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3.1 INTERVENTIONS

The ultimate aim of many statistical studies is to predict the effects of interventions.

When we collect data on factors associated with wildfires, we are actually 

searching for something we can intervene upon in order to decrease 

wildfire frequency.

When we perform a study on a new cancer drug, we are trying to identify 

how a patient’s illness responds when we intervene upon it by medicating 

the patient.

When we research the correlation between violent television and acts 

of aggression in children, we are trying to determine whether 

intervening to reduce children’s access to violent television will reduce 

their aggressiveness.
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3.1 INTERVENTIONS

As you have undoubtedly heard many times in statistics classes, 

“correlation is not causation.”

A mere association between two variables does not necessarily or 

even usually mean that one of those variables causes the other.

The famous example of this property is 

that an increase in ice cream sales is 

correlated with an increase in violent 

crime—not because ice cream causes 

crime, but because both ice cream sales 

and violent crime are more common in 

hot weather. 



Outcome 

Factor 1

Factor 2

….

Factor n

Factor 2
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3.1 INTERVENTIONS

Outcome

For this reason, the randomized controlled experiment is considered the golden standard of statistics. 

In a properly randomized controlled experiment, all factors that influence the outcome variable are either static, 

or vary at random, except for one—so any change in the outcome variable must be due to that one input 

variable (factor).

static, or vary at random, 

except for one

any change of the outcome variable must 

be due to that one input variable (factor)

Factor 1 static, all other factors 

vary at random, except Factor 2

If the value of Outcome changes, 

then it is due to Factor 2

Experiment 
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3.1 INTERVENTIONS

We cannot control the weather, so we can’t randomize the variables 

that affect wildfires.

Even randomized drug trials can run into problems when participants 

drop out, fail to take their medication, or misreport their usage.

We could conceivably randomize the participants in a study about 

violent television, but it would be difficult to effectively control how 

much television each child watches, and nearly impossible to know 

whether we were controlling them effectively or not.

Unfortunately, many questions do not lend themselves to randomized controlled experiments.
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3.1 INTERVENTIONS

In cases where randomized controlled experiments are not practical, researchers instead perform 

observational studies, in which they merely record data, rather than controlling it.

The problem of such studies is that it is difficult to untangle the causal from the merely correlative. 

Our common sense tells us that intervening on ice cream sales is unlikely to have any effect on crime, but 

the facts are not always so clear.

Reducing 

sales

Reduces 

crimes
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3.1 INTERVENTIONS

The difference between intervening on a variable and conditioning on that variable should, hopefully, be 

obvious.

INTERVENING

on variable X 

of model M

fix the value of X

we change the system, and 

the values of other variables 

often change as a result. 

CONDITIONING

on variable X

of model M

we change nothing; we merely 

narrow our focus to the subset of 

cases in which the variable takes 

the value we are interested in. 

what changes, then, is our 

perception about the world, 

not the world itself.
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3.1 INTERVENTIONS

Consider, for instance, Figure 3.1 that shows a graphical model of our ice cream sales example, with 

▪ X as ice cream sales, 

▪ Y as crime rates, and 

▪ Z as temperature.

Figure 3.1 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

When we intervene to fix the value of a variable, we curtail the natural 

tendency of that variable to vary in response to other variables in nature.

This amounts to performing a kind 

of surgery on the graphical 

model, removing all edges directed 

into that variable.

If we were to intervene to make ice 

cream sales (X) low (say, by 

shutting down all ice cream shops), 

we would have the graphical model 

shown in Figure 3.2.ice cream 

sales

crime 

rates

Figure 3.2 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌

ice cream 

sales

crime 

rates
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3.1 INTERVENTIONS

When we examine correlations in this new graph (Figure 3.2), we find that crime rates (Y) are, totally 

independent of (i.e., uncorrelated with) ice cream sales (X) since the latter is no longer associated with 

temperature (Z).

In other words, even if we vary the level at which we hold X (ice cream sales) constant, that variation will not be 

transmitted to variable Y (crime rates). We see that intervening on a variable 

results in a totally different pattern of 

dependencies than conditioning on a 

variable.

Moreover, the conditioning pattern 

can be obtained directly from the data 

set, using the procedures described 

in Part 1, while the intervening 

pattern varies depending on the 

structure of the causal graph.

Figure 3.1 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

ice cream 

sales

crime 

rates

Figure 3.2 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌

ice cream 

sales

crime 

rates
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3.1 INTERVENTIONS

It is the graph that instructs us which arrow should be removed for any given intervention.

When we examine correlations in this new graph (Figure 3.2), we find that crime rates (Y) are, totally 

independent of (i.e., uncorrelated with) ice cream sales (X) since the latter is no longer associated with 

temperature (Z).

Figure 3.1 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

ice cream 

sales

crime 

rates

Figure 3.2 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌

ice cream 

sales

crime 

rates

We see that intervening on a variable 

results in a totally different pattern of 

dependencies than conditioning on a 

variable.

Moreover, the conditioning pattern 

can be obtained directly from the data 

set, using the procedures described 

in Part 1, while the intervening 

pattern varies depending on the 

structure of the causal graph.
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3.1 INTERVENTIONS

In notation, we distinguish between cases where

▪ a variable X takes

▪ we fix X = x do(X = x)

𝑃 𝑌 = 𝑦|𝑋 = 𝑥 probability that Y = y conditional on finding X = x

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 probability that Y = y when we intervene to make X = x

population distribution of Y among individuals whose X value is x. 

population distribution of Y if everyone in the population had their X value fixed at x.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 , 𝑍 = 𝑧 conditional probability of Y = y, given Z = z, in the distribution 

created by the intervention 𝑑𝑜 𝑋 = 𝑥 .

a value x naturally         X = x
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3.1 INTERVENTIONS

Using do-expressions and graph surgery, we can begin to untangle the causal relationships from the 

correlative. 

We now learn methods that can, astoundingly, tease out causal information from purely observational data, 

assuming of course that the graph constitutes a valid representation of reality.

It is worth noting here that we are making a tacit assumption that

▪ The intervention has no “side effects,” that is, that assigning the value x for the 

variable X for an individual does not alter subsequent variables in a direct way.

For example, 

▪ being “assigned” a drug might have a different effect on recovery than 

▪ being forced to take the drug against one’s religious objections. 

When side effects are present, they need to be specified explicitly in the model.
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3.2 THE ADJUSTMENT FORMULA

The ice cream example represents an extreme case in which the 

correlation between X and Y was totally spurious from a causal 

perspective, because there was no causal path from X to Y.

Figure 3.1 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌
Most real-life situations are not so clear-cut.  To explore a more 

realistic situation, let us examine Figure 3.3, in which Y responds 

to both Z and X.

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Such a model could represent, for example, the first story we 

encountered for Simpson’s paradox, where X stands for drug usage, 

Y stands for recovery, and Z stands for gender.

patients recovered % recovered patients recovered % recovered

Men 87 81 93% 270 234 87%

Women 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No Drug

drug recovery

ice cream 

sales

crime 

rates

Y is neither a 

descendant nor 

an ancestor of X
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3.2 THE ADJUSTMENT FORMULA

To find out how effective the drug is in the population, we imagine a 

hypothetical intervention by which we administer the drug uniformly to 

the entire population and compare the recovery rate to what would 

obtain under the complementary intervention, where we prevent 

everyone from using the drug.

The ice cream example represents an extreme case in which the 

correlation between X and Y was totally spurious from a causal 

perspective, because there was no causal path from X to Y.

Most real-life situations are not so clear-cut.  To explore a more 

realistic situation, let us examine Figure 3.3, in which Y responds 

to both Z and X.

Such a model could represent, for example, the first story we 

encountered for Simpson’s paradox, where X stands for drug usage, 

Y stands for recovery, and Z stands for gender.

Figure 3.1 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

drug recovery

ice cream 

sales

crime 

rates
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3.2 THE ADJUSTMENT FORMULA

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

second intervention, 

i.e., prevent everyone 

from using the drug

first intervention, i.e., 

administer the drug 

uniformly to the entire 

population

𝑑𝑜 𝑋 = 1

𝑑𝑜 𝑋 = 0

causal effect difference or 

Average Causal Effect (ACE)

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 − 𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0

our task is to estimate the difference

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0

drug recovery

drug recovery
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3.2 THE ADJUSTMENT FORMULA

In general, however, if X and Y can each take on more than one 

value, we would wish to predict the general causal effect 

where x and y are any two values that X and Y can take on. 

We know from first principles that causal effects cannot be estimated from the data set itself without a causal 

story. 

That was the lesson of Simpson’s paradox: 

The data itself was not sufficient even for determining whether the effect of the drug was positive or negative.

But with the aid of the graph in Figure 3.3, we can compute the magnitude of the causal effect from the data.

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

For example, x may be the dosage of the drug and y the patient’s blood pressure.
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3.2 THE ADJUSTMENT FORMULA

To do so, we simulate the intervention in the form of a graph surgery on 

the original model (Figure 3.3) just as we did in the ice cream example.

Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

The causal effect

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

is equal to the conditional probability

that prevails in the manipulated model of Figure 3.4.

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥

This, of course, also resolves the question of whether the correct answer 

lies in the aggregated or the Z-specific table—when we determine the 

answer through an intervention, there’s only one table to contend with.

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

𝑑𝑜 𝑋 = 𝑥

original 

model

manipulated 

model
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3.2 THE ADJUSTMENT FORMULA

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥

The key to computing the causal effect lies in the observation that Pm , the 

manipulated probability (manipulated model), shares two essential 

properties with P (the original probability (original model) function that 

prevails in the preintervention model of Figure 3.3).

▪ the marginal probability 𝑃 𝑍 = 𝑧 is invariant under 

the intervention, because the process determining 

Z is not affected by removing the arrow from Z to X. 

(proportions of males and females remain the 

same, before and after the intervention)

▪ the conditional probability 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 is 

invariant, because the process by which Y responds 

to X and Z, 𝑌 = 𝑓 𝑥, 𝑧, 𝑢𝑌 , remains the same, 

regardless of whether X changes spontaneously or 

by deliberate manipulation.
Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model
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3.2 THE ADJUSTMENT FORMULA

We can therefore write two equations of invariance:

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧

𝑃𝑚 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model
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3.2 THE ADJUSTMENT FORMULA

We can therefore write two equations of invariance:

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧

𝑃𝑚 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

We can also use the fact that Z and X are d-separated (collider) in 

the manipulated model (Figure 3.4) and are, therefore, independent 

under the intervention distribution.

Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model
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3.2 THE ADJUSTMENT FORMULA

We can therefore write two equations of invariance:

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧

𝑃𝑚 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

We can also use the fact that Z and X are d-separated (collider) in 

the manipulated model (Figure 3.4) and are, therefore, independent 

under the intervention distribution.

Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model
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3.2 THE ADJUSTMENT FORMULA

We can therefore write two equations of invariance:

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧

𝑃𝑚 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

We can also use the fact that Z and X are d-separated (collider) in 

the manipulated model (Figure 3.4) and are, therefore, independent 

under the intervention distribution.

This tells us that 𝑃𝑚 𝑍 = 𝑧|𝑋 = 𝑥 = 𝑃𝑚 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

Putting these considerations together, we have

(by definition)𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = 𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃𝑚 𝑍 = 𝑧|𝑋 = 𝑥

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃𝑚 𝑍 = 𝑧 Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model
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3.2 THE ADJUSTMENT FORMULA

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃𝑚 𝑍 = 𝑧

Finally, using the invariance relations,

𝑃𝑚 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧

𝑃𝑚 𝑍 = 𝑧 = 𝑃 𝑍 = 𝑧

we obtain a formula for the causal effect, in terms of 

preintervention probabilities (original model):

To recap, we have

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑍 = 𝑧

Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model
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3.2 THE ADJUSTMENT FORMULA

The Adjustment Formula computes the association between X and Y for 

each value z of Z, then averages over those values. 

This procedure is referred to as “adjusting for Z” or “controlling for Z.”

It can be estimated directly from the data, since it consists only of 

conditional probabilities, each of which can be computed by the filtering 

procedure described in Part 1.

No adjustment is needed in a randomized controlled experiment since, in such 

a setting, the data are generated by a model which already possesses the 

structure of Figure 3.4, hence, Pm = P regardless of any factors Z that affect Y.

The Adjustment Formula

Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑍 = 𝑧
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3.2 THE ADJUSTMENT FORMULA

In practice, investigators use adjustments in randomized experiments as 

well, for the purpose of minimizing sampling variations (Cox 1958).

This derivation of the adjustment formula constitutes therefore a formal 

proof that randomization gives us the quantity we seek to estimate, 

namely

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model

The Adjustment Formula

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑍 = 𝑧
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3.2 THE ADJUSTMENT FORMULA

To demonstrate the working of the adjustment formula, let us apply it numerically 

to Simpson’s story, with

▪ X = 1 standing for the patient taking the drug, 

▪ Z = 1 standing for the patient being male, and

▪ Y = 1 standing for the patient recovering.

we have

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 1 𝑃 𝑍 = 1 + 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 0 𝑃 𝑍 = 0

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3

drug recovery

The Adjustment Formula

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑍 = 𝑧
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3.2 THE ADJUSTMENT FORMULA

patients recovered % recovered patients recovered % recovered

Men 87 81 93% 270 234 87%

Women 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No Drug

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 0.93 ×
87 + 270

700
+ 0.73 ×

263 + 80

700
= 0.832

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0 = 0.87 ×
87 + 270

700
+ 0.69 ×

263 + 80

700
= 0.7818

Thus, comparing the effect of drug-taking (X = 1) to the effect of nontaking (X = 0), we obtain

𝐴𝐶𝐸 = 𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 − 𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0 = 0.832 − 0.7818 = 0.0502

giving a clear positive advantage to drug-taking.

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3

drug recoverywe have

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 1 𝑃 𝑍 = 1 + 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 0 𝑃 𝑍 = 0

patients recovered % recovered patients recovered % recovered

Men 87 81 93% 270 234 87%

Women 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No Drug
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3.2 THE ADJUSTMENT FORMULA

A more informal interpretation of ACE here is that it is simply the difference in the 

fraction of the population that would recover if everyone took the drug compared to 

when no one takes the drug.

𝐴𝐶𝐸 = 𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 − 𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 0 = 0.832 − 0.7818 = 0.0502

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3

drug recovery

patients recovered % recovered patients recovered % recovered

Men 87 81 93% 270 234 87%

Women 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No Drug
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3.2 THE ADJUSTMENT FORMULA

We see that the adjustment formula instructs us to

▪ condition on gender, 

▪ find the benefit of the drug separately for males and females, 

▪ average the result using the percentage of males and females in 

the population. 

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1 = 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 1 𝑃 𝑍 = 1 + 𝑃 𝑌 = 1|𝑋 = 1, 𝑍 = 0 𝑃 𝑍 = 0

condition on gender 

(male) 

condition on gender 

(female) 

probability to recover 

for male drug-takers
probability to recover 

for female drug-takers

average using 

percentage males

average using 

percentage females

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3

drug recovery
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3.2 THE ADJUSTMENT FORMULA

It also thus instructs us to ignore the aggregated population data

from which we might (falsely) conclude that the drug has a negative 

effect overall.

𝑃 𝑌 = 1|𝑋 = 1 𝑃 𝑌 = 1|𝑋 = 0

patients recovered % recovered patients recovered % recovered

Men 87 81 93% 270 234 87%

Women 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

Table 1.1 Results of a study into a new drug, with gender being taken into account

Drug No Drug

𝐴𝐶𝐸 = 𝑃 𝑌 = 1|𝑋 = 1 − 𝑃 𝑌 = 1|𝑋 = 0 = 0.78 − 0.83 = −0.05

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3

drug recovery
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3.2 THE ADJUSTMENT FORMULA

These simple examples might give us the impression that whenever we face 

the dilemma of whether to condition on a third variable Z, the adjustment 

formula prefers the Z-specific analysis over the nonspecific analysis.

But we know this is not so, recalling the blood pressure example of 

Simpson’s paradox given in Table 1.2. 

There we argued that the more sensible method would be not to condition on blood pressure, but to examine 

the unconditional population table directly.

How would the adjustment formula cope with situations like that?

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3

drug recovery

patients recovered % recovered patients recovered % recovered

Low BP 87 81 93% 270 234 87%

High BP 263 192 73% 80 55 69%

Combined data 350 273 78% 350 289 83%

Table 1.2 Results of a study into a new drug, with posttreatment blood pressure taken into account

No Drug Drug
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3.2 THE ADJUSTMENT FORMULA

The graph in Figure 3.5 represents the causal story in the blood pressure example, 

▪ X   treatment,

▪ Z   blood pressure,

▪ Y   recovery.

Figure 3.5

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Let us try now to evaluate the causal effect

associated with this model as we did with the gender example.

𝑃 𝑌 = 1|𝑑𝑜 𝑋 = 1

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

treatment recovery

drug recovery

Figure 3.3

It is the same as Figure 3.3, but with the arrow between X and Z reversed, 

reflecting the fact that the treatment has an effect on blood pressure and not        

the other way around.



𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌
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3.2 THE ADJUSTMENT FORMULA

▪ We simulate an intervention and then examine the adjustment formula that emanates from the simulated 

intervention. 

▪ In graphical models, an intervention is simulated by severing all arrows that enter the manipulated variable X. 

simulate 

intervention 

on X

do (X = x) treatment recovery

Figure 3.5



treatment recovery
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3.2 THE ADJUSTMENT FORMULA

▪ We simulate an intervention and then examine the adjustment formula that emanates from the simulated 

intervention. 

▪ In graphical models, an intervention is simulated by severing all arrows that enter the manipulated variable X. 

▪ In our case, however, the graph of Figure 3.5 shows no arrow entering X, since X has no parents. 

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌
𝑥

Figure 3.5
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3.2 THE ADJUSTMENT FORMULA

▪ We simulate an intervention and then examine the adjustment formula that emanates from the simulated 

intervention. 

▪ In graphical models, an intervention is simulated by severing all arrows that enter the manipulated variable X. 

▪ In our case, however, the graph of Figure 3.5 shows no arrow entering X, since X has no parents.

▪ This means that no surgery is required; the conditions under which data were obtained were such that 

treatment was assigned “as if randomized.”

treatment recovery

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌
𝑥

Figure 3.5
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3.2 THE ADJUSTMENT FORMULA

▪ We simulate an intervention and then examine the adjustment formula that emanates from the simulated 

intervention. 

▪ In graphical models, an intervention is simulated by severing all arrows that enter the manipulated variable X. 

▪ In our case, however, the graph of Figure 3.5 shows no arrow entering X, since X has no parents.

▪ This means that no surgery is required; the conditions under which data were obtained were such that 

treatment was assigned “as if randomized.”

▪ If there was a factor that would make subjects prefer or reject 

treatment, such a factor should show up in the model; 

treatment recovery

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌
𝑥

Figure 3.5
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3.2 THE ADJUSTMENT FORMULA

▪ We simulate an intervention and then examine the adjustment formula that emanates from the simulated 

intervention. 

▪ In graphical models, an intervention is simulated by severing all arrows that enter the manipulated variable X. 

▪ In our case, however, the graph of Figure 3.5 shows no arrow entering X, since X has no parents.

▪ This means that no surgery is required; the conditions under which data were obtained were such that 

treatment was assigned “as if randomized.”

▪ If there was a factor that would make subjects prefer or reject 

treatment, such a factor should show up in the model; 

▪ the absence of such a factor gives us the license to treat X

as a randomized treatment.

treatment recovery

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌
𝑥

Figure 3.5
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3.2 THE ADJUSTMENT FORMULA

Under such conditions, the intervention graph is equal to the 

original graph—no arrow need be removed—and the adjustment 

formula reduces to

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥

which can be obtained from our adjustment formula by letting the 

empty set be the element adjusted for. 

Obviously, if we were to adjust for blood pressure Z, we would 

obtain an incorrect assessment—one corresponding to a model in 

which blood pressure Z causes people to seek treatment X.

treatment recovery

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌

Figure 3.5

treatment recovery

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌

Figure 3.5

𝑈𝑋

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌
𝑥



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.2 THE ADJUSTMENT FORMULA

Under such conditions, the intervention graph is equal to the 

original graph—no arrow need be removed—and the adjustment 

formula reduces to

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥

which can be obtained from our adjustment formula by letting the 

empty set be the element adjusted for. 

Obviously, if we were to adjust for blood pressure Z, we would 

obtain an incorrect assessment—one corresponding to a model in 

which blood pressure Z causes people to seek treatment X.

treatment recovery

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌

Figure 3.5

treatment recovery

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌

Figure 3.5

𝑈𝑋

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑌
𝑥
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3.2.1 THE ADJUSTMENT FORMULA: TO ADJUST OR NOT TO ADJUST?

We are now in a position to understand what variable, or set of variables, Z can legitimately be included in the 

adjustment formula. 

The intervention procedure, which led to the adjustment formula, dictates that Z should coincide with the 

parents pa(X) of X, because it is the influence of these parents that we neutralize when we fix X by external 

manipulation do(X). 

We can therefore write a general adjustment formula and summarize it in a rule:

Given a graph G in which a set of variables pa(X) are designated as the parents of X, 

the causal effect of X on Y is given by

Rule 1 (The Causal Effect Rule)

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑝𝑎 𝑋 = 𝑧 𝑃 𝑝𝑎 𝑋 = 𝑧

where z ranges over all the combinations of values that the variables in pa(X) can take.
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3.2.1 THE ADJUSTMENT FORMULA: TO ADJUST OR NOT TO ADJUST?

If we multiply and divide the summand

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑝𝑎 𝑋 = 𝑧 𝑃 𝑝𝑎 𝑋 = 𝑧

we get a more convenient form: 

𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝑧

by

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑝𝑎 𝑋 = 𝑧 𝑃 𝑝𝑎 𝑋 = 𝑧
𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝑧

𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝑧

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑝𝑎 𝑋 = 𝑧 𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝑧 𝑃 𝑝𝑎 𝑋 = 𝑧

𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝑧

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦, 𝑋 = 𝑥, 𝑝𝑎 𝑋 = 𝑧

𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝑧
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3.2.1 THE ADJUSTMENT FORMULA: TO ADJUST OR NOT TO ADJUST?

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦, 𝑋 = 𝑥, 𝑝𝑎 𝑋 = 𝑧

𝑃 𝑋 = 𝑥|𝑝𝑎 𝑋 = 𝑧

explicitly displays the role played by the parents of X in predicting the results Y of interventions (do(X)).

The formula

Propensity 

Score

We can appreciate now what role the causal graph plays in resolving Simpson’s paradox, and, more generally, 

what aspects of the graph allow us to predict causal effects from purely statistical data.

We need the graph in order to determine the identity of X’s parents—the set of factors that, under 

nonexperimental conditions, would be sufficient for determining the value of X, or the probability of that value.
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3.2.1 THE ADJUSTMENT FORMULA: TO ADJUST OR NOT TO ADJUST?

This result alone is astounding; using graphs and their underlying assumptions, we were able to identify causal 

relationships in purely observational data. 

But, from this discussion, readers may be tempted to conclude that the role of graphs is fairly limited; 

▪ once we identify the parents of X, the rest of the graph can be discarded, and the causal 

effect can be evaluated mechanically from the adjustment formula. 

In the next slides we show that things may not be so simple. 

In most practical cases, the set of X’s parents will contain unobserved variables that would prevent us from 

calculating the conditional probabilities in the adjustment formula. 

Luckily, as we will see in future slides, we can adjust for other variables in the model to substitute for the 

unmeasured elements of pa(X).
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3.2.2 THE ADJUSTMENT FORMULA: MULTIPLE INTERVENTIONS AND THE TRUNCATED PRODUCT RULE

In deriving the adjustment formula, we assumed 

▪ an intervention on a single variable X, 

▪ whose parents were disconnected, 

so as to simulate the absence of their influence after intervention.

However, social and medical policies occasionally involve multiple interventions, such as those that dictate the 

value of several variables simultaneously, or those that control a variable over time. 

To represent multiple interventions, it is convenient to resort to the product decomposition that a graphical 

model imposes on joint distributions (Rule of Product Decomposition)

𝑃 𝑋1,𝑋2, ...,𝑋𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖|pa 𝑋𝑖
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3.2.2 THE ADJUSTMENT FORMULA: MULTIPLE INTERVENTIONS AND THE TRUNCATED PRODUCT RULE

According to the Rule of Product Decomposition, the preintervention distribution 

in the model of Figure 3.3 is given by the product

𝑃 𝑥, 𝑦, 𝑧 = 𝑃 𝑧 𝑃 𝑥|𝑧 𝑃 𝑦|𝑥, 𝑧

whereas the postintervention distribution, governed by the model of 

Figure 3.4 is given by the product

𝑃 𝑧, 𝑦|𝑑𝑜 𝑥 = 𝑃𝑚 𝑧 𝑃𝑚 𝑦|𝑥, 𝑧 = 𝑃 𝑧 𝑃 𝑦|𝑥, 𝑧

with the factor 𝑃 𝑥|𝑧 purged from the product, since X becomes parentless 

as it is fixed at X = x.

This coincides with the adjustment formula, because to evaluate 𝑃 𝑦|𝑑𝑜 𝑥

we need to marginalize (or sum) over z, which gives

𝑃 𝑦|𝑑𝑜 𝑥 =

𝑧

𝑃 𝑧 𝑃 𝑦|𝑥, 𝑧
Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.2.2 THE ADJUSTMENT FORMULA: MULTIPLE INTERVENTIONS AND THE TRUNCATED PRODUCT RULE

This consideration also allows us to generalize the adjustment formula to 

multiple interventions, that is, interventions that fix the values of a set of 

variables X to constants. 

We simply write down the product decomposition of the preintervention 

distribution, and strike out all factors that correspond to variables in the 

intervention set X. 

𝑃 𝑥1,𝑥2, ...,𝑥𝑛|𝑑𝑜 𝑥 =ෑ

𝑖=1

𝑛

𝑃 𝑥𝑖|pa 𝑥𝑖 , ∀ 𝑖 ∶ 𝑋𝑖 ∉ 𝑋

This came to be known as the truncated product formula or g-formula. Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥 𝑈𝑌

Figure 3.3 𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

original 

model

manipulated 

model

Formally, we write



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.2.2 THE ADJUSTMENT FORMULA: MULTIPLE INTERVENTIONS AND THE TRUNCATED PRODUCT RULE

To illustrate, assume that we intervene on the model of Figure 2.9 and set X to x and Z3 to z3. 

Figure 2.9

𝑌

𝑋

𝑊

𝑍1 𝑍2

𝑍3

The postintervention distribution of the other variables in 

the model is obtained by deleting the factors

𝑑𝑜(𝑋 = 𝑥)

𝑑𝑜(𝑍3 = 𝑧3)

𝑃 𝑧1, 𝑧2, 𝑤, 𝑦|𝑑𝑜 𝑋 = 𝑥, 𝑍3 = 𝑧3 = 𝑃 𝑧1 𝑃 𝑧2 𝑃 𝑥|𝑧1, 𝑧3 𝑃 𝑧3|𝑧1, 𝑧2 𝑃 𝑤|𝑥 𝑃 𝑦|𝑤, 𝑧3, 𝑧2

𝑃 𝑥|𝑧1, 𝑧3 𝑃 𝑧3|𝑧1, 𝑧2

original model
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3.2.2 THE ADJUSTMENT FORMULA: MULTIPLE INTERVENTIONS AND THE TRUNCATED PRODUCT RULE

To illustrate, assume that we intervene on the model of Figure 2.9 and set X to x and Z3 to z3. 

The postintervention distribution of the other variables in 

the model is obtained by deleting the factors

𝑃 𝑧1, 𝑧2, 𝑤, 𝑦|𝑑𝑜 𝑋 = 𝑥, 𝑍3 = 𝑧3 = 𝑃 𝑧1 𝑃 𝑧2 𝑃 𝑥|𝑧1, 𝑧3 𝑃 𝑧3|𝑧1, 𝑧2 𝑃 𝑤|𝑥 𝑃 𝑦|𝑤, 𝑧3, 𝑧2

𝑃 𝑥|𝑧1, 𝑧3 𝑃 𝑧3|𝑧1, 𝑧2

𝑃 𝑧1, 𝑧2, 𝑤, 𝑦|𝑑𝑜 𝑋 = 𝑥, 𝑍3 = 𝑧3 = 𝑃 𝑧1 𝑃 𝑧2 𝑃 𝑤|𝑥 𝑃 𝑦|𝑤, 𝑧3, 𝑧2

Therefore, the postintervention distribution of the other 

variables is

Figure 2.9

𝑌𝑊

𝑍1 𝑍2

𝑋 = 𝑥

𝑍3 = 𝑧3

manipulated model

𝑥

𝑧3

𝑃 𝑥|𝑑𝑜(𝑥) = 1 𝑃 𝑧3|𝑑𝑜(𝑧3) = 1
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3.2.2 THE ADJUSTMENT FORMULA: MULTIPLE INTERVENTIONS AND THE TRUNCATED PRODUCT RULE

It is interesting to note that combining

𝑃 𝑥, 𝑦, 𝑧 = 𝑃 𝑧 𝑃 𝑥|𝑧 𝑃 𝑦|𝑥, 𝑧

𝑃 𝑧, 𝑦|𝑑𝑜 𝑥 = 𝑃𝑚 𝑧 𝑃𝑚 𝑦|𝑥, 𝑧 = 𝑃 𝑧 𝑃 𝑦|𝑥, 𝑧

and

we get a simple relation between the pre-and postintervention distributions:

preintervention distribution

postintervention distribution

𝑃 𝑧, 𝑦|𝑑𝑜 𝑥 =
𝑃 𝑥, 𝑦, 𝑧

𝑃 𝑥|𝑧

It tells us that the conditional probability 𝑃 𝑥|𝑧 is all we need to know in order to predict the effect of an 

intervention do(x) from nonexperimental data governed by the distribution 𝑃 𝑥, 𝑦, 𝑧 .
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In the previous section, we came to the conclusion that we should adjust for 

a variable’s parents, when trying to determine its effect on another variable.

3.3 THE BACKDOOR CRITERION

But often, we know, or believe, that the variables have unmeasured parents 

that, though represented in the graph, may be inaccessible for measurement. 

unmeasured

In those cases, we need to find an alternative set of variables to adjust for.

This dilemma unlocks a deeper statistical question:

Since we have decided to represent causal stories with graphs, the question becomes a graph-theoretical 

problem:

Under what conditions does a causal story permit us to compute the causal effect of one variable on 

another, from data obtained by passive observations, with no interventions? 

Under what conditions, is the structure of the causal graph sufficient for computing a causal effect 

from a given data set?

𝑌

𝑋

𝑊

𝑆
𝑇 𝐻

𝐾
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The answer to that question is long enough—and important enough—that we 

will spend the rest of the lecture addressing it. 

But one of the most important tools we use to determine whether we can 

compute a causal effect is a simple test called the backdoor criterion. 

Using it, we can determine, for any two variables X and Y in a causal model 

represented by a DAG, which set of variables Z in that model should be 

conditioned on when searching for the causal relationship between X and Y.

3.3 THE BACKDOOR CRITERION

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, 

a set of variables Z satisfies the backdoor criterion relative to (X, Y) if 

no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)
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If a set of variables Z satisfies the backdoor criterion for X and Y, then the 

causal effect of X on Y is given by the formula

3.3 THE BACKDOOR CRITERION

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑍 = 𝑧

just as when we adjust for pa(X).

(Note that pa(X) always satisfies the backdoor criterion.)

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, 

a set of variables Z satisfies the backdoor criterion relative to (X, Y) if 

no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)
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3.3 THE BACKDOOR CRITERION

The logic behind the backdoor criterion is fairly straightforward. 

In general, we would like to condition on a set of nodes Z such that we

1. block all spurious paths between X and Y.

2. leave all directed paths from X to Y unperturbed.

3. create no new spurious paths.

If a set of variables Z satisfies the backdoor criterion for X and Y, then the 

causal effect of X on Y is given by the formula

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑍 = 𝑧

just as when we adjust for pa(X).

(Note that pa(X) always satisfies the backdoor criterion.)
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.

Figure 2.9

𝑌

𝑋
𝑊

𝑍1 𝑍2

𝑍3
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.

We condition on backdoor paths so as to fulfill our 

first requirement, i.e., block all spurious paths 

between X and Y.

Figure 2.9

𝑌

𝑋

𝑍1 𝑍2

𝑍3

𝑊
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.

Figure 2.9

𝑌

𝑋

𝑍1 𝑍2

𝑍3

𝑊

We condition on backdoor paths so as to fulfill our 

first requirement, i.e., block all spurious paths 

between X and Y.

conditioning on 𝑍1
blocks the backdoor 

path from X to Y 

(fork)
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.
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We condition on backdoor paths so as to fulfill our 

first requirement, i.e., block all spurious paths 

between X and Y.

conditioning on 𝑍3
blocks the backdoor 

path from X to Y 

(chain)
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.

Figure 2.9

𝑌

𝑋

𝑍1 𝑍2

𝑍3

𝑊

We condition on backdoor paths so as to fulfill our 

first requirement, i.e., block all spurious paths 

between X and Y.

conditioning on 𝑍2
blocks the backdoor 

path from X to Y 

(fork)
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.
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them, they will confound the effect that X has on Y.
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first requirement, i.e., block all spurious paths 

between X and Y.

conditioning on 𝑍3
blocks the backdoor 

path from X to Y 
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3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.

Figure 2.9

𝑌

𝑋

𝑍1 𝑍2

𝑍3

𝑊

We condition on backdoor paths so as to fulfill our 

first requirement, i.e., block all spurious paths 

between X and Y.

conditioning on 𝑍2
blocks the backdoor 

path from X to Y 

(fork)



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.3 THE BACKDOOR CRITERION

1. Block all spurious paths between X and Y.

When trying to find the causal effect of X on Y, we want the nodes we condition on to block any 

“backdoor” path in which one end has an arrow into X, because such paths may make X and Y

dependent, but are obviously not transmitting causal influences from X, and if we do not block 

them, they will confound the effect that X has on Y.

Figure 2.9

𝑌

𝑋

𝑍1 𝑍2

𝑍3

𝑊

We condition on backdoor paths so as to fulfill our 

first requirement, i.e., block all spurious paths 

between X and Y.

conditioning on 𝑍3
blocks the backdoor 

path from X to Y 

(fork)

Mind this case!!! 
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3.3 THE BACKDOOR CRITERION

2. Leave all directed paths from X to Y unperturbed.

However, we don’t want to condition on any nodes that are descendants of X. 

Descendants of X would be affected by an intervention on X and might themselves affect Y; 

conditioning on them would block those pathways. 

Figure 2.9
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𝑍1 𝑍2

𝑍3

𝑊
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3.3 THE BACKDOOR CRITERION

2. Leave all directed paths from X to Y unperturbed.

However, we don’t want to condition on any nodes that are descendants of X. 

Descendants of X would be affected by an intervention on X and might themselves affect Y; 

conditioning on them would block those pathways. 

Figure 2.9

𝑌

𝑋

𝑍1 𝑍2

𝑍3

Therefore, we don’t condition on descendants of X so 

as to fulfill our second requirement, i.e., leave all 

directed paths from X to Y unperturbed.

𝑊

conditioning on W

blocks the pathway 

from X to Y 

(chain)
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3.3 THE BACKDOOR CRITERION

3. Create no new spurious paths.

Figure 2.9

𝑌

𝑋

𝑍1 𝑍2

𝑍3

Finally, to comply with the third requirement, we should refrain 

from conditioning on any collider that would unblock a new 

path between X and Y. 

𝑊
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3.3 THE BACKDOOR CRITERION

3. Create no new spurious paths.

Finally, to comply with the third requirement, we should refrain 

from conditioning on any collider that would unblock a new 

path between X and Y. 

Figure 2.9
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3.3 THE BACKDOOR CRITERION

3. Create no new spurious paths.

Finally, to comply with the third requirement, we should refrain 

from conditioning on any collider that would unblock a new 

path between X and Y. 

Figure 2.9
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𝑍3

conditioning on 𝑍3
unblocks the backdoor 

path from X to Y 
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𝑊
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3.3 THE BACKDOOR CRITERION

3. Create no new spurious paths.

Finally, to comply with the third requirement, we should refrain 

from conditioning on any collider that would unblock a new 

path between X and Y. 

The requirement of excluding descendants of X also protects 

us from conditioning on children of intermediate nodes 

between X and Y (e.g., node S)

𝑌

𝑋

𝑍1 𝑍2

𝑍3

𝑆

𝑊

intermediate node 

between X and Y
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3.3 THE BACKDOOR CRITERION

3. Create no new spurious paths.

Finally, to comply with the third requirement, we should refrain 

from conditioning on any collider that would unblock a new 

path between X and Y. 

The requirement of excluding descendants of X also protects 

us from conditioning on children of intermediate nodes 

between X and Y (e.g., node S) 

𝑌

𝑋

𝑍1 𝑍2

𝑍3
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between X and Y
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3.3 THE BACKDOOR CRITERION

3. Create no new spurious paths.

Finally, to comply with the third requirement, we should refrain 

from conditioning on any collider that would unblock a new 

path between X and Y. 

The requirement of excluding descendants of X also protects 

us from conditioning on children of intermediate nodes 

between X and Y (e.g., node S) 
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3.3 THE BACKDOOR CRITERION
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3.3 THE BACKDOOR CRITERION

3. Create no new spurious paths.

Finally, to comply with the third requirement, we should refrain 

from conditioning on any collider that would unblock a new 

path between X and Y. 

The requirement of excluding descendants of X also protects 

us from conditioning on children of intermediate nodes 

between X and Y (e.g., node S) 

𝑌

𝑋

𝑍1 𝑍2

𝑍3

𝑆

𝑊

Such conditioning would distort the passage of causal 

association between X and Y, similar to the way 

conditioning on their parents would (node W).

conditioning on W

blocks the pathway 

from X to Y 

(chain)
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3.3 THE BACKDOOR CRITERION

To see what this means in practice, let’s look at a concrete example, 

shown in Figure 3.6, where: 

𝑌𝑋

𝑊𝑆

Figure 3.6

▪ we are trying to gauge the effect of a drug (X) on recovery (Y). 

▪ we have also measured weight (W), which has an effect on recovery (Y). 

▪ we know that socioeconomic status (S) affects both weight (W) and the 

choice to receive drug (X) —but the study we are consulting did not 

record socioeconomic status (S). drug recovery

𝑌

𝑊𝑆
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3.3 THE BACKDOOR CRITERION

Instead, we search for an observed variable that fits the backdoor criterion 

from X to Y.

A brief examination of the graph shows that W, which is not a descendant of X, 

also blocks the backdoor path 

X ← S → W → Y. 

Therefore, W meets the backdoor criterion. 

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the 

backdoor criterion relative to (X, Y) if no node in Z is a descendant of X, and Z blocks every path between 

X and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)

𝑌

𝑊𝑆

Figure 3.6

drug recovery

𝑋
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3.3 THE BACKDOOR CRITERION

Instead, we search for an observed variable that fits the backdoor criterion 

from X to Y.

A brief examination of the graph shows that W, which is not a descendant of X, 

also blocks the backdoor path 

X ← S → W → Y. 

Therefore, W meets the backdoor criterion. 

𝑍 = 𝑊

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the 

backdoor criterion relative to (X, Y) if no node in Z is a descendant of X, and Z blocks every path between 

X and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)

▪ Z = {W} is not a descendant of X

▪ Z = {W} blocks every path between X and Y that contains an arrow into X

Figure 3.6

drug recovery

𝑋 𝑌

𝑊𝑆
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3.3 THE BACKDOOR CRITERION

Instead, we search for an observed variable that fits the backdoor criterion 

from X to Y.

A brief examination of the graph shows that W, which is not a descendant of X, 

also blocks the backdoor path 

X ← S → W → Y. 

Therefore, W meets the backdoor criterion. 𝑌

𝑊𝑆

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, a set of variables Z satisfies the 

backdoor criterion relative to (X, Y) if no node in Z is a descendant of X, and Z blocks every path between 

X and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)

▪ Z = {W} is not a descendant of X

▪ Z = {W} blocks every path between X and Y that contains an arrow into X

backdoor path 

between X and Y

evidence 

blocks

Figure 3.6

drug recovery

𝑋

𝑍 = 𝑊
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3.3 THE BACKDOOR CRITERION

So long as the causal story conforms to the graph in Figure 3.6, 

adjusting for W will give us the causal effect of X on Y. 

Using the adjustment formula, we find

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑤

𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤 𝑃 𝑊 = 𝑤 𝑌

𝑊𝑆

This sum can be estimated from our observational data, so long as W is observed.

With the help of the backdoor criterion, you can easily and algorithmically come to a conclusion about a 

pressing policy concern, even in complicated graphs.

Figure 3.6

drug recovery

𝑋

adjust 

for



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.3 THE BACKDOOR CRITERION

Consider the model in Figure 2.8, and assume again that we wish to 

evaluate the effect of X on Y.

What variables should we condition on to obtain the correct effect?

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈 𝑊

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

The question boils down to finding a set of variables Z that satisfy the 

backdoor criterion, but since there are no backdoor paths from X to Y, 

the answer is trivial:

The empty set satisfies the criterion, hence no adjustment is needed.

▪ no node in Z is a descendant of X

𝑋

𝑍 = ∅

𝑊,𝑈 ∉ 𝑍
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3.3 THE BACKDOOR CRITERION

Consider the model in Figure 2.8, and assume again that we wish to 

evaluate the effect of X on Y.

The question boils down to finding a set of variables Z that satisfy the 

backdoor criterion, but since there are no backdoor paths from X to Y, 

the answer is trivial:

The empty set satisfies the criterion, hence no adjustment is needed.

▪ no node in Z is a descendant of X

▪ Z blocks every path between X and Y that contains an arrow into X

𝑋

𝑍 = ∅

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈 𝑊

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

What variables should we condition on to obtain the correct effect?
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Consider the model in Figure 2.8, and assume again that we wish to 

evaluate the effect of X on Y.

The question boils down to finding a set of variables Z that satisfy the 

backdoor criterion, but since there are no backdoor paths from X to Y, 

the answer is trivial:

The empty set satisfies the criterion, hence no adjustment is needed.

▪ no node in Z is a descendant of X

▪ Z blocks every path between X and Y that contains an arrow into X

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

The answer is

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥

𝑊 𝑍 = ∅

𝑋

What variables should we condition on to obtain the correct effect?
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3.3 THE BACKDOOR CRITERION

Suppose, however, that we were to adjust for W. 

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

Would we get the correct result for the effect of X on Y? 

Since W is a collider, conditioning on W would open the path

X → W ← S ← T → Y

𝑊

𝑋



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.3 THE BACKDOOR CRITERION

Suppose, however, that we were to adjust for W. 

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

Would we get the correct result for the effect of X on Y? 

Since W is a collider, conditioning on W would open the path

X → W ← S ← T → Y

This path is spurious since it lies outside the causal pathway from 

X to Y. 

𝑊

𝑋
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Suppose, however, that we were to adjust for W. 

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

Would we get the correct result for the effect of X on Y? 

Since W is a collider, conditioning on W would open the path

X → W ← S ← T → Y

This path is spurious since it lies outside the causal pathway from 

X to Y. 

Opening this path will create bias and yield an erroneous answer. 

𝑊

𝑋
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Suppose, however, that we were to adjust for W. 

Would we get the correct result for the effect of X on Y? 

Since W is a collider, conditioning on W would open the path

X → W ← S ← T → Y

This path is spurious since it lies outside the causal pathway from 

X to Y. 

Opening this path will create bias and yield an erroneous answer.

This means that computing the association between X and Y for 

each value of W separately will not yield the correct effect of X on Y, 

and it might even give the wrong effect for each value of W.

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

𝑊

𝑋
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How then do we compute the causal effect of X on Y for a specific value w of W ? 

𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇

In Figure 2.8 W may represent, for example, the level of 

posttreatment pain of a patient, and we might be interested in 

assessing the effect of X on Y for only those patients who did 

not suffer any pain. 

posttreatment pain 

of a patient

collider𝑊

Specifying the value of W amounts to conditioning on W = w, 

and this, as we have realized, opens a spurious path 

X → W ← S ← T → Y

from X to Y by virtue of the fact that W is a collider.

𝑋



𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

Figure 2.8

𝑇

𝑈𝑇
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𝑊 = 𝑤𝑊

How then do we compute the causal effect of X on Y for a specific value w of W ? 

The answer is that we still have the option of blocking that path 

using other variables.

𝑋

In Figure 2.8 W may represent, for example, the level of 

posttreatment pain of a patient, and we might be interested in 

assessing the effect of X on Y for only those patients who did 

not suffer any pain. 

Specifying the value of W amounts to conditioning on W = w, 

and this, as we have realized, opens a spurious path 

X → W ← S ← T → Y

from X to Y by virtue of the fact that W is a collider.



𝑌𝑆

𝑈𝑆
𝑈𝑋

𝑈𝑌

𝑈

𝑈𝑈

𝑈𝑊

𝑇

𝑈𝑇

Figure 2.8

2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.3 THE BACKDOOR CRITERION

For example, if we condition on T, we would block the spurious path

X → W ← S ← T → Y

even if W is part of the conditioning set. 

𝑊

Thus to compute the w-specific causal effect, written

𝑃 𝑦|𝑑𝑜 𝑥 , 𝑤

we adjust for T, and obtain

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 ,𝑊 = 𝑤 =

𝑡

𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤, 𝑇 = 𝑡 𝑃 𝑇 = 𝑡|𝑋 = 𝑥,𝑊 = 𝑤

How then do we compute the causal effect of X on Y for a specific value w of W ? 

𝑋

𝑇 = 𝑡

𝑊 = 𝑤



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.3 THE BACKDOOR CRITERION

Computing such W-specific causal effects is an essential step in examining effect modification or moderation, 

that is, the degree to which the causal effect of X on Y is modified by different values of W.

Consider, again, the model in Figure 3.6, and suppose we wish to test whether 

the causal effect for units at level W = w is the same as for units at level W = w′.

𝑌

𝑑𝑜(𝑋 = 𝑥)

𝑊𝑆

unmeasured

Figure 3.6

(W may represent any pretreatment variable, such as age, sex, or ethnicity). 

This question calls for comparing two causal effects,

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 ,𝑊 = 𝑤 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 ,𝑊 = 𝑤′ 𝑋

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 ,𝑊 = 𝑤 =

𝑡

𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤, 𝑇 = 𝑡 𝑃 𝑇 = 𝑡|𝑋 = 𝑥,𝑊 = 𝑤
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In the specific example of Figure 3.6, the answer is simple, because W satisfies the backdoor criterion. 

𝑌

𝑊𝑆

unmeasured𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤 𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤′

So, all we need to compare are the conditional probabilities 

no summation is required. 

Figure 3.6

𝑋

𝑑𝑜(𝑋 = 𝑥)

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 ,𝑊 = 𝑤 =

𝑡

𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤, 𝑇 = 𝑡 𝑃 𝑇 = 𝑡|𝑋 = 𝑥,𝑊 = 𝑤

In the more general case, where W alone does not satisfy the backdoor criterion, 

yet a larger set, 

𝑇 ∪𝑊

does, we need to adjust for members of T, which yields the formula on top.
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3.3 THE BACKDOOR CRITERION

From the examples seen thus far, readers may get the impression that one should refrain from adjusting for 

colliders. 

Such adjustment is sometimes unavoidable, as seen in Figure 3.7.

Figure 3.7

𝑌

𝑑𝑜(𝑋 = 𝑥)

𝑆

𝐸 𝐴

Here, there are four backdoor paths from X to Y, all traversing 

variable S, which is a collider on the path

X ← E → S ← A → Y. 

Conditioning on S will unblock this path and will violate the 

backdoor criterion. 

𝑋
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𝑋

𝑑𝑜(𝑋 = 𝑥)
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From the examples seen thus far, readers may get the impression that one should refrain from adjusting for 
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Such adjustment is sometimes unavoidable, as seen in Figure 3.7.
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𝐸 𝐴

Here, there are four backdoor paths from X to Y, all traversing 

variable S, which is a collider on the path

X ← E → S ← A → Y. 

Conditioning on S will unblock this path and will violate the 

backdoor criterion. 

Figure 3.7

𝑋

𝑑𝑜(𝑋 = 𝑥)

backdoor path 

blocked
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3.3 THE BACKDOOR CRITERION

𝑌

𝑆

𝐸 𝐴

Conditioning on S will unblock this path and will violate the 

backdoor criterion. 

To block all backdoor paths, we need to condition on one of the 

following sets:

{E, S}, {A, S}, or {E, S, A}. 

Each of these contains S.

We see, therefore, that S, a collider, must 

be adjusted for in any set that yields an 

unbiased estimate of the effect of X on Y.

Figure 3.7

𝑋

𝑑𝑜(𝑋 = 𝑥)

backdoor path 

unblocked

From the examples seen thus far, readers may get the impression that one should refrain from adjusting for 

colliders. 

Such adjustment is sometimes unavoidable, as seen in Figure 3.7.

Here, there are four backdoor paths from X to Y, all traversing 

variable S, which is a collider on the path

X ← E → S ← A → Y. 
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The backdoor criterion has some further possible benefits. 

Consider the fact that

is an empirical fact of nature, not a byproduct of our analysis. 

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

That means that any suitable variable or set of variables that we adjust on—

whether it be pa(X) or any other set that conforms to the backdoor criterion—

must return the same result for

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

In the case we looked at in Figure 3.6, this means that

𝑃 𝑌 = 𝑦|𝑋 = 𝑥 =

𝑤

𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤 𝑃 𝑊 = 𝑤 =

𝑠

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑆 = 𝑠 𝑃 𝑆 = 𝑠

𝑌
𝑑𝑜(𝑋 = 𝑥)

𝑊𝑆

Figure 3.6

𝑋

unmeasured
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3.3 THE BACKDOOR CRITERION

The equality at the bottom of the slide is useful in two ways: 

𝑃 𝑌 = 𝑦|𝑋 = 𝑥 =

𝑤

𝑃 𝑌 = 𝑦|𝑋 = 𝑥,𝑊 = 𝑤 𝑃 𝑊 = 𝑤 =

𝑠

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑆 = 𝑠 𝑃 𝑆 = 𝑠

▪ in the cases where we have multiple observed sets of variables suitable for 

adjustment (e.g., in Figure 3.6, if both W and S had been observed),                  

it provides us with a choice of which variables to adjust for. 

▪ the equality constitutes a testable constraint on the data when all the adjustment variables are observed, 

much like the rules of d-separation. If we are attempting to fit a model that leads to such an equality on a 

data set that violates it, we can discard that model.

This could be useful for any number of practical reasons—perhaps one set 

of variables is more expensive to measure than the other, or more prone to 

human error, or simply has more variables and is therefore more difficult to 

calculate.

𝑌
𝑑𝑜(𝑋 = 𝑥)

𝑊𝑆

Figure 3.6

𝑋

unmeasured
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The backdoor criterion provides us with a 

simple method of identifying sets of 

covariates that should be adjusted for when 

we seek to estimate causal effects from 

nonexperimental data. 

It does not, however, exhaust all ways of 

estimating such effects. 

The do-operator can be applied to graphical 

patterns that do not satisfy the backdoor 

criterion to identify effects that on first sight 

seem to be beyond one’s reach. 

One such pattern, called front-door, is now 

discussed.

3.4 THE FRONT-DOOR CRITERION
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3.4 THE FRONT-DOOR CRITERION

Consider the century-old debate on the relation between smoking and lung 

cancer. 

In the years preceding 1970, the tobacco industry has managed to prevent 

antismoking legislation by promoting the theory that the observed correlation 

between smoking and lung cancer could be explained by some sort of 

carcinogenic genotype that also induces an inborn craving for nicotine.

F
ig

u
re

 3
.1

0
 (

a
)

𝑌
Lung cancer

𝑋
Smoking

𝑈
Genotype

A graph depicting this example is shown in Figure 3.10 (a).

This graph does not satisfy the backdoor condition because the variable 

U is unobserved and hence cannot be used to block the backdoor path 

(X ← U → Y) from X to Y.𝑑𝑜(𝑋 = 𝑥)
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3.4 THE FRONT-DOOR CRITERION

The causal effect of smoking on lung cancer is not identifiable in this model; one can never ascertain which 

portion of the observed correlation between X and Y is spurious, attributable to their common effect, U, and 

what portion is genuinely causative.

(We note, however, that even in these circumstances, much compelling work has been done to quantify how 

strong the (unobserved) associates between both U and X, and U and Y, must be in order to entirely explain 

the observed association between X and Y.)

However, we can go much 

further by considering the 

model in Figure 3.10 (b), 

where an additional 

measurement is available: 

the amount of tar deposits 

in patients’ lungs. 

𝑆

Tar deposit
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𝑑𝑜(𝑋 = 𝑥)𝑑𝑜(𝑋 = 𝑥)
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3.4 THE FRONT-DOOR CRITERION

The model in Figure 3.10 (b) does not satisfy the backdoor criterion, because there is still no variable capable of 

blocking the spurious path 

X ← U → Y. 

We see, however, that the causal effect of X on Y

is nevertheless identifiable in this model, through two consecutive 

applications of the backdoor criterion.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥

How can the intermediate variable S help us to assess the effect 

of X on Y? 

The answer is not at all trivial: as the following quantitative 

example shows, it may lead to heated debate.

𝑑𝑜(𝑋 = 𝑥)
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Assume that a careful study was undertaken, in which the following factors were measured simultaneously on a 

randomly selected sample of 800,000 subjects considered to be at very high risk of cancer (because of 

environmental exposures such as smoking, asbestos, radon, and the like).

1. Whether the subject smoked

2. Amount of tar in the subject’s lungs

3. Whether lung cancer has been detected in the patient.

The data from this study 

are presented in Table 3.1, 

where, for simplicity, all 

three variables are 

assumed to be binary. All 

numbers are given in 

thousands.

Smokers Non Smokers Smokers Non Smokers Smokers Non Smokers

380 20 20 380 400 400

323 1 18 38 341 39

85% 5% 90% 10% 85.25% 9.75%

57 19 2 342 59 361

15% 95% 10% 90% 14.75% 90.25%

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of 

cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

No cancer

Cancer

Tar No Tar All Subjects

400 400 800
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3.4 THE FRONT-DOOR CRITERION

Two opposing interpretations can be offered for these data.

The tobacco industry argues that the table proves the beneficial effect of 

smoking. 

Smokers Non Smokers Smokers Non Smokers Smokers Non Smokers

380 20 20 380 400 400

323 1 18 38 341 39

85% 5% 90% 10% 85.25% 9.75%

57 19 2 342 59 361

15% 95% 10% 90% 14.75% 90.25%

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of 

cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

No cancer

Cancer

Tar No Tar All Subjects

400 400 800



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.4 THE FRONT-DOOR CRITERION

Smokers Non Smokers Smokers Non Smokers Smokers Non Smokers

380 20 20 380 400 400

323 1 18 38 341 39

85% 5% 90% 10% 85.25% 9.75%

57 19 2 342 59 361

15% 95% 10% 90% 14.75% 90.25%

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of 

cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

No cancer

Cancer

Tar No Tar All Subjects

400 400 800

Two opposing interpretations can be offered for these data.

The tobacco industry argues that the table proves the beneficial effect of 

smoking. 

They point to the fact that only 14.75% of the smokers have developed lung 

cancer, compared to 90.25% of the nonsmokers. 
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3.4 THE FRONT-DOOR CRITERION

Two opposing interpretations can be offered for these data.

Moreover, within each of two subgroups, Tar and No Tar, smokers show a 

much lower percentage of cancer than nonsmokers. (These numbers are 

obviously contrary to empirical observations but well illustrate our point that 

observations are not to be trusted.)

Smokers Non Smokers Smokers Non Smokers Smokers Non Smokers

380 20 20 380 400 400

323 1 18 38 341 39

85% 5% 90% 10% 85.25% 9.75%

57 19 2 342 59 361

15% 95% 10% 90% 14.75% 90.25%

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of 

cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

No cancer

Cancer

Tar No Tar All Subjects

400 400 800
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Two opposing interpretations can be offered for these data.

Moreover, within each of two subgroups, Tar and No Tar, smokers show a 

much lower percentage of cancer than nonsmokers. (These numbers are 

obviously contrary to empirical observations but well illustrate our point that 

observations are not to be trusted.)

Smokers Non Smokers Smokers Non Smokers Smokers Non Smokers

380 20 20 380 400 400

323 1 18 38 341 39

85% 5% 90% 10% 85.25% 9.75%

57 19 2 342 59 361

15% 95% 10% 90% 14.75% 90.25%

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of 

cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

No cancer

Cancer

Tar No Tar All Subjects

400 400 800
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3.4 THE FRONT-DOOR CRITERION

However, the antismoking lobbyists argue that the table tells an entirely different 

story—that smoking would actually increase, not decrease, one’s risk of lung cancer. 

Their argument goes as follows:

Tar No Tar Tar No Tar Tar No Tar

380 20 20 380 400 400

323 18 1 38 324 56

85% 90% 5% 10% 81.00% 14.00%

57 2 19 342 76 344

15% 10% 95% 90% 19.00% 86.00%

No cancer

Cancer

Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage of cancer cases 

in each smoking-tar category (number in thousands)

Smokers Non Smokers All Subjects

400 400 800
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3.4 THE FRONT-DOOR CRITERION

However, the antismoking lobbyists argue that the table tells an entirely different 

story—that smoking would actually increase, not decrease, one’s risk of lung cancer. 

Their argument goes as follows:

▪ If you choose to smoke, then your chances of building up tar deposits are 

95% (380/400), compared to 5% (20/400) if you choose not to smoke. 

▪ To evaluate the effect of tar deposits, we look separately at two groups, 

smokers and nonsmokers, as done in Table 3.2. 
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85% 90% 5% 10% 81.00% 14.00%
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15% 10% 95% 90% 19.00% 86.00%

No cancer

Cancer

Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage of cancer cases 

in each smoking-tar category (number in thousands)

Smokers Non Smokers All Subjects

400 400 800
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3.4 THE FRONT-DOOR CRITERION

It appears that tar deposits have a harmful effect in both groups; 

▪ in smokers it increases cancer rates from 10% to 15%, and 
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57 2 19 342 76 344
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in each smoking-tar category (number in thousands)
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3.4 THE FRONT-DOOR CRITERION

It appears that tar deposits have a harmful effect in both groups; 

▪ in smokers it increases cancer rates from 10% to 15%, and 

▪ in nonsmokers it increases cancer rates from 90% to 95%. 

Tar No Tar Tar No Tar Tar No Tar

380 20 20 380 400 400

323 18 1 38 324 56

85% 90% 5% 10% 81.00% 14.00%

57 2 19 342 76 344

15% 10% 95% 90% 19.00% 86.00%

No cancer

Cancer

Table 3.2 Reorganization of the data set of Table 3.1 showing the percentage of cancer cases 

in each smoking-tar category (number in thousands)

Smokers Non Smokers All Subjects

400 400 800

Thus, regardless of whether I have a natural craving for nicotine, I should avoid the harmful effect of tar deposits, 

and no-smoking offers very effective means of avoiding them.
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3.4 THE FRONT-DOOR CRITERION

The graph of Figure 3.10 (b) enables us to decide between these two groups of statisticians.

𝑌
Lung cancer

𝑋
Smoking

𝑈
Genotype

First, we note that the effect of X on S is identifiable, since there is no unblocked backdoor path from X to S. 

(Y  Z)
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The graph of Figure 3.10 (b) enables us to decide between these two groups of statisticians.
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3.4 THE FRONT-DOOR CRITERION

The graph of Figure 3.10 (b) enables us to decide between these two groups of statisticians.

Thus, we can immediately write

𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑆 = 𝑠|𝑋 = 𝑥

𝑌
Lung cancer

𝑋
Smoking

𝑈
Genotype

𝑑𝑜(𝑋 = 𝑥)

First, we note that the effect of X on S is identifiable, since there is no unblocked backdoor path from X to S. 

(Y  Z)
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(Y  Z)



𝑆

Tar deposit

2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.4 THE FRONT-DOOR CRITERION
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the backdoor path from S to Y, namely 

S ← X ← U → Y, 

can be blocked by conditioning on X. 
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3.4 THE FRONT-DOOR CRITERION
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Thus, we can write

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 =

𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′ 𝑌
Lung cancer

𝑈
Genotype

𝑋
Smoking

𝑑𝑜(𝑆 = 𝑠)

The graph of Figure 3.10 (b) enables us to decide between these two groups of statisticians.

Next we note that the effect of S on Y is also identifiable, since 

the backdoor path from S to Y, namely 

S ← X ← U → Y, 

can be blocked by conditioning on X. 

𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑆 = 𝑠|𝑋 = 𝑥

Thus, we can immediately write

First, we note that the effect of X on S is identifiable, since there is no unblocked backdoor path from X to S. 

(Y  Z)
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3.4 THE FRONT-DOOR CRITERION

Both

and

are obtained through the adjustment formula, the first by conditioning on the null set, and the second by 

adjusting for X.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 =

𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′

𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑆 = 𝑠|𝑋 = 𝑥

We are now going to chain together the two partial effects to obtain the overall effect of X on Y. 
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3.4 THE FRONT-DOOR CRITERION

The reasoning goes as follows: 

▪ If nature chooses to assign S the value s, then the probability of Y would be 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 . 

▪ But the probability that nature would choose to do that (to set S = s), given that we choose to set X at x, is 

𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥 .

Therefore, summing over all 

states s of S, we have 

Both

and

are obtained through the adjustment formula, the first by conditioning on the null set, and the second by 

adjusting for X.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 =

𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′

𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑆 = 𝑠|𝑋 = 𝑥

We are now going to chain together the two partial effects to obtain the overall effect of X on Y. 

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑠

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥
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3.4 THE FRONT-DOOR CRITERION

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑠

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥

By evaluating the terms 

on the right-hand side of

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 =

𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′

𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑆 = 𝑠|𝑋 = 𝑥

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑠



𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′

𝑃 𝑆 = 𝑠|𝑋 = 𝑥
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3.4 THE FRONT-DOOR CRITERION

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑠



𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′ 𝑃 𝑆 = 𝑠|𝑋 = 𝑥

we obtain the following do-free expression

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑠

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥

By evaluating the terms 

on the right-hand side of

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑆 = 𝑠 =

𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′

𝑃 𝑆 = 𝑠|𝑑𝑜 𝑋 = 𝑥 = 𝑃 𝑆 = 𝑠|𝑋 = 𝑥

Front-Door Formula
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3.4 THE FRONT-DOOR CRITERION

Applying this formula to the data in Table 3.1, we see that the tobacco industry was wrong;

▪ tar deposits have a harmful effect in that they make lung cancer more likely and smoking, by increasing 

tar deposits, increases the chances of causing this harm.

Smokers Non Smokers Smokers Non Smokers Smokers Non Smokers

380 20 20 380 400 400

323 1 18 38 341 39

85% 5% 90% 10% 85.25% 9.75%

57 19 2 342 59 361

15% 95% 10% 90% 14.75% 90.25%

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of 

cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

No cancer

Cancer

Tar No Tar All Subjects

400 400 800

The data in Table 3.1 are obviously unrealistic and were deliberately crafted so as to surprise readers with 

counterintuitive conclusions that may emerge from naive analysis of observational data.

In reality, we would expect observational studies to show positive correlation between smoking and lung cancer. 
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3.4 THE FRONT-DOOR CRITERION

The estimand

could then be used for confirming and quantifying the harmful 

effect of smoking on cancer.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =

𝑠

𝑃 𝑆 = 𝑠|𝑋 = 𝑥 

𝑥′

𝑃 𝑌 = 𝑦|𝑆 = 𝑠, 𝑋 = 𝑥′ 𝑃 𝑋 = 𝑥′

Smokers Non Smokers Smokers Non Smokers Smokers Non Smokers

380 20 20 380 400 400

323 1 18 38 341 39

85% 5% 90% 10% 85.25% 9.75%

57 19 2 342 59 361

15% 95% 10% 90% 14.75% 90.25%

Table 3.1 A hypothetical data set of randomly selected samples showing the percentage of 

cancer cases for smokers and nonsmokers in each tar category (numbers in thousands)

No cancer

Cancer

Tar No Tar All Subjects

400 400 800

𝑆

Tar deposit 𝑌
Lung cancer

𝑋
Smoking

𝑈
Genotype
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3.4 THE FRONT-DOOR CRITERION

The preceding analysis can be generalized to structures, where multiple paths 

lead from X to Y.

A set of variables Z is said to satisfy the front-door criterion relative to an 

ordered pair of variables (X, Y) if

1. Z intercepts all directed paths from X to Y.

2. There is no unblocked backdoor path from X to Z.

3. All backdoor paths from Z to Y are blocked by X.

Definition 3.4.1 (Front-Door)

If Z satisfies the front-door criterion relative to (X, Y) and if 𝑃 𝑥, 𝑧 > 0, then 

the causal effect of X on Y is identifiable and is given by the formula

Theorem 3.4.1 (Front-Door Adjustment)

𝑃 𝑦|𝑑𝑜 𝑥 =

𝑧

𝑃 𝑧|𝑥 

𝑥′

𝑃 𝑦|𝑧, 𝑥′ 𝑃 𝑥′
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3.4 THE FRONT-DOOR CRITERION

The combination of the adjustment formula, the backdoor criterion, and the 

front-door criterion covers numerous scenarios. 

It proves the enormous, even revelatory, power that causal graphs have in 

not merely representing, but actually discovering causal information.

The preceding analysis can be generalized to structures, where multiple paths 

lead from X to Y.

A set of variables Z is said to satisfy the front-door criterion relative to an 

ordered pair of variables (X, Y) if

1. Z intercepts all directed paths from X to Y.

2. There is no unblocked backdoor path from X to Z.

3. All backdoor paths from Z to Y are blocked by X.

Definition 3.4.1 (Front-Door)
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3.6 INVERSE PROBABILITY WEIGHING

By now, the astute reader may have 

noticed a problem with our intervention 

procedures. 

Moreover, they tell us that we can make this prediction without simulating the intervention and without even 

thinking about it.

All we need to do is identify a set Z of covariates satisfying one of the criteria, plug this set into the adjustment 

formula, and we’re done: the resulting expression is guaranteed to provide a valid prediction of how the 

intervention will affect the outcome.

The backdoor and front-door criteria 

tell us whether it is possible to predict 

the results of hypothetical interventions 

from data obtained in an observational 

study. 
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3.6 INVERSE PROBABILITY WEIGHING

This is lovely in theory, but in practice, adjusting for Z may prove problematic. 

It entails looking at each value or combination of values of Z separately, estimating the conditional probability of 

Y given X in that stratum and then averaging the results. 

As the number of strata increases, adjusting for Z will encounter both computational and estimational difficulties. 

Since the set Z can be comprised of dozens of variables, each spanning 

dozens of discrete values, the summation required by the adjustment 

formula may be formidable, and the number of data samples falling 

within each Z = z cell may be too small to provide reliable estimates of 

the conditional probabilities involved.

Curse of Dimensionality
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3.6 INVERSE PROBABILITY WEIGHING

Assuming that the function 𝑃 𝑋 = 𝑥|𝑍 = 𝑧 is available to us, we can use it to 

▪ generate artificial samples that act as though they were drawn from the postintervention probability Pm, 

rather than 𝑃 𝑥, 𝑦, 𝑧 . 

▪ Once we obtain such fictitious samples, we can evaluate 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑥 by simply counting the frequency 

of the event Y = y, for each stratum X = x in the sample. 

In this way, we skip the labor associated with summing over all strata Z = z; we essentially let nature do the 

summation for us.

The idea of estimating probabilities using fictitious samples is not new to us; it was used all along, though 

implicitly, whenever we estimated conditional probabilities from finite samples.
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3.6 INVERSE PROBABILITY WEIGHING

In Part 1, we characterized conditioning as a process of filtering—that is, ignoring all cases for which the condition 

X = x does not hold, and normalizing the surviving cases, so that their total probabilities would add up to one. 

Age of U.S. voters in the 2012 presidential election.

Age Group # of voters

18-29 20,539

30-44 30,756

45-64 52,013

65+ 29,641

132,949

TABLE 1.3   Age breakdown of voters in 2012 election 

(all numbers in thousands)

Age < 45 Filtering Table 1.3 by Age < 45

The net result of this operation is that the 

probability of each case such that Age < 45 

is boosted by a factor
1

𝑃 𝑋 = 𝑥
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3.6 INVERSE PROBABILITY WEIGHING

In Part 1, we characterized conditioning as a process of filtering—that is, ignoring all cases for which the condition 

X = x does not hold, and normalizing the surviving cases, so that their total probabilities would add up to one. 

This can be seen directly from Bayes’ rule, which tells us that

𝑃 𝑌 = 𝑦, 𝑍 = 𝑧|𝑋 = 𝑥 =
𝑃 𝑌 = 𝑦, 𝑍 = 𝑧, 𝑋 = 𝑥

𝑃 𝑋 = 𝑥

The net result of this operation is that the 

probability of each case such that Age < 45 

is boosted by a factor

In other words, to find the probability of each row in the 

surviving table, we multiply the unconditional probability,

𝑃 𝑌 = 𝑦, 𝑍 = 𝑧, 𝑋 = 𝑥

by the constantFigure 3.3

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

1

𝑃 𝑋 = 𝑥

1

𝑃 𝑋 = 𝑥
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3.6 INVERSE PROBABILITY WEIGHING

Let us now examine the population created by the 𝑑𝑜 𝑋 = 𝑥 operation and ask how the probability of each case 

changes as a result of this operation.  The answer is given to us by the adjustment formula, which reads

𝑃 𝑦|𝑑𝑜 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑍 = 𝑧

𝑃 𝑦|𝑑𝑜 𝑥 =

𝑧

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑍 = 𝑧 𝑃 𝑋 = 𝑥|𝑍 = 𝑧 𝑃 𝑍 = 𝑧

𝑃 𝑋 = 𝑥|𝑍 = 𝑧

Multiplying and dividing the expression inside the sum by the propensity score 1/𝑃 𝑋 = 𝑥|𝑍 = 𝑧 , we get

Upon realizing the numerator is none other but the pretreatment distribution of 

(X, Y, Z), we can write

𝑃 𝑦|𝑑𝑜 𝑥 =

𝑧

𝑃 𝑌 = 𝑦, 𝑋 = 𝑥, 𝑍 = 𝑧

𝑃 𝑋 = 𝑥|𝑍 = 𝑧

and the answer becomes clear: each case 𝑌 = 𝑦, 𝑋 = 𝑥, 𝑍 = 𝑧 in the 

population should boost its probability by a factor equals to 1/𝑃 𝑋 = 𝑥|𝑍 = 𝑧 . 

(Hence the name “inverse probability weighing.”)𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

Figure 3.3
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3.6 INVERSE PROBABILITY WEIGHING

This provides us with a simple procedure of estimating 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 when we have finite samples. 

If we weigh each available sample by a factor = 1/𝑃 𝑋 = 𝑥|𝑍 = 𝑧 , we can then treat the reweighted samples as 

if they were generated from Pm, not P, and proceed to estimate 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑥 accordingly.

This is best demonstrated in an example.

Table 3.3 returns to our Simpson’s paradox example of 

the drug that seems to help men and women but to hurt 

the general population. X Y Z % population

yes yes male 0.116

yes yes female 0.274

yes no male 0.009

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036

Table 3.3   Joint probability distribution P(X , Y , Z ) for 

the drug gender-recovery story of Part 1 (Table 1.1)

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

drug recovery

Figure 3.3
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3.6 INVERSE PROBABILITY WEIGHING

We’ll use the same data we used before but presented this time as a weighted table. 

In this case, 

▪ X represents whether or not the patient took the drug, 

▪ Y represents whether the patient recovered, and 

▪ Z represents the patient’s gender.
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yes yes female 0.274

yes no male 0.009

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036

Table 3.3   Joint probability distribution P(X , Y , Z ) for 

the drug gender-recovery story of Part 1 (Table 1.1)
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3.6 INVERSE PROBABILITY WEIGHING

If we condition on “X = yes,” we get the data set shown in Table 3.4, which was formed in two steps. 

X Y Z % population

yes yes male 0.116

yes yes female 0.274

yes no male 0.009

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036

Table 3.3   Joint probability distribution P(X , Y , Z ) for 

the drug gender-recovery story of Part 1 (Table 1.1)

X Y Z % population

yes yes male 0.232

yes yes female 0.548

yes no male 0.018

yes no female 0.202

Table 3.4   Conditional probability distribution P(Y , Z |X ) 

for drug users (X  = yes ) in the population of Table 3.3

▪ all rows with X = no were excluded. 

𝑃 𝑋 = 𝑦𝑒𝑠 = 0.500

▪ the weights given to the remaining rows were “renormalized,” that is, multiplied by a 

constant so as to make them sum to one. 

1

𝑃 𝑋 = 𝑦𝑒𝑠
= 2

boosting 

factor
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3.6 INVERSE PROBABILITY WEIGHING

Let us now examine the population created by the 𝑑𝑜 𝑋 = 𝑦𝑒𝑠 operation, representing a deliberate decision to 

administer the drug to the same population.

To calculate the distribution of weights in this population, we need to compute the factor 𝑃 𝑋 = 𝑦𝑒𝑠|𝑍 = 𝑧 for 

each z, which, according to Table 3.3, is given by

X Y Z % population

yes yes male 0.116

yes yes female 0.274

yes no male 0.009

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036

Table 3.3   Joint probability distribution P(X , Y , Z ) for 

the drug gender-recovery story of Part 1 (Table 1.1)
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3.6 INVERSE PROBABILITY WEIGHING
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Table 3.3   Joint probability distribution P(X , Y , Z ) for 

the drug gender-recovery story of Part 1 (Table 1.1)

𝑃 𝑋 = 𝑦𝑒𝑠|𝑍 = 𝑚𝑎𝑙𝑒 =
0.116 + 0.01

0.116 + 0.01 + 0.334 + 0.051
= 0.247𝑃 𝑋 = 𝑦𝑒𝑠|𝑍 = 𝑚𝑎𝑙𝑒 =

0.116 + 0.009

0.116 + 0.009 + 0.334 + 0.051
= 0.245= 0.245
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3.6 INVERSE PROBABILITY WEIGHING

X Y Z % population

yes yes male 0.116

yes yes female 0.274

yes no male 0.009

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036

Table 3.3   Joint probability distribution P(X , Y , Z ) for 

the drug gender-recovery story of Part 1 (Table 1.1)

Multiplying the gender-matching rows by 1 ∕ 0.245 and 1 ∕ 0.765, respectively, we obtain Table 3.5, which 

represents the postintervention distribution of the population of Table 3.3.

1

𝑃 𝑋 = 𝑦𝑒𝑠|𝑍 = 𝑚𝑎𝑙𝑒
=

1

0.245

X Y Z % population

yes yes male 0.473

yes yes female 0.358

yes no male 0.037

yes no female 0.132

Table 3.5   Probability distribution for the population of 

Table 3.3 under the intervention do(X  = yes), determined 

via the inverse probability method
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3.6 INVERSE PROBABILITY WEIGHING

X Y Z % population
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Multiplying the gender-matching rows by 1 ∕ 0.245 and 1 ∕ 0.765, respectively, we obtain Table 3.5, which 

represents the postintervention distribution of the population of Table 3.3.
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yes yes male 0.473

yes yes female 0.358

yes no male 0.037

yes no female 0.132

Table 3.5   Probability distribution for the population of 

Table 3.3 under the intervention do(X  = yes), determined 
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0.473 + 0.358 = 0.832
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3.6 INVERSE PROBABILITY WEIGHING

The probability of recovery in this distribution can now be computed directly from the data (Table 3.5), by 

summing the first two rows:

X Y Z % population

yes yes male 0.473

yes yes female 0.358

yes no male 0.037

yes no female 0.132

Table 3.5   Probability distribution for the population of 

Table 3.3 under the intervention do(X  = yes), determined 

via the inverse probability method

𝑃 𝑌 = 𝑦𝑒𝑠|𝑑𝑜 𝑋 = 𝑦𝑒𝑠 =
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3.6 INVERSE PROBABILITY WEIGHING

Three points are worth noting about this procedure:

1) the redistribution of weight is no longer proportional but quite discriminatory. 

• Row #1, for instance, boosted its weight from 0.116 to 0.473, a factor of 4.08,

• Row #2 is boosted from 0.274 to 0.359, a factor of only 1.3. 

This redistribution renders X independent of Z, as in a randomized trial (Figure 3.4).

X Y Z % population

yes yes male 0.116

yes yes female 0.274

yes no male 0.009

yes no female 0.101

no yes male 0.334

no yes female 0.079

no no male 0.051

no no female 0.036

Table 3.3   Joint probability distribution P(X , Y , Z ) for 

the drug gender-recovery story of Part 1 (Table 1.1)

X Y Z % population

yes yes male 0.473

yes yes female 0.358

yes no male 0.037

yes no female 0.132

Table 3.5   Probability distribution for the population of 

Table 3.3 under the intervention do(X  = yes), determined 

via the inverse probability method
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3.6 INVERSE PROBABILITY WEIGHING

Three points are worth noting about this procedure:
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• Row #1, for instance, boosted its weight from 0.116 to 0.473, a factor of 4.08,

• Row #2 is boosted from 0.274 to 0.358, a factor of only 1.307. 

This redistribution renders X independent of Z, as in a randomized trial (Figure 3.4).
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Figure 3.4 𝑌𝑋 = 𝑥

𝑍

𝑈𝑍

𝑥
𝑈𝑌



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.6 INVERSE PROBABILITY WEIGHING

Three points are worth noting about this procedure:

2) an astute reader would notice that in this example no computational savings were realized; to estimate 

𝑃 𝑌 = 𝑦𝑒𝑠|𝑑𝑜 𝑋 = 𝑦𝑒𝑠

we still needed to sum over all values of Z, males and females. 

X Y Z % population

yes yes male 0.473

yes yes female 0.358

yes no male 0.037

yes no female 0.132

Table 3.5   Probability distribution for the population of 

Table 3.3 under the intervention do(X  = yes), determined 

via the inverse probability method

Indeed, the savings become significant when the number of Z values is in the thousands or millions, and the 

sample size is in the hundreds. 

In such cases, the number of Z values that the 

inverse probability method would encounter is equal 

to the number of samples available, not to the 

number of possible Z values, which is prohibitive.
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3.6 INVERSE PROBABILITY WEIGHING

Three points are worth noting about this procedure:

3) an important word of caution. The method of inverse probability weighing is only valid when the set Z

entering the factor 

satisfies the backdoor criterion. 

X Y Z % population

yes yes male 0.473

yes yes female 0.358

yes no male 0.037

yes no female 0.132

Table 3.5   Probability distribution for the population of 

Table 3.3 under the intervention do(X  = yes), determined 

via the inverse probability method

1

𝑃 𝑋 = 𝑥|𝑍 = 𝑧

Lacking this assurance, the method may actually 

introduce more bias than the one obtained through 

naive conditioning, which produces Table 3.4 and the 

absurdities of Simpson’s paradox.

X Y Z % population

yes yes male 0.232

yes yes female 0.548

yes no male 0.018

yes no female 0.202

Table 3.4   Conditional probability distribution P(Y , Z |X ) 

for drug users (X  = yes ) in the population of Table 3.3
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3.7 MEDIATION

Often, when one variable causes another, it does so both directly and indirectly, 

through a set of mediating variables. 

For instance, in our blood pressure (Z) / treatment (X) / recovery (Y) example of 

Simpson’s paradox, treatment is both a direct (negative) cause of recovery, and 

an indirect (positive) cause, through the mediator of blood pressure—treatment 

decreases blood pressure, which increases recovery. 

Figure 3.5

𝑌𝑋

𝑍

𝑈𝑍

𝑈𝑋 𝑈𝑌

treatment recovery

In many cases, it is useful to know 

▪ how much of variable X’s effect on variable Y is direct and 
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In many cases, it is useful to know 

▪ how much of variable X’s effect on variable Y is direct and 

▪ how much is mediated. 

In practice, however, separating these two avenues of causation has proved difficult.
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3.7 MEDIATION

Suppose, for example, we want to know whether and to what degree a 

company discriminates by Gender (X) in its Hiring practices (Y). Such 

discrimination would constitute a direct effect of gender on hiring, which is 

illegal in many cases. 

However, Gender (X) also affects Hiring (Y) practices in other ways; often, 

for instance, women are more or less likely to go into a particular field than 

men, or to have achieved advanced degrees in that field.

So Gender (X) may also have an indirect effect on Hiring (Y) through the mediating variable of Qualification (S).

Figure 3.11

𝑌𝑋

𝑆

Gender Hiring

Qualification

mediating 

variable
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3.7 MEDIATION

In order to find the direct effect of Gender (X) on Hiring (Y), we need to somehow hold Qualification (S) 

steady, and measure the remaining relationship between Gender (X) and Hiring (Y); with Qualification (S) 

unchanging, any change in Hiring (Y) would have to be due to Gender (X) alone. 

Suppose, for example, we want to know whether and to what degree a 

company discriminates by Gender (X) in its Hiring practices (Y). Such 

discrimination would constitute a direct effect of gender on hiring, which is 

illegal in many cases. 

However, Gender (X) also affects Hiring (Y) practices in other ways; often, 

for instance, women are more or less likely to go into a particular field than 

men, or to have achieved advanced degrees in that field.

So Gender (X) may also have an indirect effect on Hiring (Y) through the mediating variable of Qualification (S).

𝑌𝑋

𝑆

Gender Hiring

Qualification

Figure 3.11
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𝑌𝑋

𝑆

Gender Hiring

Qualification

Traditionally, this has been done by conditioning on the mediating variable 

(Qualification (S)). 

So if 

P (Hired | Female, Highly Qualified)  P (Hired | Male, Highly Qualified),

the reasoning goes, then there is a direct effect of Gender (X) on Hiring (Y).

In order to find the direct effect of Gender (X) on Hiring (Y), we need to somehow hold Qualification (S) 

steady, and measure the remaining relationship between Gender (X) and Hiring (Y); with Qualification (S) 

unchanging, any change in Hiring (Y) would have to be due to Gender (X) alone. 
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Figure 3.12

𝑌𝑋

𝑆

Gender Hiring

Qualification

Traditionally, this has been done by conditioning on the mediating variable 

(Qualification (S)). 

So if 

P (Hired | Female, Highly Qualified)  P (Hired | Male, Highly Qualified),

the reasoning goes, then there is a direct effect of Gender (X) on Hiring (Y).

Income

𝐼

In the example in Figure 3.11, this is correct. 

But consider what happens if there are confounders of the mediating variable and the outcome variable. 

▪ For instance, Income (I): People from higher income backgrounds are more likely to have gone 

to college and more likely to have connections that would help them get hired.

mediating 
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variable
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𝑆

Gender Hiring

Qualification

Now, if we condition on Qualification (S), we are conditioning on a collider. 

Income

𝐼
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𝑌𝑋

𝑆

Gender Hiring

Qualification

Now, if we condition on Qualification (S), we are conditioning on a collider. 

Income

𝐼

▪ if we don’t condition on Qualification (S), indirect dependence can 

pass from Gender (X) to Hiring (Y) through the path 

Gender → Qualification → Hiring
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𝑌𝑋

𝑆

Gender Hiring

Qualification

Now, if we condition on Qualification (S), we are conditioning on a collider. 

Income

𝐼

▪ if we don’t condition on Qualification (S), indirect dependence can 

pass from Gender (X) to Hiring (Y) through the path 

Gender → Qualification → Hiring

▪ if we do condition on Qualification (S), indirect dependence can pass 

from gender to hiring through the path 

Gender → Qualification ← Income → Hiring

Figure 3.12
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𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼
To understand the problem intuitively, note that by conditioning on 

Qualification (S), we will be comparing men and women at different 

levels of income, because income must change to keep qualification 

constant. 

No matter how you look at it, we’re not getting the true direct effect of 

Gender (X) on Hiring (Y). 

Traditionally, therefore, statistics has had to abandon a huge class of potential mediation problems, where the 

concept of “direct effect” could not be defined, let alone estimated.

Figure 3.12
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Luckily, we now have a conceptual 

way of holding the mediating 

variable steady without conditioning 

on it: We can intervene on it. 

If, instead of conditioning, we fix the Qualification (S), the arrow between Gender (X) and Qualification (S) (and 

the one between Income (T) and Qualification (S)) disappears, and no spurious dependence can pass through it. 

𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼

𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼
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Luckily, we now have a conceptual 

way of holding the mediating 

variable steady without conditioning 

on it: We can intervene on it. 

𝑌𝑋

𝑆

Gender Hiring
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𝐼

𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼

Of course, it would be impossible for us to literally change the Qualification (S) of applicants, but recall, this is a 

theoretical intervention of the kind discussed in the previous section, accomplished by choosing a proper 

adjustment.

If, instead of conditioning, we fix the Qualification (S), the arrow between Gender (X) and Qualification (S) (and 

the one between Income (T) and Qualification (S)) disappears, and no spurious dependence can pass through it. 

Figure 3.12 Figure 3.12
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So for any three variables X, Y, and S, where S is a mediator between X and Y, the controlled direct effect 

(CDE) on Y of changing the value of X from x to x′ is defined as

𝐶𝐷𝐸 = 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 , 𝑑𝑜 𝑆 = 𝑠 − 𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥′ , 𝑑𝑜 𝑆 = 𝑠

The obvious advantage of this definition over the one based on conditioning is its generality;

▪ it captures the intent of “keeping S constant” even in cases 

where the S → Y relationship is confounded (the same goes for 

the X → S and X → Y relationships). 

▪ practically, this definition assures us that in any case where the 

intervened probabilities are identifiable from the observed 

probabilities, we can estimate the direct effect of X on Y.
Figure 3.12

𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.7 MEDIATION

Note that the direct effect may differ for different values of S; for instance, it may be that 

▪ hiring practices discriminate against women in jobs with high qualification requirements, 

▪ hiring practices discriminate against men in jobs with low qualification. 

Therefore, to get the full picture of the direct effect, we’ll have to perform the calculation for every relevant value 

s of S. 

(In linear models, this will not be necessary; for more information, see Section 3.8.)

How do we estimate the direct effect when its 

expression contains two do-operators? 

Figure 3.12
𝑌𝑋

𝑆
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Qualification

Income

𝐼



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.7 MEDIATION

The technique is more or less the same as the one employed in Section 3.2, where we dealt with a single 

do-operator by adjustment. 

In our example of Figure 3.12, we first notice that 

▪ there is no backdoor path from X to Y in the model, hence we can replace do(x) with simply 

conditioning on x (this essentially amounts to adjusting for all confounders). 

Figure 3.12
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𝑆
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Qualification

Income

𝐼
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The technique is more or less the same as the one employed in Section 3.2, where we dealt with a single 

do-operator by adjustment. 

In our example of Figure 3.12, we first notice that 

▪ there is no backdoor path from X to Y in the model, hence we can replace do(x) with simply 

conditioning on x (this essentially amounts to adjusting for all confounders). 

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, 

a set of variables Z satisfies the backdoor criterion relative to (X, Y) if 

no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)
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The technique is more or less the same as the one employed in Section 3.2, where we dealt with a single 

do-operator by adjustment. 

In our example of Figure 3.12, we first notice that 

▪ there is no backdoor path from X to Y in the model, hence we can replace do(x) with simply 

conditioning on x (this essentially amounts to adjusting for all confounders). 

Figure 3.12
𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼𝑍 = ∅

This means that

and thus, we do not need to adjust.

This results in

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑑𝑜 𝑆 = 𝑠 − 𝑃 𝑌 = 𝑦|𝑋 = 𝑥′, 𝑑𝑜 𝑆 = 𝑠
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Next, we attempt to remove the do(s) term and notice that two backdoor paths exist from S to Y, 

Figure 3.12
𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼
Given an ordered pair of variables (X, Y) in a directed acyclic graph G, 

a set of variables Z satisfies the backdoor criterion relative to (X, Y) if 

no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)
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Next, we attempt to remove the do(s) term and notice that two backdoor paths exist from S to Y, 

▪ one through X (Qualification ← Gender → Hiring)

▪ one through I (Qualification ← Income → Hiring)
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no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)
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Given an ordered pair of variables (X, Y) in a directed acyclic graph G, 

a set of variables Z satisfies the backdoor criterion relative to (X, Y) if 

no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.
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Next, we attempt to remove the do(s) term and notice that two backdoor paths exist from S to Y, 

▪ one through X (Qualification ← Gender → Hiring)

▪ one through I (Qualification ← Income → Hiring)

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, 

a set of variables Z satisfies the backdoor criterion relative to (X, Y) if 

no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)

blocked (since X is conditioned on)

Figure 3.12
𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.7 MEDIATION

Next, we attempt to remove the do(s) term and notice that two backdoor paths exist from S to Y, 

▪ one through X (Qualification ← Gender → Hiring)

▪ one through I (Qualification ← Income → Hiring)

Given an ordered pair of variables (X, Y) in a directed acyclic graph G, 

a set of variables Z satisfies the backdoor criterion relative to (X, Y) if 

no node in Z is a descendant of X, and Z blocks every path between X

and Y that contains an arrow into X.

Definition 3.3.1 (The Backdoor Criterion)

blocked (since X is conditioned on)

blocked if we adjust for I

Figure 3.12
𝑌𝑋

𝑆

Gender Hiring

Qualification

Income

𝐼



2019 September 23rd - 27th                                                                   Causal Networks: Learning and Inference Fabio Stella and Luca Bernardinello

3.7 MEDIATION

Next, we attempt to remove the do(s) term and notice that two backdoor paths exist from S to Y, 

▪ one through X (Qualification ← Gender → Hiring)

▪ one through I (Qualification ← Income → Hiring)

blocked (since X is conditioned on)

blocked if we adjust for I
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This gives



𝑖

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝑆 = 𝑠, 𝐼 = 𝑖 − 𝑃 𝑌 = 𝑦|𝑋 = 𝑥′, 𝑆 = 𝑠, 𝐼 = 𝑖 𝑃 𝐼 = 𝑖

The last formula is do-free, which means it can be estimated from 

nonexperimental data (i.e., observational data).
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In general, the CDE of X on Y, mediated by Z, is identifiable if the following two properties hold:

1. There exists a set S1 of variables that blocks all backdoor paths from Z to Y.

2. There exists a set S2 of variables that blocks all backdoor paths from X to Y, 

after deleting all arrows entering Z.

If these two properties hold in a model M, then we can determine 

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 , 𝑑𝑜 𝑍 = 𝑧

from the data set by adjusting for the appropriate variables, and estimating the conditional probabilities that 

ensue. 
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In general, the CDE of X on Y, mediated by Z, is identifiable if the following two properties hold:

1. There exists a set S1 of variables that blocks all backdoor paths from Z to Y.

2. There exists a set S2 of variables that blocks all backdoor paths from X to Y, 

after deleting all arrows entering Z.

Note: condition 2) is not necessary in randomized trials, because randomizing X renders X parentless. 

The same is true in cases where X is judged to be exogenous (i.e., “as if” randomized), as in the 

aforementioned gender discrimination example.

It is even trickier to determine the indirect effect than the direct effect, because there is simply no way to 

condition away the direct effect of X on Y. 
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It’s easy enough to find the total effect and the direct effect, so some may argue that the indirect effect should 

just be the difference between those two. 

This may be true in linear systems, but in nonlinear systems, differences don’t mean much; the change in Y

might, for instance, depend on some interaction between X and Z—if, as we posited above, women are 

discriminated against in high-qualification jobs and men in low-qualification jobs, subtracting the direct effect 

from the total effect would tell us very little about the effect of gender on hiring as mediated by qualifications.

Clearly, we need a definition of indirect effect that does not depend on the total or direct effects.

We will show in Part 4 that these difficulties can be overcome through the use of counterfactuals, a more 

refined type of intervention that applies at the individual level and can be computed from structural models.


