 2.2  Conditional probability distribution for the 

distribution in Table 2.1.
𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑍 = 𝑟𝑖𝑛𝑔𝑠 =

1

3
+
1

3
=
2

3
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2.3 COLLIDERS

Now let’s condition on Z = rings and Z = silence, the resulting data subsets are shown in Table 2.2.

X Y

Coin 1 Coin 2

heads heads 0

heads tails 0

tails heads 0

tails tails 1

X Y

Coin 1 Coin 2

heads heads 0.333

heads tails 0.333

tails heads 0.333

tails tails 0

P(X, Y|Z=silence)

P(X, Y|Z=rings)

Table 2.2  Conditional probability distribution for the 

distribution in Table 2.1.
𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑍 = 𝑟𝑖𝑛𝑔𝑠 =

1

3
+
1

3
=
2

3
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2.3 COLLIDERS

X Y

Coin 1 Coin 2

heads heads 0

heads tails 0

tails heads 0

tails tails 1

X Y

Coin 1 Coin 2

heads heads 0.333

heads tails 0.333

tails heads 0.333

tails tails 0

P(X, Y|Z=silence)

P(X, Y|Z=rings)

Table 2.2  Conditional probability distribution for the 

distribution in Table 2.1.

X Y

Coin 1 Coin 2

heads heads 0

heads tails 0

tails heads 0

tails tails 1

X Y

Coin 1 Coin 2

heads heads 0.333

heads tails 0.333

tails heads 0.333

tails tails 0

P(X, Y|Z=silence)

P(X, Y|Z=rings)

Table 2.2  Conditional probability distribution for the 

distribution in Table 2.1.

Now let’s condition on Z = rings and Z = silence, the resulting data subsets are shown in Table 2.2.

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠, 𝑍 = 𝑟𝑖𝑛𝑔𝑠 =
1

2

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑍 = 𝑟𝑖𝑛𝑔𝑠 =
1

3
+
1

3
=
2

3
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2.3 COLLIDERS

X Y

Coin 1 Coin 2

heads heads 0

heads tails 0

tails heads 0

tails tails 1

X Y

Coin 1 Coin 2

heads heads 0.333

heads tails 0.333

tails heads 0.333

tails tails 0

P(X, Y|Z=silence)

P(X, Y|Z=rings)

Table 2.2  Conditional probability distribution for the 

distribution in Table 2.1.

Now let’s condition on Z = rings and Z = silence, the resulting data subsets are shown in Table 2.2.

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠, 𝑍 = 𝑟𝑖𝑛𝑔𝑠 =
1

2

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑍 = 𝑟𝑖𝑛𝑔𝑠 =
1

3
+
1

3
=
2

3
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2.3 COLLIDERS

Now let’s condition on Z = rings and Z = silence, the resulting data subsets are shown in Table 2.2.

Given Z = rings, the probability of X = heads is

However, when we learn that Y = heads, the 

probability of X = heads changes as follows

Therefore, we conclude that X and Y are 

dependent given Z = rings. 

X Y

Coin 1 Coin 2

heads heads 0

heads tails 0

tails heads 0

tails tails 1

X Y

Coin 1 Coin 2

heads heads 0.333

heads tails 0.333

tails heads 0.333

tails tails 0

P(X, Y|Z=silence)

P(X, Y|Z=rings)

Table 2.2  Conditional probability distribution for the 

distribution in Table 2.1.

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠, 𝑍 = 𝑟𝑖𝑛𝑔𝑠 =
1

2

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑍 = 𝑟𝑖𝑛𝑔𝑠 =
1

3
+
1

3
=
2

3

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠, 𝑍 = 𝑟𝑖𝑛𝑔𝑠 ≠ 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑍 = 𝑟𝑖𝑛𝑔𝑠
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2.3 COLLIDERS

A more pronounced dependence occurs, of 

course, when the bell does not ring (Z = silence), 

because then we know that both coins must have 

landed on tails.

X Y

Coin 1 Coin 2

heads heads 0

heads tails 0

tails heads 0

tails tails 1

X Y

Coin 1 Coin 2

heads heads 0.333

heads tails 0.333

tails heads 0.333

tails tails 0

P(X, Y|Z=silence)

P(X, Y|Z=rings)

Table 2.2  Conditional probability distribution for the 

distribution in Table 2.1.
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2.3 COLLIDERS

Just as conditioning on a collider makes previously independent variables 

dependent, so too does conditioning on any descendant of a collider.

To see why this is true, let’s 

return to our example of two 

independent coins and a bell.

𝑌𝑋 𝑍
Suppose we do not hear the bell directly, but instead rely on a witness (W) 

who is somewhat unreliable;

▪ whenever the bell does not ring (Z = silence), 50% chance that the 

witness will falsely report that it did (W = 1), and 50% chance that 

will correctly report that it did not (W = 0).

Figure 2.4

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑊

𝑈𝑊

▪ whenever the bell rings (Z = rings), 100% chance that the witness 

will report that it did (W = 1).
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2.3 COLLIDERS

Probabilities for all combinations of X, Y and W are shown in 

Table 2.3.

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)

Figure 2.4

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑊

𝑈𝑊
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2.3 COLLIDERS

How do we get Table 2.3 ?

X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)
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2.3 COLLIDERS

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)
X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

How do we get Table 2.3 ?

100% chance that 

W = 1



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.3 COLLIDERS

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)
X Y Z

Coin 1 Coin 2 Bell

heads heads rings 0.25

heads tails rings 0.25

tails heads rings 0.25

tails tails silence 0.25

P(X, Y, Z)

Table 2.1  Probability distribution for two flips of a fair coin, with X 

representing flip one, Y representing flip two, and Z representing a bell 

that rings if either flip results in heads.

How do we get Table 2.3 ?

50% chance 

that W = 1

50% chance 

that W = 0



𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠 =
0.250

0.250 + 0.250
=
1

2
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2.3 COLLIDERS

Based on Table 2.3 we can easily check that

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠 =
0.250

0.250 + 0.250
= 0.5



𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.250 + 0.250 =
1

2
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2.3 COLLIDERS

Based on Table 2.3 we can easily check that

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠 = 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠 =
0.250

0.250 + 0.250
= 0.5

0.250 + 0.250 = 0.5
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2.3 COLLIDERS

Based on Table 2.3 we can easily check that

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)
𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠 = 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

Therefore, we conclude that X and Y are independent.

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠 = 𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠 = 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠 = 0.5

𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠|𝑌 = 𝑡𝑎𝑖𝑙𝑠 = 𝑃 𝑋 = 𝑡𝑎𝑖𝑙𝑠 = 0.5

In the same way we can show the following
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2.3 COLLIDERS

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑊 = 1 =
0.25 + 0.25

0.25 + 0.25 + 0.25 + 0.125
= 0.571

0.25 + 0.25

0.25 + 0.25 + 0.25 + 0.125
= 0.571

0.25 + 0.25

0.25 + 0.25 + 0.25 + 0.125
= 0.571= 0.571

Based on Table 2.3 we can easily check that
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2.3 COLLIDERS

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠,𝑊 = 1 =
0.25

0.25 + 0.25
= 0.5

X Y W

Coin 1 Coin 2 witness

heads heads 1 0.250

heads tails 1 0.250

tails heads 1 0.250

tails tails 1 0.125

tails tails 0 0.125

Table 2.3 Probability distribution for two flips of a fair coin 

and a bell that rings if either flip results in heads, with X 

representing flip one, Y representing flip two, and W 

representing a witness who, with variable reliability, reports 

whether or not the bell has rung.

P(X, Y, W)

Based on Table 2.3 we can easily check that

0.25

0.25 + 0.25
= 0.5

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑊 = 1 =
0.25 + 0.25

0.25 + 0.25 + 0.25 + 0.125
= 0.571

0.25 + 0.25

0.25 + 0.25 + 0.25 + 0.125
= 0.571

0.25 + 0.25

0.25 + 0.25 + 0.25 + 0.125
= 0.571= 0.571

Therefore, we conclude that X and Y are dependent when conditioning on W = 1.

𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑌 = ℎ𝑒𝑎𝑑𝑠,𝑊 = 1 ≠ 𝑃 𝑋 = ℎ𝑒𝑎𝑑𝑠|𝑊 = 1
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2.3 COLLIDERS

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑊

𝑈𝑊

Figure 2.4

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑊

𝑈𝑊

Figure 2.4

To summarize

X and Y are independent 

when we do not know the 

witness report W, i.e., 

when the state of the 

variable W is unknown 

(not given) (W = ?)

𝑾 = ?

X and Y are dependent 

when we know that the 

witness reports the bell 

rings (W = 1), i.e., X and

Y become dependent 

after we know that the 

witness reports the bell is 

ringing (W = 1).
𝑾 = 𝟏



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.3 COLLIDERS

All these considerations lead us to the third rule:

as

If a variable Z is the collision node between two variables X and Y, 

and there is only one path between Y and X, then X and Y are 

unconditionally independent but are dependent conditional on Z

and any descendants of Z.

Rule 3 (Conditional Independence in Colliders)

Extremely important to the study of causality, i.e., it allows to:

▪ test whether a causal model could have generated a data set

▪ discover models from data

▪ fully resolve the Simpson’s paradox by determining which variables 

to measure

▪ estimate causal effect under confounding

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑊

𝑈𝑊

Figure 2.4
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2.3 COLLIDERS

Inquisitive students may wonder why it is that 

dependencies associated with conditioning on 

a collider are so surprising to most people —

as in, for example, the Monty Hall example.

The reason is that humans tend to associate dependence with causation.

Accordingly, they assume (wrongly) that statistical dependence between 

two variables can only exist if there is a causal mechanism that generates 

such dependence; that is, either one of the variables causes the other or 

a third variable causes both.

In the case of a collider, they are surprised to find a dependence that is 

created in a third way, thus violating the assumption of “no correlation 

without causation.” Figure 2.4

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑊

𝑈𝑊
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2.4 D-SEPARATION

Causal models are generally not as simple as the cases we have examined so far. Specifically, it is rare for a 

graphical model to consist of a single path between variables.

In most graphical models, pairs of variables will have multiple possible paths connecting them, and each path 

will traverse a variety of chains, forks, and colliders.

The questions remains whether there is a criterion or process that can be applied to a graphical causal model 

of any complexity in order to predict dependencies that are shared by all data sets generated by that graph.

Rule 1 + Rule 2 + Rule 3 = d-separation

Allows, to determine, for any pair of nodes, whether the 

nodes are d-connected, meaning there exists a connecting 

path between them, or d-separated, meaning there exists no 

such path.

nodes X and Y

are d-separated

variables X and Y  

are independent

nodes X and Y

are d-connected

variables X and Y  

are possibly, or most 

likely dependent
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2.4 D-SEPARATION

Two nodes X and Y are d-separated if every path between 

them (should any exist) is blocked.

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

If even one path between X and Y is unblocked, X and Y

are d-connected.
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2.4 D-SEPARATION

Two nodes X and Y are d-separated if every path between 

them (should any exist) is blocked.

▪ X and Y are d-separated if the following path

If even one path between X and Y is unblocked, X and Y

are d-connected.

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇
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2.4 D-SEPARATION

Two nodes X and Y are d-separated if every path between 

them (should any exist) is blocked.

▪ X and Y are d-separated if the following path

X → S → V → Y

If even one path between X and Y is unblocked, X and Y

are d-connected.

is blocked.

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇
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Two nodes X and Y are d-separated if every path between 

them (should any exist) is blocked.

If even one path between X and Y is unblocked, X and Y

are d-connected.

Path = Pipe

Dependence = Water

Water flows through Pipes

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.4 D-SEPARATION

If even one pipe in unblocked, some water can pass from one 

place to another, and if a single path is clear, the variables at 

either end will be dependent.

However, a pipe need only be blocked in one place to stop the 

flow of water through it, it takes only one node to block the 

passage of dependence in an entire path.

There are certain kinds of nodes that can block a path, 

depending on whether we are performing unconditional or 

conditional d-separation.

If we are not conditioning on any variable, then only colliders 

can block a path.

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇
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There are certain kinds of nodes that can block a path, 

depending on whether we are performing unconditional or 

conditional d-separation.

If we are not conditioning on any variable, then only colliders 

can block a path.

Consider nodes X and T 𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

Unconditional d-separation
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The path

X → S  T

is blocked by collider S.

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

There are certain kinds of nodes that can block a path, 

depending on whether we are performing unconditional or 

conditional d-separation.

If we are not conditioning on any variable, then only colliders 

can block a path.

Consider nodes X and T

Unconditional d-separation

we consider 

nodes X and T
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The reasoning for this is fairly straightforward as we saw in 

Section 2.3, unconditional dependence can’t pass through a 

collider, i.e. the collider blocks the path.

So if every path between two nodes X and Y has a collider in it, 

then X and Y cannot be unconditionally dependent; they must 

be marginally independent.

Unconditional d-separation

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

we consider 

nodes X and T
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If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

Conditional d-separation

we consider 

nodes X and T
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If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

𝒁

we consider 

nodes X and TConditional d-separation

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.
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If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

𝒁

we consider 

nodes X and T

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

collision node

(S  Z)

Conditional d-separation

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.



descendants of S

(V, Y  Z)
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If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

𝒁

we consider 

nodes X and T

S blocks the path X → S  T
collision node

(S  Z)

Conditional d-separation

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.
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2.4 D-SEPARATION

If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.

▪ a chain or fork whose middle node is in Z

𝒁

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿

𝑇

𝑆

we consider 

nodes X and VConditional d-separation
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2.4 D-SEPARATION

If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.

▪ a chain or fork whose middle node is in Z

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿

𝑇

𝑆

we consider 

nodes X and V

middle node

of a chain

(S  Z)

S blocks the path X → S → V

Conditional d-separation

𝒁
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If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.

▪ a chain or fork whose middle node is in Z

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿

𝑇

𝑆

we consider 

nodes Y and MConditional d-separation

𝒁
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If, however, we are conditioning on a set of nodes Z, then the following 

kinds of nodes can block a path:

▪ a collider that is not conditioned on (I.e., not in Z), and that 

has no descendants in Z.

▪ a chain or fork whose middle node is in Z

𝒁

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿

𝑇

𝑆

we consider 

nodes Y and M

middle node

of a fork

(T  Z)

Conditional d-separation

T blocks the path Y V  S  T → L→ M
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The reasoning behind these points goes back to what we learned in 

Sections 2.2 and 2.3.

▪ A collider does not allow dependence to flow between its 

parents, thus blocking the path,

▪ but Rule 3 tells us that when we condition on a collider or its 

descendants, the parent nodes may become dependent.

So

▪ a collider whose collision node is not in the conditioning set Z

would block dependence from passing through a path,

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇
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2.4 D-SEPARATION

The reasoning behind these points goes back to what we learned in 

Sections 2.2 and 2.3.

▪ A collider does not allow dependence to flow between its 

parents, thus blocking the path,

▪ but Rule 3 tells us that when we condition on a collider or its 

descendants, the parent nodes may become dependent.

So

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

▪ a collider whose collision node is not in the conditioning set Z

would block dependence from passing through a path, 𝒁

collision 

node

(S  Z)

we consider 

nodes X and T

S blocks the path X → S  T
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2.4 D-SEPARATION

The reasoning behind these points goes back to what we learned in 

Sections 2.2 and 2.3.

▪ A collider does not allow dependence to flow between its 

parents, thus blocking the path,

▪ but Rule 3 tells us that when we condition on a collider or its 

descendants, the parent nodes may become dependent.

So

𝒁

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿

𝑇

𝑆

▪ a collider whose collision node or its descendants, is in the 

conditioning set Z would not block dependence passing through 

a path.

we consider 

nodes X and T

S does not block (opens) the path X → S  T
collision node

(S  Z)
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The reasoning behind these points goes back to what we learned in 

Sections 2.2 and 2.3.

▪ A collider does not allow dependence to flow between its 

parents, thus blocking the path,

▪ but Rule 3 tells us that when we condition on a collider or its 

descendants, the parent nodes may become dependent.

So

𝒁

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿

𝑇

𝑆

▪ a collider whose collision node or its descendants, is in the 

conditioning set Z would not block dependence passing through 

a path.

descendant of a 

collision node   

(Y  Z)

we consider 

nodes X and T

S does not block (opens) the path X → S  T

𝒁

collision node

(S  Z)



𝒁
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Conversely,

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

▪ dependence can pass through noncolliders — chains and forks —

(L  Z)

we consider 

nodes T and M

not conditioning on 

L

(L  Z)

dependence can 

pass from T to M and 

vice versa

L does not block the path T → L M
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Conversely,

▪ dependence can pass through noncolliders — chains and forks —

▪ but Rules 1 and 2 tell us that when we condition on them, the 

variables on either end of those paths become independent 

(when we consider one path at a time), and thus dependence 

can not pass through the path.

𝒁

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

conditioning on 

L

(L  Z)

dependence can not 

pass from T to M and 

vice versa

(L  Z)

we consider 

nodes T and M

L blocks the path T → L M



𝒁
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Conversely,

So 

▪ any noncollision node in the conditioning set would block 

dependence,

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

▪ dependence can pass through noncolliders — chains and forks —

noncollision

node

(L  Z)

▪ but Rules 1 and 2 tell us that when we condition on them, the 

variables on either end of those paths become independent 

(when we consider one path at a time), and thus dependence 

can not pass through the path.

we consider 

nodes T and M

L blocks the path T → L M



𝒁
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Conversely,

So 

▪ any noncollision node in the conditioning set would block 

dependence,

▪ any noncollision node that is not in the conditioning set 

would allow dependence through.

𝑈2

𝑈1

𝑈3

𝑋

𝑌

𝑉
𝑀

𝐿𝑆

𝑇

▪ dependence can pass through noncolliders — chains and forks —

▪ but Rules 1 and 2 tell us that when we condition on them, the 

variables on either end of those paths become independent 

(when we consider one path at a time), and thus dependence 

can not pass through the path.

we consider 

nodes T and M

L does not block the path T → L M

noncollision

node

(L  Z)
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as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

The variables might be discrete, continuous, or a mixture of the two; the relationships between them might be 

linear, exponential, or any of an infinite number of other relations. No matter the model, however, d-separation will 

always provide the same set of independencies in the data the model generates.

Figure 2.7
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𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

In particular, let’s look at the relationship between S and Y.

empty conditioning set

Z = {}

S and Y are 

d-separated

S and Y are 

unconditionally 

independent
Why?

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

Figure 2.7
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Figure 2.7

𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

Because there is no unblocked path between S and Y.



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.4 D-SEPARATION

𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

Because there is no unblocked path between S and Y.

There is only one path between S and Y, and that path is blocked by 

a collider (S → W ← X).

collision 

node

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

blocks the path 

S → W ← X → Y

Figure 2.7
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But suppose we condition on W.

d-separation tells us that S and Y are d-connected, conditional on W. 

𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

collision 

node

unblocks the path

S → W ← X → Y

conditioning set 

Z = {W}
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𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

conditioning set 

Z = {W}

The reason is that our conditioning set is now Z = {W}, and since the only path between S and Y contains a 

fork (X) that is not in that set, and the only collider (W) on the path is in that set, that path is not blocked.

(Remember that conditioning on colliders “unblocks” them.) 

collision 

node

unblocks the path

S → W ← X → Y

fork
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𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

not 

blocking

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

conditioning set 

Z = {W}

fork

collision 

node

unblocks the path

S → W ← X → Y

The reason is that our conditioning set is now Z = {W}, and since the only path between S and Y contains a 

fork (X) that is not in that set, and the only collider (W) on the path is in that set, that path is not blocked.

(Remember that conditioning on colliders “unblocks” them.) 



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

2.4 D-SEPARATION

The same is true if we condition on U, because U is a 

descendant of a collider along the path between S and Y.

𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

descendant of a 

collision node

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

fork

collision 

node

conditioning set 

Z = {U}

unblocks the path

S → W ← X → Y
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𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

On the other hand, if we condition on the set Z = {W, X}, S and Y remain independent.

This time, the path between S and Y is blocked by the first criterion, rather than the second.

conditioning set 

Z = {W, X}

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

Figure 2.7
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𝑌𝑋𝑆

𝑈𝑆 𝑈𝑋 𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

There is now a noncollider node (X) on the path that is in the 

conditioning set. 

noncollider

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)
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B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

conditioning on X

blocks the path

S → W ← X → Y

Figure 2.7
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Now, consider what happens when we add another path between 

S and Y, as in Figure 2.8. 

S and Y are now unconditionally dependent.

Why?

𝑌𝑋𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

conditioning set 

Z = {W, X}

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)
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Because there is a path between them (S ← T → Y) that contains no 

colliders, and the middle node T  does not belong to the conditioning 

set Z = {W, X}.
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are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)
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If we also condition on T, i.e., if we set Z = {W, X, T}, however, the 

path (S ← T → Y) is blocked, and S and Y become independent 

again.

conditioning 

on T
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are d-separated, conditional on Z, and thus are independent
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Conditioning on Z = {T, W}, on the other hand, makes them d-connected

again:

▪ conditioning on T blocks the path S ← T → Y,

▪ but conditioning on W unblocks the path S → W ← X → Y.

conditioning 

on W

conditioning 

on T
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𝑊

𝑈𝑊

𝑇

𝑈𝑇

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

conditioning set 

Z = {T, W}
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And if we add X to the conditioning set, making it

Z = {T, W, X}, 

S, and Y become independent yet again!
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𝑈𝑋

𝑈𝑌

𝑈
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𝑊

𝑈𝑊

𝑇

𝑈𝑇

conditioning 

on W, X

conditioning 

on T

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

conditioning set 

Z = {T, W, X}
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In this graph, S and Y are d-connected (and therefore likely dependent) 

conditional on

W, U, {W, U}, {W, T}, {U, T}, {W, U, T}, {W, X}, {U, X}, and {W, U, X}.

𝑌𝑋𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑊

𝑈𝑊

𝑇

𝑈𝑇

as

A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

Figure 2.8
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S and Y are d-separated (and therefore independent) conditional on:

T, {X, T}, {W, X, T}, {U, X, T}, and {W, U, X, T}.

Note that T is in every conditioning set that d-separates S and Y.
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A path p is blocked by a set of nodes Z if and only if

1. p contains a chain of nodes A → B → C or a fork A  B → C

such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.

Definition 2.4.1 (d-separation)

Figure 2.8
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T is in every conditioning set that d-separates S and Y because T is 

the only node in a path that unconditionally d-connects S and Y, so 

unless it is conditioned on, S and Y will always be d-connected.
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such that the middle node B is in Z (i.e., is conditioned on), or

2. p contains a collider A → B  C such that the collision node 

B is not in Z, and no descendant of B is in Z.

If Z blocks every path between two nodes X and Y, then X and Y

are d-separated, conditional on Z, and thus are independent

conditional on Z.
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2.5 MODEL TESTING AND CAUSAL SEARCH

The preceding sections demonstrate that causal models have testable 

implications in the data sets they generate.

For instance, if we have a graph G that we believe might have 

generated a data set 𝕊, d-separation will tell us which variables in G

must be independent conditional on which other variables.

Conditional independence is something we can test for using a data set 𝕊. 

X 1 X 2 X 3 X 4 X 5 X 6

0 1 1 1 0 1

0 1 0 1 1 1

1 0 1 1 0 0

0 0 1 0 1 1

0 1 0 0 0 0

1 1 0 1 0 1

1 0 1 1 1 1

0 1 1 1 0 1

𝕊

G

𝑋1

𝑋2
𝑋3

𝑋4
𝑋5

𝑋6
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2.5 MODEL TESTING AND CAUSAL SEARCH

The preceding sections demonstrate that causal models have testable 

implications in the data sets they generate.

For instance, if we have a graph G that we believe might have 

generated a data set 𝕊, d-separation will tell us which variables in G

must be independent conditional on which other variables.

Conditional independence is something we can test for using a data set 𝕊. 

▪ Suppose we list the d-separation conditions in G, and note that 

variables 𝑋6 and 𝑋3 must be independent conditional on 𝑋5. 

𝑋6 ⊥ 𝑋3 | 𝑋5

𝑋6 ⊥ 𝑋1 | 𝑋5

𝑋6 ⊥ 𝑋1 | 𝑋3

𝑋1 ⊥ 𝑋2

G

𝑋1

𝑋2
𝑋3

𝑋4
𝑋5

𝑋6
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2.5 MODEL TESTING AND CAUSAL SEARCH

The preceding sections demonstrate that causal models have testable 

implications in the data sets they generate.

For instance, if we have a graph G that we believe might have 

generated a data set 𝕊, d-separation will tell us which variables in G

must be independent conditional on which other variables.

Conditional independence is something we can test for using a data set 𝕊. 

▪ Suppose we list the d-separation conditions in G, and note that 

variables 𝑋6 and 𝑋3 must be independent conditional on 𝑋5. 

G

𝑋1

𝑋2
𝑋3

𝑋4
𝑋5

𝑋6

𝑋6 ⊥ 𝑋3 | 𝑋5
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2.5 MODEL TESTING AND CAUSAL SEARCH

The preceding sections demonstrate that causal models have testable 

implications in the data sets they generate.

For instance, if we have a graph G that we believe might have 

generated a data set 𝕊, d-separation will tell us which variables in G

must be independent conditional on which other variables.

Conditional independence is something we can test for using a data set 𝕊. 

▪ Suppose we list the d-separation conditions in G, and note that 

variables 𝑋6 and 𝑋3 must be independent conditional on 𝑋5. 

▪ Then, suppose we estimate the probabilities based on 𝕊, and discover 

that the data suggests that 𝑋6 and 𝑋3 are not independent conditional 

on 𝑋5

𝑋6 ⊥ 𝑋3 | 𝑋5

X 1 X 2 X 3 X 4 X 5 X 6

0 1 1 1 0 1

0 1 0 1 1 1

1 0 1 1 0 0

0 0 1 0 1 1

0 1 0 0 0 0

1 1 0 1 0 1

1 0 1 1 1 1

0 1 1 1 0 1

𝕊
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𝑋1
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𝑋6 ⊥ 𝑋3 | 𝑋5
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2.5 MODEL TESTING AND CAUSAL SEARCH

The preceding sections demonstrate that causal models have testable 

implications in the data sets they generate.

For instance, if we have a graph G that we believe might have 

generated a data set 𝕊, d-separation will tell us which variables in G

must be independent conditional on which other variables.

Conditional independence is something we can test for using a data set 𝕊. 

▪ Suppose we list the d-separation conditions in G, and note that 

variables 𝑋6 and 𝑋3 must be independent conditional on 𝑋5. 

▪ Then, suppose we estimate the probabilities based on 𝕊, and discover 

that the data suggests that 𝑋6 and 𝑋3 are not independent conditional 

on 𝑋5

▪ We can then reject G as a possible causal model for 𝕊.

G

𝑋1

𝑋2
𝑋3

𝑋4
𝑋5

𝑋6

X 1 X 2 X 3 X 4 X 5 X 6

0 1 1 1 0 1

0 1 0 1 1 1

1 0 1 1 0 0

0 0 1 0 1 1

0 1 0 0 0 0

1 1 0 1 0 1

1 0 1 1 1 1

0 1 1 1 0 1

𝕊
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2.5 MODEL TESTING AND CAUSAL SEARCH

We can demonstrate it on the causal model of Figure 2.9.

Among the many conditional independencies advertised by 

the model, we find that W and Z1 are independent given X, 

because X d-separates W from Z1.

Figure 2.9

𝑌

𝑋

𝑊

𝑍1
𝑍2

𝑍3
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2.5 MODEL TESTING AND CAUSAL SEARCH

We can demonstrate it on the causal model of Figure 2.9.

Figure 2.9

𝑌

𝑋

𝑊

𝑍1
𝑍2

𝑍3Among the many conditional independencies advertised by 

the model, we find that W and Z1 are independent given X, 

because X d-separates W from Z1.

𝑓𝑊:𝑊 = 𝑓 𝑋
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2.5 MODEL TESTING AND CAUSAL SEARCH

We can demonstrate it on the causal model of Figure 2.9.

Figure 2.9

𝑌

𝑋

𝑊

𝑍1
𝑍2

𝑍3Among the many conditional independencies advertised by 

the model, we find that W and Z1 are independent given X, 

because X d-separates W from Z1.

Now suppose we regress W on X and Z1.  Namely, we find 

the line
𝑊 = 𝑟𝑋 𝑋 + 𝑟1 𝑍1

that best fits our data.

IF 𝑟1 ≠ 0 ⇒ 𝑊 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑍1 𝑔𝑖𝑣𝑒𝑛 𝑋

and consequently, that the model in Figure 2.9 is wrong. 

[Conditional correlation implies conditional dependence.]

𝑓𝑊:𝑊 = 𝑓 𝑋
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We can demonstrate it on the causal model of Figure 2.9.

Among the many conditional independencies advertised by 

the model, we find that W and Z1 are independent given X, 

because X d-separates W from Z1.

Now suppose we regress W on X and Z1.  Namely, we find 

the line
𝑊 = 𝑟𝑋 𝑋 + 𝑟1 𝑍1

that best fits our data.

IF 𝑟1 ≠ 0 ⇒ 𝑊 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 𝑜𝑛 𝑍1 𝑔𝑖𝑣𝑒𝑛 𝑋

and consequently, that the model in Figure 2.9 is wrong. 

[Conditional correlation implies conditional dependence.]

𝑊 ⊥ 𝑍1 | 𝑋 𝑓𝑊:𝑊 = 𝑓 𝑋

Not only do we know that the model in Figure 2.9 is 

wrong, but we also know where it is wrong; 

▪ the true model must have a path between W

and Z1 that is not d-separated by X.

Figure 2.9

𝑌

𝑋

𝑊

𝑍1
𝑍2

𝑍3
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2.5 MODEL TESTING AND CAUSAL SEARCH

Finally, this is a theoretical result that holds for all acyclic models with independent errors 

(Verma and Pearl 1990), and we also know that if every d-separation condition in the 

model matches a conditional independence in the data, then no further test can refute the 

model.

This means that, for any data set whatsoever, one can always find a set of functions F for the model and an 

assignment of probabilities to the U terms, so as to generate the data precisely.

There are other methods for testing the fitness of a model. 

The standard way of evaluating fitness involves a statistical hypothesis test over the entire model, that is, we 

evaluate how likely it is for the observed samples to have been generated by the hypothesized model, as 

opposed to sheer chance.
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2.5 MODEL TESTING AND CAUSAL SEARCH

However, since the model is not fully specified, we need to first estimate its parameters before evaluating that 

likelihood. This can be done (approximately) when we assume a linear and Gaussian model (i.e., all functions in 

the model are linear and all error terms are normally distributed), because, under such assumptions, the joint 

distribution (also Gaussian) can be expressed succinctly in terms of the model’s parameters, and we can then 

evaluate the likelihood that the observed samples to have been generated by the fully parameterized model 

(Bollen 1989).

There are, however, a number of issues with this procedure: 

▪ if any parameter cannot be estimated, then the joint distribution cannot be estimated, and the model 

cannot be tested. (this can occur when some of the error terms are correlated or, equivalently, when 

some of the variables are unobserved)

▪ this procedure tests models globally. If we discover that the model is not a good fit to the data, there is no 

way for us to determine why that is—which edges should be removed or added to improve the fit. 

▪ when we test a model globally, the number of variables involved may be large, and if there is 

measurement noise and/or sampling variation associated with each variable, the test will not be reliable.
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2.5 MODEL TESTING AND CAUSAL SEARCH

d-separation presents several advantages over this global testing method.

▪ it is nonparametric, meaning that it doesn’t rely on the specific functions that connect variables; instead, it 

uses only the graph of the model in question,

▪ it tests models locally, rather than globally. This allows us to identify specific areas, where our 

hypothesized model is flawed, and to repair them, rather than starting from scratch on a whole new model. It 

also means that if, for whatever reason, we can’t identify the coefficient in one area of the model, we can still 

get some incomplete information about the rest of the model. (As opposed to the first method, in which if we 

could not estimate one coefficient, we could not test any part of the model.)
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2.5 MODEL TESTING AND CAUSAL SEARCH

If we had a computer, we could test and reject many possible models in this way, eventually whittling down the set 

of possible models to only a few whose testable implications do not contradict the dependencies present in the 

data set. It is a set of models, rather than a single model, because some graphs have indistinguishable 

implications. A set of graphs with indistinguishable implications is called an equivalence class.

Two graphs G1 and G2 are in the same equivalence class if they share a common skeleton—that is, 

▪ the same edges, regardless of the direction of those edges—and 

▪ if they share common v-structures, that is, colliders whose parents are not adjacent. 
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Three equivalent graphs and their skeleton with the common v-structure highlighted.
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2.5 MODEL TESTING AND CAUSAL SEARCH

Any two graphs that satisfy this criterion have identical sets of d-separation conditions and, therefore, identical 

sets of testable implications (Verma and Pearl 1990).

Two graphs G1 and G2 are in the same equivalence class if they share a common skeleton—that is, 

▪ the same edges, regardless of the direction of those edges—and 

▪ if they share common v-structures, that is, colliders whose parents are not adjacent. 

Three equivalent graphs and their skeleton with the common v-structure highlighted.
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2.5 MODEL TESTING AND CAUSAL SEARCH

The importance of this result is that it allows us to search a data set for the causal models that could have 

generated it. Thus, not only can we start with a causal model and generate a data set—but we can also start with 

a data set, and reason back to a causal model. 

This is enormously useful, since the object of most data-driven research is exactly to find a model that explains 

the data.

Any two graphs that satisfy this criterion have identical sets of d-separation conditions and, therefore, identical 

sets of testable implications (Verma and Pearl 1990).

Three equivalent graphs and their skeleton with the common v-structure highlighted.
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