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1COUNTERFACTUALS

In observational studies, there could also be some unobserved confounder, thus we’d like 

to know how robust our estimates are to unobserved confounding(s).

Thus, in this lecture we will introduce:

▪ Observational counterfactual decomposition

▪ No assumptions bound

▪ Nonnegative/Nonpositive monotone treatment response lower bound

▪ Monotone treatment selection upper bound

▪ Optimal treatment selection

▪ Sensitivity Analysis
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PART I

INTRODUCTION TO COUNTERFACTUALS

COUNTERFACTUALS
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While driving home yesterday, I came to a fork 

in the road,

PART I: INTRODUCTION TO COUNTERFACTUALS

I took surface street (𝑋 = 0), only to find 

out that the traffic was touch and go.

As I arrived home, an hour later, I said 

to myself: 

“Gee, I should have taken the freeway.”

where I had to make a choice, take

▪ the freeway (𝑋 = 1) or 

▪ the surface street (𝑋 = 0). 

FREEWAY (𝑋 = 1)(𝑋 = 0) SURFACE

What does it mean to say, “I should have taken the freeway”? 

▪ Colloquially, it means, “If I had taken the freeway, I would have gotten home earlier.” 

▪ Scientifically, it means that my mental estimate of the expected driving time on the 

freeway, on that same day, under the identical circumstances, and governed by the 

same idiosyncratic driving habits that I have, would have been lower than my actual 

driving time.
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The statement “If I had taken the freeway, I 

would have gotten home earlier.” where the “if” 

statement is untrue or unrealized—is known as 

a COUNTERFACTUAL. 

HYPOTHETICAL CONDITION or ANTECEDENT

Counterfactuals are used to compare two 

OUTCOMES (e.g., driving times) under the exact 

same conditions, differing only in ANTECEDENT.

I took surface street (𝑋 = 0), only to find 

out that the traffic was touch and go.

I took freeway (𝑋 = 1).

While driving home yesterday, I came to a fork 

in the road,

driving time = 1h

driving time = ?h

COMPARE

OUTCOMES

FREEWAY (𝑋 = 1)(𝑋 = 0) SURFACE
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I took surface street (𝑋 = 0), only to find 

out that the traffic was touch and go.

I took freeway (𝑋 = 1).

The fact that we know the outcome of our actual decision is important, because 

my estimated driving time on the freeway after seeing the consequences of my 

actual decision (to take surface street) may be totally different from my estimate 

prior to seeing the consequence.

Take surface street (𝑋 = 0) → driving time = 1h

Provides valuable evidence for the assessment, for example, that the traffic 

was particularly heavy on that day, and that it might have been due to a brush 

fire. 

My statement “I should have taken the freeway” conveys the judgment that 

whatever mechanisms impeded my speed on the surface street would not 

have affected the speed on the freeway to the same extent.

My retrospective estimate is that a freeway drive would have taken less than 1 

hour, and this estimate is clearly different than my prospective estimate was, 

when I made the decision prior to seeing the consequences—otherwise, I 

would have taken the freeway to begin with.
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If we try to express this estimate using do-expressions, we come to 

an impasse. Writing

𝔼 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒|𝑑𝑜(𝑓𝑟𝑒𝑒𝑤𝑎𝑦), 𝑑𝑟𝑖𝑣𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 = 1 ℎ𝑜𝑢𝑟

leads to a clash between the driving time we wish to estimate and 

the actual driving time observed. 

We must distinguish symbolically between the following variables:

▪ Actual driving time

▪ Hypothetical driving time under freeway conditions when actual 

surface driving time is known to be 1 hour.

Unfortunately, the do-operator is too crude to make this distinction. 

The do-operator allows us to distinguish between:

𝑃(driving time|𝑑𝑜(freeway)) and 𝑃(driving time|𝑑𝑜(surface street))

it does not offer us the means of distinguishing between the two 

variables themselves, one standing for the time on surface street, 

the other for the hypothetical time on the freeway.

I took surface street (𝑋 = 0), only to find 

out that the traffic was touch and go.

I took freeway (𝑋 = 1).

We need this distinction in order to let the actual driving time (on 

surface street) inform our assessment of the hypothetical driving time.
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Fortunately, making this distinction is easy; we simply use different 

subscripts to label the two outcomes.

freeway driving time𝑌 𝑋 = 1 = 𝑌 1

In our case 𝑌 = 𝑌 0 = 1 ℎ𝑜𝑢𝑟 is actually observed, then the 

quantity we wish to estimate is

surface street driving time𝑌 𝑋 = 0 = 𝑌 0

I took surface street (𝑋 = 0), only to find 

out that the traffic was touch and go.

I took freeway (𝑋 = 1).

𝔼 𝑌 1 |𝑋 = 0, 𝑌 = 𝑌 0 = 1 𝑌 1 = 𝑦 and 𝑋 = 0 are—and 

must be—events occurring under 

different conditions, sometimes 

referred to as “different worlds.”
HYPOTHETICAL

CONDITION or 

ANTECEDENT

OBSERVED

VARIABLES

A randomized controlled experiment on the two decision options will 

never get us the estimate we want, i.e., we can get

𝔼 𝑌 1 = 𝔼 𝑌|𝑑𝑜 𝑓𝑟𝑒𝑒𝑤𝑎𝑦 𝔼 𝑌 0 = 𝔼 𝑌|𝑑𝑜 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑠𝑡𝑟𝑒𝑒𝑡

But the fact that we cannot take both the freeway and surface street 

simultaneously prohibits us from estimating the quantity we wish to 

estimate 𝔼 𝑌 1 |𝑋 = 0, 𝑌 = 1 .
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I took surface street (𝑋 = 0), only to find 

out that the traffic was touch and go.

I took freeway (𝑋 = 1).

But the fact that we cannot take both the freeway and surface street 

simultaneously prohibits us from estimating the quantity we wish to 

estimate 𝔼 𝑌 1 |𝑋 = 0, 𝑌 = 1 .

One might be tempted to circumvent this difficulty by measuring the 

freeway time at a later time, or of another driver, but then conditions 

may change with time, and the other driver may have different driving 

habits than I.

In either case, the driving time we would be measuring under such 

surrogates will only be an approximation of the one we set out to 

estimate, 𝑌 1 , and the degree of approximation would vary with the 

assumptions we can make on how similar those surrogate conditions 

are to my own driving time had I taken the freeway. 

Such approximations may be appropriate for estimating the target 

quantity under some circumstances, but they are not appropriate for 

defining it.
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PART II

DEFINING AND COMPUTING

COUNTERFACTUALS

COUNTERFACTUALS
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Consider a fully specified model 𝑀 = 𝑈,𝑉, 𝐹 , for 

which we know both the functions 𝐹 and the 

values of all exogenous variables 𝑈. 

PART II: DEFINING AND COMPUTING COUNTERFACTUALS

A structural causal model is a tuple 𝑀 = 𝑈,𝑉, 𝐹 of the 

following sets:

▪ 𝑈; a set of exogenous variables,

▪ 𝑉; a set of endogenous variables,

▪ 𝐹; a set of functions, one to generate each 

endogenous variable as a function of other variables.

STRUCTURAL CAUSAL MODEL (SCM)

In such a deterministic model, 

▪ every assignment 𝑈 = 𝑢 to the exogenous 

variables corresponds to a single member of, 

or “unit” in a population, or to a “situation” in 

nature.

The reason for this correspondence is as follows:

▪ each assignment 𝑈 = 𝑢 uniquely determines 

the values of all variables in 𝑉,

▪ the characteristics (salary, address, education, 

propensity to engage in musical activity, …) of 

each individual “unit” in a population have 

unique values, depending on that individual’s 

identity.

If 

▪ 𝑈 = 𝑢 stands for the defining characteristics of an 

individual named Joe, and

▪ 𝑋 stands for a variable named “salary,” then

▪ 𝑋(𝑢) stands for Joe’s salary. 
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Consider now the counterfactual sentence, 

“𝑌 would be 𝑦 had 𝑋 been 𝑥, in situation 𝑈 = 𝑢” 

(𝑌𝑥 𝑢 = 𝑦)

PART II: DEFINING AND COMPUTING COUNTERFACTUALS

A structural causal model is a tuple 𝑀 = 𝑈,𝑉, 𝐹 of the 

following sets:

▪ 𝑈; a set of exogenous variables,

▪ 𝑉; a set of endogenous variables,

▪ 𝐹; a set of functions, one to generate each 

endogenous variable as a function of other variables.

STRUCTURAL CAUSAL MODEL (SCM)

to be interpreted as an instruction to make a 

minimal modification in the current model so 

as to establish the antecedent condition 𝑋 = 𝑥, 

which is likely to conflict with the observed 

value of 𝑋, 𝑋(𝑢).

Such a minimal modification amounts to 

replacing the equation for 𝑋 with a constant 𝑥, 

which may be thought of as an external 

intervention 𝑑𝑜 𝑋 = 𝑥 , not necessarily by a 

human experimenter.

This replacement permits the constant 𝑥 to differ from the 

actual value of 𝑋 (namely, 𝑋(𝑢)) without rendering the 

system of equations inconsistent, and in this way, it allows 

all variables, exogenous as well as endogenous, to serve 

as antecedents to other variables.
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We demonstrate the previous definition on the following simple causal model

set 𝑋 𝑡𝑜 𝑥

what 𝑌 would be had 𝑋
been 𝑥, in situation 𝑈 = 𝑢

𝑋 ≔ 𝑥

𝑌 ≔ 𝛽𝑋 + 𝑈

𝑋 ≔ 𝛼𝑈

𝑌 ≔ 𝛽𝑋 + 𝑈

model 𝑀 model 𝑀𝑥

substitute 𝑈 = 𝑢

𝑌𝑥 𝑢 ≔ 𝛽𝑥 + 𝑢

COUNTERFACTUAL

Let us examine the counterfactual 𝑋𝑦 𝑢 , that is, what 𝑋 would be 

had 𝑌 been 𝑦 in situation 𝑈 = 𝑢.

𝑋 ≔ 𝛼𝑈

𝑌 ≔ 𝛽𝑋 + 𝑈

model 𝑀

set 𝑌 𝑡𝑜 𝑦

model 𝑀𝑦

𝑌 ≔ 𝑦

𝑋 ≔ 𝛼𝑈
substitute 𝑈 = 𝑢

𝑋𝑦 𝑢 ≔ 𝛼𝑢

COUNTERFACTUAL

what 𝑋 would be had 𝑌
been 𝑦, in situation 𝑈 = 𝑢

𝑋 remains unaltered by the hypothetical condition “had 𝑌 been 𝑦”.

Indeed, 𝑋 happens first than 𝑌, thus setting the value of 𝑌 (by an intervention) to any given value 𝑦 can not 

change the value of 𝑋 (because it happened in the past).
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Each SCM encodes within it many counterfactuals, 

corresponding to the various values that its 

variables can take.

To illustrate additional 

counterfactuals generated 

by the model

𝑢 𝑋(𝑢) 𝑌(𝑢) 𝑌1 𝑢 𝑌2 𝑢 𝑌3 𝑢 𝑋1 𝑢 𝑋2 𝑢 𝑋3 𝑢

1 1 2 2 3 4 1 1 1

2 2 4 3 4 5 2 2 2

3 3 6 4 5 6 3 3 3

Table 14.1

𝑋 ≔ 𝛼𝑈

𝑌 ≔ 𝛽𝑋 + 𝑈

let us assume that 𝑈 can take on three values, 1, 2, 

and 3, and let 𝛼 = 𝛽 = 1.

For example, to compute 𝑌2 𝑢 , for 𝑢 = 2, 
𝑋 ≔ 𝑈

𝑌 ≔ 𝑋 + 𝑈

𝑋 ≔ 𝑋 2 = 2

𝑌 ≔ 𝑋 + 𝑈

𝑋 = 𝑋 𝑢 = 𝑋 2 = 2

𝑈 = 𝑢 = 2

𝑋 2 ≔ 2

𝑌2 2 ≔ 4

Every structural equation model 

assigns a definitive value to every 

conceivable counterfactual.

Counterfactuals are different 

than ordinary interventions, 

captured by the do-operator. 

individual

level

population

level

For each situation 𝑈 = 𝑢, we 

obtained a definite number, 𝑌𝑥 𝑢 , 

which stands for that hypothetical 

value of 𝑌 in that situation.

The do-operator is only defined 

on probability distributions and 

always delivers probabilistic 

results such as 𝔼 𝑌|𝑑𝑜(𝑥) .
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We are now ready to generalize the concept of 

counterfactuals to any structural model, 𝑀.

Consider any arbitrary two variables 𝑋 and 𝑌, not 

necessarily connected by a single equation.
The formal definition of the 

COUNTERFACTUAL 𝑌𝑥 𝑢
reads

𝑀 𝑀𝑥

equation of 𝑋 replaced by 𝑋 = 𝑥

𝑌𝑥 𝑢 = 𝑌𝑀𝑥
𝑢

solution for 𝑌 in the 

“surgically modified” 

submodel 𝑀𝑥.

𝒢 𝒢 ത𝑋

graph of 𝑀 where all 

incoming edges to 𝑋
have been removed

The same definition is applicable when 𝑋 and 𝑌 are 

sets of variables, if by 𝑀𝑥 we mean a model where 

the equations of all members of 𝑋 are replaced by 

constants.

How can a simple model, consisting of just a few equations, 

assign values to so many counterfactuals? 

The answer is that the values that these counterfactuals 

receive are not totally arbitrary, but must cohere with each 

other to be consistent with an underlying model.

Counterfactuals allow us to take our scientific conception 

of reality, 𝑀, and use it to generate answers to an 

enormous number of hypothetical questions of the type 

”What would 𝑌 be had 𝑋 been 𝑥?”
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If we observe 𝑋 𝑢 = 1 and 𝑌 𝑢 = 0, then

The formal definition of the 

COUNTERFACTUAL 𝑌𝑥 𝑢
reads

𝑀 𝑀𝑥

equation of 𝑋 replaced by 𝑋 = 𝑥

𝑌𝑥 𝑢 = 𝑌𝑀𝑥
𝑢

solution for 𝑌 in the 

“surgically modified” 

submodel 𝑀𝑥.

𝒢 𝒢 ത𝑋

graph of 𝑀 where all 

incoming edges to 𝑋
have been removed

𝑌𝑋=1 𝑢 = 0

because setting 𝑋 to a value it already has, 𝑋 𝑢 , 

should produce no change in the world. 

Hence, 𝑌 should stay at its current value of 𝑌 𝑢 = 0.

In general, counterfactuals obey the following 

consistency rule:

COUNTERFACTUAL CONSISTENCY RULE

If 𝑋 = 𝑥 then   𝑌𝑋 = 𝑌

If 𝑋 is binary then we have the convenient form

𝑌 = 𝑋𝑌1 + 1 − 𝑋 𝑌0

▪ 𝑌1 is equal to the observed value of 𝑌 whenever 𝑋 takes the value 1. 

▪ 𝑌0 is equal to the observed value of 𝑌 whenever 𝑋 is 0.
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ENCOURAGEMENT DESIGN (Figure 14.1).
(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌▪ 𝑋; amount of time a student spends in an 

after-school remedial program,

▪ 𝐻; the amount of homework a student does, 

and

▪ 𝑌; a student’s score on the exam. 

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4

For example, if 𝑌 = 1, then the student scored 1 standard 

deviation above the mean on his or her exam. 

This model represents a randomized pilot program, in 

which students are assigned to the remedial sessions by 

the luck of the draw. 𝑋 ≔ 𝑈𝑋

𝐻 ≔ 𝛼𝑋 + 𝑈𝐻

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝑈𝑌

𝜎𝑈𝑖𝑈𝑗 = 0, ∀𝑖, 𝑗 ∈ 𝑋,𝐻, 𝑌

𝛼 = 0.5
𝛽 = 0.7
𝛾 = 0.4

given or 

recovered from 

population data
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ENCOURAGEMENT DESIGN (Figure 14.1).
(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌▪ 𝑋; amount of time a student spends in an 

after-school remedial program,

▪ 𝐻; the amount of homework a student does, 

and

▪ 𝑌; a student’s score on the exam. 

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4

𝑋 ≔ 𝑈𝑋

𝐻 ≔ 𝛼𝑋 + 𝑈𝐻

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝑈𝑌

𝜎𝑈𝑖𝑈𝑗 = 0, ∀𝑖, 𝑗 ∈ 𝑋,𝐻, 𝑌

𝛼 = 0.5
𝛽 = 0.7
𝛾 = 0.4

given or 

recovered from 

population data

𝑋 = 0.5
𝐻 = 1.0
𝑌 = 1.5

student 

Joe

What would Joe’s score 

have been had he 

doubled his study time?

𝑈𝑋 = 0.5
𝑈𝐻 = 𝐻 − 0.5𝑋 = 0.75
𝑈𝑌 = 𝑌 − 0.7𝑋 − 0.4𝐻 = 0.75

Then, we simulate the action of doubling Joe’s study 

time by replacing the structural equation for 𝐻 with the 

constant 𝐻 = 2.



CAUSAL NETWORKS – COUNTERFACTUALS FALL 2021 FABIO STELLA

18PART II: DEFINING AND COMPUTING COUNTERFACTUALS

ENCOURAGEMENT DESIGN (Figure 14.1).
(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌▪ 𝑋; amount of time a student spends in an 

after-school remedial program,

▪ 𝐻; the amount of homework a student does, 

and

▪ 𝑌; a student’s score on the exam. 

Figure 14.2

𝛽 = 0.7

𝛾 = 0.4

𝑋 ≔ 𝑈𝑋

𝐻 ≔ 2

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝑈𝑌

𝜎𝑈𝑖𝑈𝑗 = 0, ∀𝑖, 𝑗 ∈ 𝑋,𝐻, 𝑌

𝛼 = 0.5
𝛽 = 0.7
𝛾 = 0.4

given or 

recovered from 

population data

𝑋 = 0.5
𝐻 = 1.0
𝑌 = 1.5

student 

Joe

What would Joe’s score 

have been had he 

doubled his study time?

Then, we simulate the action of doubling Joe’s study 

time by replacing the structural equation for 𝐻 with the 

constant 𝐻 = 2.
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ENCOURAGEMENT DESIGN (Figure 14.1).
(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌▪ 𝑋; amount of time a student spends in an 

after-school remedial program,

▪ 𝐻; the amount of homework a student does, 

and

▪ 𝑌; a student’s score on the exam. 

Figure 14.2

𝛽 = 0.7

𝛾 = 0.4

𝑋 ≔ 𝑈𝑋

𝐻 ≔ 2

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝑈𝑌

𝜎𝑈𝑖𝑈𝑗 = 0, ∀𝑖, 𝑗 ∈ 𝑋,𝐻, 𝑌

𝛼 = 0.5
𝛽 = 0.7
𝛾 = 0.4

given or 

recovered from 

population data

𝑋 = 0.5
𝐻 = 1.0
𝑌 = 1.5

student 

Joe

What would Joe’s score 

have been had he 

doubled his study time?

Finally, we compute the value of 𝑌 in our modified 

model (Figure 14.2) using the updated 𝑈 values, giving

𝑌𝐻=2 𝑈𝑋 = 0.5,𝑈𝑋 = 0.75,𝑈𝑋 = 0.75 ≔ 0.5 0.7 + 0.4 2 + 0.75

≔ 1.9
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ENCOURAGEMENT DESIGN (Figure 14.1).
(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌▪ 𝑋; amount of time a student spends in an 

after-school remedial program,

▪ 𝐻; the amount of homework a student does, 

and

▪ 𝑌; a student’s score on the exam. 

Figure 14.2

𝛽 = 0.7

𝛾 = 0.4

𝑋 ≔ 𝑈𝑋

𝐻 ≔ 2

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝑈𝑌

𝜎𝑈𝑖𝑈𝑗 = 0, ∀𝑖, 𝑗 ∈ 𝑋,𝐻, 𝑌

𝛼 = 0.5
𝛽 = 0.7
𝛾 = 0.4

given or 

recovered from 

population data

𝑋 = 0.5
𝐻 = 1.0
𝑌 = 1.5

student 

Joe

What would Joe’s score 

have been had he 

doubled his study time?

Joe’s score, had he doubled his homework 

𝐻 = 1 → 𝐻 = 2, 

would have been 1.9 instead of 1.5. (An 

increase to 1.9 stdv above the mean, instead 

of the current 1.5)

𝑌𝐻=2 𝑈𝑋 = 0.5,𝑈𝑋 = 0.75,𝑈𝑋 = 0.75 ≔ 0.5 0.7 + 0.4 2 + 0.75

≔ 1.9
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Any deterministic counterfactual is computed by the following steps:

▪ ABDUCTION: use evidence 𝐸 = 𝑒 to determine the value of 𝑈.

▪ ACTION: modify the model, 𝑀, by removing the structural 

equations for the variables in 𝑋 and replacing them with the 

appropriate functions 𝑋 = 𝑥, to obtain the modified model, 𝑀𝑥.

▪ PREDICTION: use the modified model, 𝑀𝑥, and the value of 𝑈 to 

compute the value of 𝑌, the consequence of the counterfactual.

Temporal Metaphors

explains the past (𝑈) in light of 

the current evidence 𝑒

bends the course of history 

(minimally) to comply with the 

hypothetical antecedent 𝑋 = 𝑥

predicts the future (𝑌) based on 

our new understanding of the 

past and our newly established 

condition, 𝑋 = 𝑥

The three steps will solve any DETERMINISTIC COUNTERFACTUAL, that is, counterfactuals pertaining to a single 

unit of the population in which we know the value of every relevant variable. 

Structural equation models are able to answer counterfactual queries of this nature because each equation 

represents the mechanism by which a variable obtains its values. 

If we know these mechanisms, we should also be able to predict what values would be obtained had some of 

these mechanisms been altered, given the alterations.
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Counterfactuals can also be probabilistic, pertaining to a class of units 

within the population;

▪ we might want to know what would have happened if all students 

for whom 𝑌 < 2 had doubled their homework time (𝐻 = 1 → 𝐻 = 2).

STUDENTS

POPULATION
students

such that

𝑌 < 2

These probabilistic counterfactuals differ from do-operator interventions 

because, like their deterministic counterparts, they restrict the set of 

individuals intervened upon, which do-expressions cannot do.

scored 

𝑌 = 𝑦

deterministic 

counterfactual

ask questions about 

probabilities and expectations 

of counterfactuals

allows toprobabilistic 

counterfactual

move to

student 

Joe

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4▪ What is the probability that Joe’s 

score would be 𝑌 = 𝑦′ had he had 

five more hours of encouragement 

training (𝐻 = 1 → 𝐻 = 6)?

▪ What would his expected score be 

in such hypothetical world?
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Unlike in the example 

of the previous model

student 

Joe

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4
𝑋 ≔ 𝑈𝑋

𝐻 ≔ 2

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝑈𝑌

𝜎𝑈𝑖𝑈𝑗 = 0, ∀𝑖, 𝑗 ∈ 𝑋,𝐻, 𝑌

we do not have information on all three variables, 𝑋,𝐻, 𝑌 , 

and we cannot therefore determine uniquely the value 𝑢
that pertains to Joe. 

STUDENTS

POPULATION

class of units 

compatible with the 

evidence available

Instead, Joe may belong to a large class of units compatible with the evidence 

available, each having a different value of 𝑢.

Nondeterminism enters causal models by assigning 

probabilities 𝑃 𝑈 = 𝑢 over the exogenous variables 𝑈. 

These represent our uncertainty as to the identity of 

the subject under consideration or, when the subject is 

known, what other characteristics that subject has that 

might have bearing on our problem.
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exogenous probability 𝑃 𝑈 = 𝑢

A structural causal model is a tuple 𝑀 = 𝑈,𝑉, 𝐹 of the 

following sets:

▪ 𝑈; a set of exogenous variables,

▪ 𝑉; a set of endogenous variables,

▪ 𝐹; a set of functions, one to generate each 

endogenous variable as a function of other variables.

STRUCTURAL CAUSAL MODEL (SCM)

induces a unique 

probability distribution 

on the endogenous 

variables 𝑉

𝑃 𝑉 = 𝑣

It allows to define and compute not only the 

probability of any single counterfactual, 𝑌𝑋 = 𝑦, 

but also the joint distributions of all combinations 

of observed and counterfactual variables

typical query
“Given that we observe feature 𝐸 = 𝑒
for a given individual, what would we 

expect the value of 𝑌 for that 

individual to be if 𝑋 had been 𝑥?”

This expectation is denoted 

𝔼 𝑌𝑋=𝑥|𝐸 = 𝑒 , 

where we allow 𝐸 = 𝑒 to conflict 

with the antecedent 𝑋 = 𝑥.

𝐸 = 𝑒 after the conditioning bar represents all information 

(or evidence) we might have about the individual, potentially 

including the values of 𝑋, 𝑌, or any other variable.

The subscript 𝑋 = 𝑥 in 𝑌𝑋=𝑥 represents the antecedent 

specified by the counterfactual sentence.
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Given an arbitrary counterfactuals of the form, 

𝔼 𝑌𝑋=𝑥|𝐸 = 𝑒

the three-step process for PROBABILISTIC COUNTERFACTUAL reads:

▪ ABDUCTION: Update 𝑃 𝑈 by the evidence to obtain 𝑃 𝑈|𝐸 = 𝑒 .

▪ ACTION: modify the model, 𝑀, by removing the structural equations for the variables in 𝑋 and replacing 

them with the appropriate functions 𝑋 = 𝑥, to obtain the modified model, 𝑀𝑥.

▪ PREDICTION: use the modified model, 𝑀𝑥, and the updated probabilities over the 𝑈 variables, 𝑃 𝑈|𝐸 = 𝑒 , 

to compute the expectation of 𝑌, the consequence of the counterfactual.

Suppose we wish to estimate, using Figure 14.1, 

the effect on test score (𝑌) provided by a school 

policy that sends students who are lazy on their 

homework (𝐻 ≤ 𝐻0) to attend the after-school 

program for 𝑋 = 1. 

We can’t simply intervene on 𝑋 to set it equal to 1 

in cases where 𝐻 is low, because in our model, 𝑋
is one of the causes of 𝐻.

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4
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Given an arbitrary counterfactuals of the form, 

𝔼 𝑌𝑋=𝑥|𝐸 = 𝑒

the three-step process for PROBABILISTIC COUNTERFACTUAL reads:

▪ ABDUCTION: Update 𝑃 𝑈 by the evidence to obtain 𝑃 𝑈|𝐸 = 𝑒 .

▪ ACTION: modify the model, 𝑀, by removing the structural equations for the variables in 𝑋 and replacing 

them with the appropriate functions 𝑋 = 𝑥, to obtain the modified model, 𝑀𝑥.

▪ PREDICTION: use the modified model, 𝑀𝑥, and the updated probabilities over the 𝑈 variables, 𝑃 𝑈|𝐸 = 𝑒 , 

to compute the expectation of 𝑌, the consequence of the counterfactual.

Instead, we express the expected value of this quantity in 

counterfactual notation as

𝔼 𝑌𝑋=1|𝐻 ≤ 𝐻0 , 

which can, in principle, be computed using the above steps.

Counterfactual reasoning and the above procedure are 

necessary for estimating the effect of actions and policies 

on subsets of the population characterized by features that, 

in themselves, are affected by the policy (e.g., 𝐻 ≤ 𝐻0).

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4
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PART II

NONDETERMINISTIC COUNTERFACTUALS

COUNTERFACTUALS
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To examine how nondeterminism is reflected in the calculation of counterfactuals, 

let us assign probabilities to the values of 𝑈 in the model of to the right. 𝑋 ≔ 𝛼𝑈

𝑌 ≔ 𝛽𝑋 + 𝑈Imagine that 𝑈 = 1,2,3 represents three types of individuals in a population, 

occurring with probabilities

𝑃 𝑈 = 1 =
1

2
𝑃 𝑈 = 2 =

1

3
𝑃 𝑈 = 3 =

1

6

All individuals within a population type have the 

same values of the counterfactuals, as specified 

by the corresponding rows in Table 14.1.

𝑢 𝑋(𝑢) 𝑌(𝑢) 𝑌1 𝑢 𝑌2 𝑢 𝑌3 𝑢 𝑋1 𝑢 𝑋2 𝑢 𝑋3 𝑢

1 1 2 2 3 4 1 1 1

2 2 4 3 4 5 2 2 2

3 3 6 4 5 6 3 3 3

Table 14.1

We can compute the proportion of units for 

which 𝑌 would be 3 had 𝑋 been 2, or 𝑌2 𝑢 = 3.

This condition occurs only in the first row of Table 14.1 

and, since it is a property of 𝑈 = 1, we conclude that it   

will occur with probability

𝑃 𝑌2 = 3 = 𝑃 𝑈 = 1 =
1

2

However, we can also compute joint probabilities of 

every combination of counterfactual and observable 

events. For example,

𝑃 𝑌2 > 3, 𝑌1 < 4
𝑌2 > 3 in the 𝑋 = 2 world

𝑌1 < 4 in the 𝑋 = 1 world
𝑢 = 2, 𝑃 𝑌2 > 3, 𝑌1 < 4 =

1

3
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Cross-world probabilities are as simple to derive as intra-world ones: 

PART III: NONDETERMINISTIC COUNTERFACTUALS

𝑢 𝑋(𝑢) 𝑌(𝑢) 𝑌1 𝑢 𝑌2 𝑢 𝑌3 𝑢 𝑋1 𝑢 𝑋2 𝑢 𝑋3 𝑢

1 1 2 2 3 4 1 1 1

2 2 4 3 4 5 2 2 2

3 3 6 4 5 6 3 3 3

Table 14.1

▪ we simply identify the rows in which the 

specified combination is true and sum up the 

probabilities assigned to those rows.

▪ This allows us to compute conditional 

probabilities among counterfactuals and 

defining notions such as dependence and 

conditional independence among 

counterfactuals.

𝑋 ≔ 𝛼𝑈

𝑌 ≔ 𝛽𝑋 + 𝑈

Joint probabilities over multiple-world counterfactuals

𝑃 𝑌1 = 𝑦1, 𝑌2 = 𝑦2

can be computed from any structural model as we did 

in Table 14.1.

They cannot however be expressed using the 𝑑𝑜(𝑥)
notation, because the latter delivers just one probability 

for each intervention 𝑋 = 𝑥.
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Consider the model to the right.

PART III: NONDETERMINISTIC COUNTERFACTUALS

Let 

▪ 𝑋 = 1, having a college education,

▪ 𝑈2 = 1 having professional experience,

▪ 𝑍; level of skill needed for a given job, 

▪ 𝑌; salary.

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Which is expected salary of individuals 

with skill level 𝑍 = 1, had they received 

a college education 𝑋 = 1 ?

𝔼 𝑌𝑋=1|𝑍 = 1

▪ condition 𝑍 = 1 represents 

current skills

▪ antecedent 𝑋 = 1 represents a 

hypothetical education in an 

unrealized past

Not possible to use the do-expression 

to compute it, because

Indeed, 𝑍 = 1 and 𝑋 = 1 refer to two 

different worlds.

The do-expression attempt to capture this hypothetical salary

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1

would not reveal the desired information.

The do-expression stands for the expected salary of 

individuals who all finished college and have since acquired 

skill level 𝑍 = 1.

(professional 

experience)
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Consider the model to the right.
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Let 

▪ 𝑋 = 1, having a college education,

▪ 𝑈1 = 1 having professional experience,

▪ 𝑍; level of skill needed for a given job, 

▪ 𝑌; salary.

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Which is expected salary of individuals 

with skill level 𝑍 = 1, had they received 

a college education 𝑋 = 1 ?

𝔼 𝑌𝑋=1|𝑍 = 1

The do-expression attempt to capture this hypothetical salary

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1

would not reveal the desired information.

The do-expression stands for the expected salary of 

individuals who all finished college and have since acquired 

skill level 𝑍 = 1.

The salaries of these individuals, as the graph 

shows, depend only on their skill, and are not 

affected by whether they obtained the skill 

through college or through work experience.

(professional 

experience)

Conditioning on 𝑍 = 1, in this case, cuts off the 

effect of the intervention that we’re interested in. 

In contrast, some of those who currently have 

𝑍 = 1 might not have gone to college and would 

have attained higher skill (and salary) had they 

gotten college education.
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Consider the model to the right.
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Let 

▪ 𝑋 = 1, having a college education,

▪ 𝑈1 = 1 having professional experience,

▪ 𝑍; level of skill needed for a given job, 

▪ 𝑌; salary.

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Which is expected salary of individuals 

with skill level 𝑍 = 1, had they received 

a college education 𝑋 = 1 ?

𝔼 𝑌𝑋=1|𝑍 = 1

Their salaries are of great interest to us, but they are not 

included in the do-expression.

Thus, in general, the do-expression will not capture our 

counterfactual question:

The salaries of these individuals, as the graph 

shows, depend only on their skill, and are not 

affected by whether they obtained the skill 

through college or through work experience.

(professional 

experience)

Conditioning on 𝑍 = 1, in this case, cuts off the 

effect of the intervention that we’re interested in. 

In contrast, some of those who currently have 

𝑍 = 1 might not have gone to college and would 

have attained higher skill (and salary) had they 

gotten college education.𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 ≠ 𝔼 𝑌𝑋=1|𝑍 = 1
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Consider the model to the right.
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Let 

▪ 𝑋 = 1, having a college education,

▪ 𝑈1 = 1 having professional experience,

▪ 𝑍; level of skill needed for a given job, 

▪ 𝑌; salary.

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Which is expected salary of individuals 

with skill level 𝑍 = 1, had they received 

a college education 𝑋 = 1 ?

𝔼 𝑌𝑋=1|𝑍 = 1

𝔼 𝑌𝑋=1|𝑍 = 1 ≠ 𝔼 𝑌𝑋=0|𝑍 = 1

(professional 

experience)

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 ≠ 𝔼 𝑌𝑋=1|𝑍 = 1

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = 𝔼 𝑌|𝑑𝑜 𝑋 = 0 , 𝑍 = 1
treat 𝑍 = 1 as a POSTINTERVENTION condition 

that prevails for two different sets of units 

under the two antecedents

treat 𝑍 = 1 as defining one set of units in the 

current world that would react differently 

under the two antecedents
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Consider the model to the right.
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Let 

▪ 𝑋 = 1, having a college education,

▪ 𝑈1 = 1 having professional experience,

▪ 𝑍; level of skill needed for a given job, 

▪ 𝑌; salary.

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Which is expected salary of individuals 

with skill level 𝑍 = 1, had they received 

a college education 𝑋 = 1 ?

𝔼 𝑌𝑋=1|𝑍 = 1

𝔼 𝑌𝑋=1|𝑍 = 1 ≠ 𝔼 𝑌𝑋=0|𝑍 = 1

(professional 

experience)

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 ≠ 𝔼 𝑌𝑋=1|𝑍 = 1

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = 𝔼 𝑌|𝑑𝑜 𝑋 = 0 , 𝑍 = 1

𝑑𝑜 𝑥 cannot capture this difference, because 

▪ 𝑋 = 1 refers to preintervention world,

▪ 𝑍 = 1 refers to postintervention world.

The expression 𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 on the 

other hand, invokes only postintervention 

events, and that is why it is expressible in 

𝑑𝑜 𝑥 notation. 
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Consider the model to the right.

PART III: NONDETERMINISTIC COUNTERFACTUALS

Let 

▪ 𝑋 = 1, having a college education,

▪ 𝑈1 = 1 having professional experience,

▪ 𝑍; level of skill needed for a given job, 

▪ 𝑌; salary.

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Which is expected salary of individuals 

with skill level 𝑍 = 1, had they received 

a college education 𝑋 = 1 ?

𝔼 𝑌𝑋=1|𝑍 = 1

(professional 

experience)

Does the counterfactual notation capture the 

postintervention, single-world expression 

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 ?

yes

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = 𝔼 𝑌𝑋=1|𝑍𝑋=1 = 1

▪ 𝑍𝑋=1; value that 𝑍 would attain had 𝑋
been 1, and this is precisely what we 

mean when we put 𝑍 = 𝑧 in a do-

expression by Bayes’ rule.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 1 , 𝑍 = 𝑧 =
𝑃 𝑌 = 𝑦, 𝑍 = 𝑧|𝑑𝑜 𝑋 = 1

𝑃 𝑍 = 𝑧|𝑑𝑜 𝑋 = 1

This shows explicitly how the dependence 

of 𝑍 on 𝑋 should be treated.
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Table 14.2 depicts the 

counterfactuals 

associated with the 

model to the right, with 

all subscripts denoting 

the state of 𝑋. 

PART III: NONDETERMINISTIC COUNTERFACTUALS

𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2Table 14.2 is obtained by the same method we 

used in constructing Table 14.1: replacing the 

equation 𝑋 = 𝑢 with the appropriate constant 

(0 or 1) and solving for 𝑌 and 𝑍. 

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

𝑈1 = 0
𝑋 ≔ 0

𝑍 ≔ 𝑈2

𝑈2 = 0 𝑌 ≔ 0

𝑈2 = 1 𝑌 ≔ 𝛽

𝑈1 = 1
𝑋 ≔ 1

𝑍 ≔ 𝛼 + 𝑈2

𝑈2 = 0 𝑌 ≔ 𝛼𝛽

𝑈2 = 1 𝑌 ≔ 𝛼 + 1 𝛽
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Table 14.2 depicts the 

counterfactuals 

associated with the 

model to the right, with 

all subscripts denoting 

the state of 𝑋. 
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2Table 14.2 is obtained by the same method we 

used in constructing Table 14.1: replacing the 

equation 𝑋 = 𝑢 with the appropriate constant 

(0 or 1) and solving for 𝑌 and 𝑍. 

Using Table 14.2, we can verify that

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

𝔼 𝑌1|𝑍 = 1 = 𝛼 + 1 𝛽

𝔼 𝑌0|𝑍 = 1 = 𝛽

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = 𝛽 (College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

𝑍 = 1

𝑑𝑜(𝑋 = 1) 𝑌 = 𝛽
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Table 14.2 depicts the 

counterfactuals 

associated with the 

model to the right, with 

all subscripts denoting 

the state of 𝑋. 
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2Table 14.2 is obtained by the same method we 

used in constructing Table 14.1: replacing the 

equation 𝑋 = 𝑢 with the appropriate constant 

(0 or 1) and solving for 𝑌 and 𝑍. 

Using Table 14.2, we can verify that

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

𝔼 𝑌1|𝑍 = 1 = 𝛼 + 1 𝛽

𝔼 𝑌0|𝑍 = 1 = 𝛽

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = 𝛽

𝔼 𝑌|𝑑𝑜 𝑋 = 0 , 𝑍 = 1 = 𝛽

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

𝑍 = 1

𝑑𝑜(𝑋 = 0) 𝑌 = 𝛽
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Table 14.2 depicts the 

counterfactuals 

associated with the 

model to the right, with 

all subscripts denoting 

the state of 𝑋. 
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

𝔼 𝑌1|𝑍 = 1 = 𝛼 + 1 𝛽

𝔼 𝑌0|𝑍 = 1 = 𝛽

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 = 𝛽

𝔼 𝑌|𝑑𝑜 𝑋 = 0 , 𝑍 = 1 = 𝛽

Table 14.2 is obtained by the same method we 

used in constructing Table 14.1: replacing the 

equation 𝑋 = 𝑢 with the appropriate constant 

(0 or 1) and solving for 𝑌 and 𝑍. 

Using Table 14.2, we can verify that

These equations 

provide numerical 

confirmation of 

the inequality to 

the right

𝔼 𝑌|𝑑𝑜 𝑋 = 1 , 𝑍 = 1 ≠ 𝔼 𝑌𝑋=1|𝑍 = 1
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Table 14.2 depicts the 

counterfactuals 

associated with the 

model to the right, with 

all subscripts denoting 

the state of 𝑋. 
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

𝔼 𝑌1|𝑍 = 1 = 𝛼 + 1 𝛽

𝔼 𝑌0|𝑍 = 1 = 𝛽

Table 14.2 is obtained by the same method we 

used in constructing Table 14.1: replacing the 

equation 𝑋 = 𝑢 with the appropriate constant 

(0 or 1) and solving for 𝑌 and 𝑍. 

Using Table 14.2, we can verify that

The equations also demonstrate a peculiar property of 

counterfactual conditioning.

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Despite the fact that 𝑍 separates 𝑋 from 𝑌 in the graph of 

Figure 14.3, we find that 𝑋 has an effect on 𝑌 for those units 

falling under 𝑍 = 1.

separates 𝑋 from 𝑌

𝑋 affects 𝑌

𝔼 𝑌1 − 𝑌0|𝑍 = 1 = 𝛼 + 1 𝛽 − 𝛽 = 𝛼𝛽 ≠ 0
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

The reason for this behavior is best 

explained in the context of our salary 

example. 

▪ the salary of those who have acquired 

skill level 𝑍 = 1 depends only on their 

skill, not on 𝑋,

▪ the salary of those who are currently 

at 𝑍 = 1 would have been different 

had they had a different past. 

The equations also demonstrate a peculiar property of 

counterfactual conditioning.

Despite the fact that 𝑍 separates 𝑋 from 𝑌 in the graph of 

Figure 14.3, we find that 𝑋 has an effect on 𝑌 for those units 

falling under 𝑍 = 1.

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

separates 𝑋 from 𝑌
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2

𝑋 ≔ 𝑈1

𝑍 ≔ 𝛼𝑋 + 𝑈2

𝑌 ≔ 𝛽𝑍

▪ Retrospective reasoning of this sort, 

concerning dependence on the unrealized 

past, is not shown explicitly in the graph 

of Figure 14.3. 

▪ To facilitate such reasoning, we need to 

devise means of representing 

counterfactual variables directly in the 

graph.

The equations also demonstrate a peculiar property of 

counterfactual conditioning.

Despite the fact that 𝑍 separates 𝑋 from 𝑌 in the graph of 

Figure 14.3, we find that 𝑋 has an effect on 𝑌 for those units 

falling under 𝑍 = 1.

(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

separates 𝑋 from 𝑌
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛼𝛽 0 𝛼

0 1 0 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

1 0 1 𝛼 𝛼𝛽 0 𝛼𝛽 0 𝛼

1 1 1 𝛼 + 1 𝛼 + 1 𝛽 𝛽 𝛼 + 1 𝛽 1 𝛼 + 1

Table 14.2

Thus far, the relative magnitudes of the 

probabilities of 𝑃(𝑈1) and 𝑃(𝑈1) have not 

entered into the calculations, because the 

condition 𝑍 = 1 occurs only for 𝑈1 = 0 and 

𝑈2 = 1 (assuming that 𝛼 ≠ 0 and 𝛼 ≠ 1), 

and under these conditions, each of 𝑌, 𝑌1, 
and 𝑌0 has a definite value.

These probabilities play a role, however, if we 

assume 𝛼 = 1 in the model, 

since 𝑍 = 1 can now occur under two conditions: 

(𝑈1 = 0, 𝑈2 = 1) and (𝑈1 = 1, 𝑈2 = 0). 

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛽 0 1

0 1 0 1 𝛽 𝛽 2𝛽 1 2

1 0 1 1 𝛽 0 𝛽 0 1

1 1 1 2 2𝛽 𝛽 2𝛽 1 2

𝛼 = 1

𝔼 𝑌1|𝑍 = 1 = 𝛼 + 1 𝛽

𝔼 𝑌0|𝑍 = 1 = 𝛽

𝔼 𝑌1|𝑍 = 1 = 2𝛽

𝔼 𝑌0|𝑍 = 1 = 𝛽

𝛼 = 1
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Thus far, the relative magnitudes of the 

probabilities of 𝑃(𝑈1) and 𝑃(𝑈1) have not 

entered into the calculations, because the 

condition 𝑍 = 1 occurs only for 𝑈1 = 0 and 

𝑈2 = 1 (assuming that 𝛼 ≠ 0 and 𝛼 ≠ 1), 

and under these conditions, each of 𝑌, 𝑌1, 
and 𝑌0 has a definite value.

𝔼 𝑌0|𝑍 = 1

𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛽 0 1

0 1 0 1 𝛽 𝛽 2𝛽 1 2

1 0 1 1 𝛽 0 𝛽 0 1

1 1 1 2 2𝛽 𝛽 2𝛽 1 2

= 𝛽
𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0
+ 0

𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

= 𝛽
𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

𝔼 𝑌1|𝑍 = 1 = 2𝛽
𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0
+ 𝛽

𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

= 𝛽 1 +
𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

𝔼 𝑌1|𝑍 = 1 = 2𝛽

𝔼 𝑌0|𝑍 = 1 = 𝛽
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𝑈1 𝑈2 𝑋(𝑢) 𝑍 𝑢 𝑌 𝑢 𝑌0 𝑢 𝑌1 𝑢 𝑍0 𝑢 𝑍1 𝑢

0 0 0 0 0 0 𝛽 0 1

0 1 0 1 𝛽 𝛽 2𝛽 1 2

1 0 1 1 𝛽 0 𝛽 0 1

1 1 1 2 2𝛽 𝛽 2𝛽 1 2

𝛽 1 +
𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0
> 𝛽

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1

𝑃 𝑈1 = 0 𝑃 𝑈2 = 1 + 𝑃 𝑈1 = 1 𝑃 𝑈2 = 0

𝔼 𝑌1|𝑍 = 1 > 𝔼 𝑌0|𝑍 = 1

The skill-specific causal effect of education on salary is nonzero, despite 

the fact that salaries are determined by skill only, not by education. 

This is to be expected, since a nonzero fraction of the workers at skill 

level 𝑍 = 1 did not receive college education, and, had they been given 

college education, their skill would have increased to 𝑍1 = 2, and their 

salaries to 2𝛽.
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Counterfactuals are byproducts of structural equation models, thus we can see them in the causal graphs 

associated with those models.

𝑌𝑥 𝑢 = 𝑌𝑀𝑥
𝑢

Indeed, the FUNDAMENTAL LAW OF COUNTERFACTUALS tells us that, if we modify model 𝑀
to obtain the submodel 𝑀𝑥, then the outcome variable 𝑌 in the modified model is the 

counterfactual 𝑌𝑥 of the original model.

Since modification calls for removing all arrows entering the variable 𝑋, as illustrated in Figure 14.4, we conclude 

that the node associated with the 𝑌 variable serves as a surrogate for 𝑌𝑥, with the understanding that the 

substitution is valid only under the modification.

Figure 14.4 (a)

𝑌

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑀 Figure 14.4 (b)

𝑌

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑑𝑜(𝑋 = 𝑥)

𝑀𝑥



CAUSAL NETWORKS – COUNTERFACTUALS FALL 2021 FABIO STELLA

47PART III: NONDETERMINISTIC COUNTERFACTUALS

This temporary visualization of counterfactuals is sufficient to answer some fundamental questions about the 

statistical properties of 𝑌𝑥 and how those properties depend on other variables in the model, specifically when 

those other variables are conditioned on.

Figure 14.4 (a)

𝑌

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑀 Figure 14.4 (b)

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑑𝑜(𝑋 = 𝑥)

𝑀𝑥

When we ask about the statistical properties of 𝑌𝑥, we need to examine what would cause 𝑌𝑥 to vary. According 

to its structural definition, 𝑌𝑥 represents the value of 𝑌 under a condition where 𝑋 is held constant at 𝑋 = 𝑥.

𝑌𝑥 = 𝑌𝑀𝑥

Statistical variations of 𝑌𝑥 are therefore governed by all exogenous variables capable of influencing 𝑌 when 𝑋 is 

held constant, that is, when the arrows entering 𝑋 are removed, as in Figure 14.4(b).
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Under such conditions, the set of variables capable of transmitting variations to 𝑌 are the parents of 𝑌, 

(observed and unobserved) as well as parents of nodes on the pathways between 𝑋 and 𝑌.

Figure 14.4 (b)

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑑𝑜(𝑋 = 𝑥)

𝑀𝑥

In Figure 14.4(b), for example, these nodes are 𝑍3,𝑊2, 𝑈𝑌, 𝑈3 , where 𝑈𝑌 and 𝑈3, the error terms of 𝑌 and 𝑊3. 

𝑌𝑥 = 𝑌𝑀𝑥

𝑈𝑌

Any set of variables that blocks a path to these parents also blocks that path to 𝑌𝑥, and will result in, therefore, 

a conditional independence for 𝑌𝑥.

In particular, if we have a set 𝐙 of covariate that satisfies 

the backdoor criterion in 𝑀, that set also blocks all paths 

between 𝑋 and those parents, and consequently, it 

renders 𝑋 and 𝑌𝑥 independent in every stratum 𝐙 = 𝒛.

Given an ordered pair of variables 𝑋, 𝑌 in a DAG 𝒢, 

a set of variables 𝐒 satisfies the backdoor criterion 

relative to 𝑋, 𝑌 if no node in 𝐒 is a descendant of 𝑋, 

and 𝐒 blocks every path between 𝑋 and 𝑌 that 

contains an arrow into 𝑋.

THE BACKDOOR CRITERION
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If a set 𝐙 of variables satisfies the backdoor condition 

relative to 𝑋, 𝑌 , then, for all 𝑥, the counterfactual 𝑌𝑥
is conditionally independent of 𝑋 given 𝐙

COUNTERFACTUAL INTERPRETATION OF BACKDOOR

𝑃 𝑌𝑥|𝑋, 𝐙 = 𝑃 𝑌𝑥|𝐙

The theorem to the left has far-reaching 

consequences when it comes to estimating 

the probabilities of counterfactuals from 

observational studies. 

In particular, it implies that 𝑃 𝑌𝑥 = 𝑦 is 

identifiable by the adjustment formula.

𝑃 𝑌 = 𝑦|𝑑𝑜 𝑋 = 𝑥 =෍

𝒛

𝑃 𝑌 = 𝑦|𝑋 = 𝑥, 𝐙 = 𝒛 𝑃 𝐙 = 𝒛

ADJUSTMENT FORMULA

𝑃 𝑌𝑥 = 𝑦 =෍

𝒛

𝑃 𝑌𝑥 = 𝑦|𝐙 = 𝒛 𝑃 𝐙 = 𝒛

=෍

𝒛

𝑃 𝑌𝑥 = 𝑦|𝐙 = 𝒛, 𝑋 = 𝑥 𝑃 𝐙 = 𝒛

=෍

𝒛

𝑃 𝑌 = 𝑦|𝐙 = 𝒛, 𝑋 = 𝑥 𝑃 𝐙 = 𝒛

(by the counterfactual interpretation of 

backdoor)

(by the counterfactual consistency rule)

COUNTERFACTUAL CONSISTENCY RULE

If 𝑋 = 𝑥 then   𝑌𝑋 = 𝑌

If 𝑋 is binary then we have the convenient form

𝑌 = 𝑋𝑌1 + 1 − 𝑋 𝑌0
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The derivation to the 

left, invokes only 

algebraic steps; it 

makes no reference to 

the model once we 

ensure that 𝐙 satisfies 

the backdoor criterion.

𝑌𝑥 𝑢 = 𝑌𝑀𝑥
𝑢

sometimes called 

“CONDITIONAL IGNORABILITY”

converts a graphical 

model into algebraic 

notation, and allows 

us to derive Gives the notion of conditional ignorability a scientific 

interpretation and permits us to test whether it holds 

in any given model.

If a set 𝐙 of variables satisfies the backdoor condition 

relative to 𝑋, 𝑌 , then, for all 𝑥, the counterfactual 𝑌𝑥
is conditionally independent of 𝑋 given 𝐙

COUNTERFACTUAL INTERPRETATION OF BACKDOOR

𝑃 𝑌𝑥|𝑋, 𝐙 = 𝑃 𝑌𝑥|𝐙

𝑃 𝑌𝑥 = 𝑦 =෍

𝒛

𝑃 𝑌𝑥 = 𝑦|𝐙 = 𝒛 𝑃 𝐙 = 𝒛

=෍

𝒛

𝑃 𝑌𝑥 = 𝑦|𝐙 = 𝒛, 𝑋 = 𝑥 𝑃 𝐙 = 𝒛

=෍

𝒛

𝑃 𝑌 = 𝑦|𝐙 = 𝒛, 𝑋 = 𝑥 𝑃 𝐙 = 𝒛 (by the counterfactual consistency rule)

(by the counterfactual interpretation of 

backdoor)
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Having a graphical representation for counterfactuals, we 

can resolve the dilemma in Figure 14.3, and explain 

graphically why a stronger education (𝑋) would have had 

an effect on the salary (𝑌) of people who are currently at 

skill level 𝑍 = 𝑧, despite the fact that, according to the 

model, salary is determined by skill only.
(College)

𝑋
(Skills)

𝑍
(Salary)

𝑌

Figure 14.3

𝛼 𝛽

𝑈1 𝑈2

Formally, to determine if the effect of education on salary 

(𝑌𝑥) is statistically independent of the level of education, 

we need to locate 𝑌𝑥 in the graph and see if it is                

d-separated from 𝑋 given 𝑍. 

Referring to Figure 14.3, we see that 𝑌𝑥 can be identified 

with 𝑈2, the only parent of nodes on the causal path from 

𝑋 to 𝑌 (and therefore, the only variable that produces 

variations in 𝑌𝑥 while 𝑋 is held constant).

𝑌𝑥

node on the 

causal path

from 𝑋 to 𝑌

Inspecting Figure 14.3 tells us that 𝑍 acts as a collider 

between 𝑋 and 𝑈2, and, therefore, 𝑋 and 𝑈2 (and 

similarly 𝑋 and 𝑌𝑥) are not d-separated given 𝑍. 

𝔼 𝑌𝑥|𝑋, 𝑍 ≠ 𝔼 𝑌𝑥|𝑍

𝔼 𝑌|𝑋, 𝑍 = 𝔼 𝑌|𝑍

despite the fact that
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We now know that every counterfactual 

question can be answered from a fully 

specified structural model.

However, what happens in an 

experimental setting, where a model is 

not available, and the experimenter 

must answer interventional questions 

on the basis of a finite sample of 

observed individuals?

Let us refer back to the “encouragement 

design” model of Figure 14.1, in which 

we analyzed the behavior of an individual 

named Joe, and assume that the 

experimenter observes a set of 10 

individuals, with Joe being participant 1.

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4

Participant
Characteristic

Observed
Behaviour

Predicted Potential Outcomes

Participant 𝑈𝑋 𝑈𝐻 𝑈𝑌 𝑋 𝐻 𝑌 𝑌0 𝑌1 𝐻0 𝐻1 𝑌00

1 0.5 0.75 0.75 0.5 1.00 1.50 1.05 1.95 0.75 1.25 0.75

2 0.3 0.1 0.4 0.3 0.25 0.71 0.44 1.34 0.1 0.6 0.4

3 0.5 0.9 0.2 0.5 1.15 1.01 0.56 1.46 0.9 1.4 0.2

4 0.6 0.5 0.3 0.6 0.80 1.04 0.50 1.40 0.5 1.0 0.3

5 0.5 0.8 0.9 0.5 1.05 1.67 1.22 2.12 0.8 1.3 0.9

6 0.7 0.9 0.3 0.7 1.25 1.29 0.66 1.56 0.9 1.4 0.3

7 0.2 0.3 0.8 0.2 0.24 1.10 0.92 1.82 0.3 0.8 0.8

8 0.4 0.6 0.2 0.4 0.80 0.80 0.44 1.34 0.6 1.1 0.2

9 0.6 0.4 0.3 0.6 0.70 1.00 0.46 1.36 0.4 0.9 0.3

10 0.3 0.8 0.3 0.3 0.95 0.89 0.62 1.52 0.8 1.3 0.3

Each individual is characterized by a 

distinct vector 𝑈𝑖 = (𝑈𝑋,𝑈𝐻,𝑈𝑌), as shown 

in the first three columns of Table 14.3.

Table 14.3
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Participant
Characteristic

Observed
Behaviour

Predicted Potential Outcomes

Participant 𝑈𝑋 𝑈𝐻 𝑈𝑌 𝑋 𝐻 𝑌 𝑌0 𝑌1 𝐻0 𝐻1 𝑌00

1 0.5 0.75 0.75 0.5 1.00 1.50 1.05 1.95 0.75 1.25 0.75

2 0.3 0.1 0.4 0.3 0.25 0.71 0.44 1.34 0.1 0.6 0.4

3 0.5 0.9 0.2 0.5 1.15 1.01 0.56 1.46 0.9 1.4 0.2

4 0.6 0.5 0.3 0.6 0.80 1.04 0.50 1.40 0.5 1.0 0.3

5 0.5 0.8 0.9 0.5 1.05 1.67 1.22 2.12 0.8 1.3 0.9

6 0.7 0.9 0.3 0.7 1.25 1.29 0.66 1.56 0.9 1.4 0.3

7 0.2 0.3 0.8 0.2 0.24 1.10 0.92 1.82 0.3 0.8 0.8

8 0.4 0.6 0.2 0.4 0.80 0.80 0.44 1.34 0.6 1.1 0.2

9 0.6 0.4 0.3 0.6 0.70 1.00 0.46 1.36 0.4 0.9 0.3

10 0.3 0.8 0.3 0.3 0.95 0.89 0.62 1.52 0.8 1.3 0.3

Table 14.3

From the first six columns of Table 14.3, 

we can create a full data set that 

complies with the model.

For each triplet (𝑈𝑋,𝑈𝐻,𝑈𝑌), the model 

of Figure 14.1 enables us to complete 

a full row of the table, including:

▪ 𝑌0; potential outcomes under 

treatment (𝑋 = 1),

▪ 𝑌1, potential outcomes under 

control (𝑋 = 0).

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4
𝑈𝑋

𝑈𝑌
𝑈𝐻

▪ Columns 𝑋, 𝐻, 𝑌 predict the results 

of observational studies.

▪ Columns 𝑌0, 𝑌1, 𝐻0 and 𝐻1 predict 

hypothetical outcome under two 

treatment regimes, 𝑋 = 0 and 𝑋 = 1.
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Participant
Characteristic

Observed
Behaviour

Predicted Potential Outcomes

Participant 𝑈𝑋 𝑈𝐻 𝑈𝑌 𝑋 𝐻 𝑌 𝑌0 𝑌1 𝐻0 𝐻1 𝑌00

1 0.5 0.75 0.75 0.5 1.00 1.50 1.05 1.95 0.75 1.25 0.75

2 0.3 0.1 0.4 0.3 0.25 0.71 0.44 1.34 0.1 0.6 0.4

3 0.5 0.9 0.2 0.5 1.15 1.01 0.56 1.46 0.9 1.4 0.2

4 0.6 0.5 0.3 0.6 0.80 1.04 0.50 1.40 0.5 1.0 0.3

5 0.5 0.8 0.9 0.5 1.05 1.67 1.22 2.12 0.8 1.3 0.9

6 0.7 0.9 0.3 0.7 1.25 1.29 0.66 1.56 0.9 1.4 0.3

7 0.2 0.3 0.8 0.2 0.24 1.10 0.92 1.82 0.3 0.8 0.8

8 0.4 0.6 0.2 0.4 0.80 0.80 0.44 1.34 0.6 1.1 0.2

9 0.6 0.4 0.3 0.6 0.70 1.00 0.46 1.36 0.4 0.9 0.3

10 0.3 0.8 0.3 0.3 0.95 0.89 0.62 1.52 0.8 1.3 0.3

From the first six columns of Table 14.3, 

we can create a full data set that 

complies with the model.

Many more, in fact infinite, potential 

outcomes may be predicted; 

▪ for example, 𝑌𝑋=0.5,𝐻=2.0 as 

computed for Joe (Figure 14.2), 

as well as all combinations of 

subscripted variables.

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.2

𝛽 = 0.7

𝛾 = 0.4
𝑋 = 0.5
𝐻 = 2.0

student Joe

From this synthetic population, one 

can estimate the probability of 

every counterfactual query on 

variables 𝑋,𝐻, 𝑌 assuming, of 

course, that we are in possession 

of all entries of the table. 

The estimation would require us to 

simply count the proportion of 

individuals that satisfy the specified 

query as previously demonstrated.

Table 14.3
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Participant
Characteristic

Observed
Behaviour

Predicted Potential Outcomes

Participant 𝑈𝑋 𝑈𝐻 𝑈𝑌 𝑋 𝐻 𝑌 𝑌0 𝑌1 𝐻0 𝐻1 𝑌00

1 0.5 0.75 0.75 0.5 1.00 1.50 1.05 1.95 0.75 1.25 0.75

2 0.3 0.1 0.4 0.3 0.25 0.71 0.44 1.34 0.1 0.6 0.4

3 0.5 0.9 0.2 0.5 1.15 1.01 0.56 1.46 0.9 1.4 0.2

4 0.6 0.5 0.3 0.6 0.80 1.04 0.50 1.40 0.5 1.0 0.3

5 0.5 0.8 0.9 0.5 1.05 1.67 1.22 2.12 0.8 1.3 0.9

6 0.7 0.9 0.3 0.7 1.25 1.29 0.66 1.56 0.9 1.4 0.3

7 0.2 0.3 0.8 0.2 0.24 1.10 0.92 1.82 0.3 0.8 0.8

8 0.4 0.6 0.2 0.4 0.80 0.80 0.44 1.34 0.6 1.1 0.2

9 0.6 0.4 0.3 0.6 0.70 1.00 0.46 1.36 0.4 0.9 0.3

10 0.3 0.8 0.3 0.3 0.95 0.89 0.62 1.52 0.8 1.3 0.3

The information conveyed by Table 14.3 

is not available to us in either 

observational or experimental studies. 

This information was deduced from 

a parametric model such as the one 

in Figure 14.2, from which we could 

infer the defining characteristics 

𝑈𝑋,𝑈𝐻,𝑈𝑌 of each participant, given 

the observations 𝑋,𝐻, 𝑌 .

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.2

𝛽 = 0.7

𝛾 = 0.4

Table 14.3

𝑈𝑋

𝑈𝑌
𝑈𝐻

In general, in the absence of a 

parametric model, there is very little 

we learn about the potential 

outcomes 𝑌1 and 𝑌0 of individual 

participants, when all we have is their 

observed behavior 𝑋,𝐻, 𝑌 .
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Participant
Characteristic

Observed
Behaviour

Predicted Potential Outcomes

Participant 𝑈𝑋 𝑈𝐻 𝑈𝑌 𝑋 𝐻 𝑌 𝑌0 𝑌1 𝐻0 𝐻1 𝑌00

1 0.5 0.75 0.75 0.5 1.00 1.50 1.05 1.95 0.75 1.25 0.75

2 0.3 0.1 0.4 0.3 0.25 0.71 0.44 1.34 0.1 0.6 0.4

3 0.5 0.9 0.2 0.5 1.15 1.01 0.56 1.46 0.9 1.4 0.2

4 0.6 0.5 0.3 0.6 0.80 1.04 0.50 1.40 0.5 1.0 0.3

5 0.5 0.8 0.9 0.5 1.05 1.67 1.22 2.12 0.8 1.3 0.9

6 0.7 0.9 0.3 0.7 1.25 1.29 0.66 1.56 0.9 1.4 0.3

7 0.2 0.3 0.8 0.2 0.24 1.10 0.92 1.82 0.3 0.8 0.8

8 0.4 0.6 0.2 0.4 0.80 0.80 0.44 1.34 0.6 1.1 0.2

9 0.6 0.4 0.3 0.6 0.70 1.00 0.46 1.36 0.4 0.9 0.3

10 0.3 0.8 0.3 0.3 0.95 0.89 0.62 1.52 0.8 1.3 0.3

Theoretically, the only connection we have 

between the counterfactuals 𝑌1, 𝑌0 and 

the observables 𝑋,𝐻, 𝑌 is the 

consistency rule

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.2

𝛽 = 0.7

𝛾 = 0.4

Table 14.3

𝑈𝑋

𝑈𝑌
𝑈𝐻

which informs us that, 𝑌1 must be equal 

to 𝑌 in case 𝑋 = 1, and 𝑌0 must be 

equal to 𝑌 in case 𝑋 = 0. 

But aside from this tenuous connection, 

most of the counterfactuals associated 

with the individual participants will 

remain unobserved.

COUNTERFACTUAL CONSISTENCY RULE

If 𝑋 = 𝑥 then   𝑌𝑋 = 𝑌

If 𝑋 is binary then we have the 

convenient form

𝑌 = 𝑋𝑌1 + 1 − 𝑋 𝑌0
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Participant
Characteristic

Observed
Behaviour

Predicted Potential Outcomes

Participant 𝑈𝑋 𝑈𝐻 𝑈𝑌 𝑋 𝐻 𝑌 𝑌0 𝑌1 𝐻0 𝐻1 𝑌00

1 0.5 0.75 0.75 0.5 1.00 1.50 1.05 1.95 0.75 1.25 0.75

2 0.3 0.1 0.4 0.3 0.25 0.71 0.44 1.34 0.1 0.6 0.4

3 0.5 0.9 0.2 0.5 1.15 1.01 0.56 1.46 0.9 1.4 0.2

4 0.6 0.5 0.3 0.6 0.80 1.04 0.50 1.40 0.5 1.0 0.3

5 0.5 0.8 0.9 0.5 1.05 1.67 1.22 2.12 0.8 1.3 0.9

6 0.7 0.9 0.3 0.7 1.25 1.29 0.66 1.56 0.9 1.4 0.3

7 0.2 0.3 0.8 0.2 0.24 1.10 0.92 1.82 0.3 0.8 0.8

8 0.4 0.6 0.2 0.4 0.80 0.80 0.44 1.34 0.6 1.1 0.2

9 0.6 0.4 0.3 0.6 0.70 1.00 0.46 1.36 0.4 0.9 0.3

10 0.3 0.8 0.3 0.3 0.95 0.89 0.62 1.52 0.8 1.3 0.3

Fortunately, there is much we can learn 

about those counterfactuals at the 

population level, such as estimating their 

probabilities or expectation. 

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.2

𝛽 = 0.7

𝛾 = 0.4

Table 14.3

𝑈𝑋

𝑈𝑌
𝑈𝐻

𝑃 𝑌𝑥 = 𝑦 =෍

𝒛

𝑃 𝑌 = 𝑦|𝐙 = 𝒛, 𝑋 = 𝑥 𝑃 𝐙 = 𝒛

This we have witnessed already through 

the adjustment formula,

where we were able to compute 

𝔼 𝑌1 − 𝑌0

using the graph alone, instead of a 

complete model. 

Much more can be obtained from 

experimental studies, where even the 

graph becomes dispensable.



CAUSAL NETWORKS – COUNTERFACTUALS FALL 2021 FABIO STELLA

58PART III: NONDETERMINISTIC COUNTERFACTUALS

Predicted
Potential Outcomes

Observed
Outcomes

Participant 𝑌0 𝑌1 𝑌0 𝑌1

1 1.05 1.95 1.05 

2 0.44 1.34  1.34

3 0.56 1.46  1.46

4 0.50 1.40  1.40

5 1.22 2.12 1.22 

6 0.66 1.56 0.66 

7 0.92 1.82  1.82

8 0.44 1.34 0.44 

9 0.46 1.36  1.36

10 0.62 1.52 0.62 

Assume that we have no information 

whatsoever about the underlying model. 

All we have are measurements on 𝑌 taken in 

an experimental study in which 𝑋 is 

randomized over two levels, 𝑋 = 0 and 𝑋 = 1.

Table 14.4 describes the responses of the same 

10 participants (Joe being participant 1) under 

such experimental conditions, with participants

student 

Joe

Table 14.4
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Predicted
Potential Outcomes

Observed
Outcomes

Participant 𝑌0 𝑌1 𝑌0 𝑌1

1 1.05 1.95 1.05 

2 0.44 1.34  1.34

3 0.56 1.46  1.46

4 0.50 1.40  1.40

5 1.22 2.12 1.22 

6 0.66 1.56 0.66 

7 0.92 1.82  1.82

8 0.44 1.34 0.44 

9 0.46 1.36  1.36

10 0.62 1.52 0.62 

Assume that we have no information 

whatsoever about the underlying model. 

All we have are measurements on 𝑌 taken in 

an experimental study in which 𝑋 is 

randomized over two levels, 𝑋 = 0 and 𝑋 = 1.

Table 14.4 describes the responses of the same 

10 participants (Joe being participant 1) under 

such experimental conditions, with participants 

▪ 1, 5, 6, 8, and 10 assigned to 𝑋 = 0, 

▪ 2, 3, 4, 7, and 9 assigned to 𝑋 = 1.

student 

Joe

Table 14.4

Control 

group

𝑋 = 0
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Predicted
Potential Outcomes

Observed
Outcomes

Participant 𝑌0 𝑌1 𝑌0 𝑌1

1 1.05 1.95 1.05 

2 0.44 1.34  1.34

3 0.56 1.46  1.46

4 0.50 1.40  1.40

5 1.22 2.12 1.22 

6 0.66 1.56 0.66 

7 0.92 1.82  1.82

8 0.44 1.34 0.44 

9 0.46 1.36  1.36

10 0.62 1.52 0.62 

Assume that we have no information 

whatsoever about the underlying model. 

All we have are measurements on 𝑌 taken in 

an experimental study in which 𝑋 is 

randomized over two levels, 𝑋 = 0 and 𝑋 = 1.

Table 14.4 describes the responses of the same 

10 participants (Joe being participant 1) under 

such experimental conditions, with participants 

▪ 1, 5, 6, 8, and 10 assigned to 𝑋 = 0, 

▪ 2, 3, 4, 7, and 9 assigned to 𝑋 = 1.

student 

Joe

Table 14.4

Treatment 

group

𝑋 = 1
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Predicted
Potential Outcomes

Observed
Outcomes

Participant 𝑌0 𝑌1 𝑌0 𝑌1

1 1.05 1.95 1.05 

2 0.44 1.34  1.34

3 0.56 1.46  1.46

4 0.50 1.40  1.40

5 1.22 2.12 1.22 

6 0.66 1.56 0.66 

7 0.92 1.82  1.82

8 0.44 1.34 0.44 

9 0.46 1.36  1.36

10 0.62 1.52 0.62 

The first two columns give the true potential 

outcomes (taken fromTable 4.3), while the last 

two columns describe the information 

available to the experimenter, where a square 

indicates that the response was not observed.

▪ 𝑌0 is observed only for participants assigned to 𝑋 = 0

▪ 𝑌1 is observed only for participants assigned to 𝑋 = 1.

student 

Joe

Table 14.4

RANDOMIZATION assures us that, although half of the 

potential outcomes are not observed, the difference 

between the observed means in the treatment and 

control groups will converge to the difference of the 

population averages, 𝔼 𝑌1 − 𝑌0 = 0.9.
True average

treatment effect

0.90
This is because randomization distributes the black squares at 

random along the two rightmost columns of Table 14.4, 

independent of the actual values of 𝑌0 and 𝑌1, so as the number 

of sample increases, the sample means converge to the 

population means.
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Predicted
Potential Outcomes

Observed
Outcomes

Participant 𝑌0 𝑌1 𝑌0 𝑌1

1 1.05 1.95 1.05 

2 0.44 1.34  1.34

3 0.56 1.46  1.46

4 0.50 1.40  1.40

5 1.22 2.12 1.22 

6 0.66 1.56 0.66 

7 0.92 1.82  1.82

8 0.44 1.34 0.44 

9 0.46 1.36  1.36

10 0.62 1.52 0.62 

This unique and important property of 

randomized experiments is not new to us, 

since randomization, like interventions, 

renders 𝑋 independent of any variable that 

may affect 𝑌 (as in Figure 14.4(b)).

student 

Joe

Table 14.4

True average

treatment effect

0.90

Figure 14.4 (b)

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑑𝑜(𝑋 = 𝑥)

𝑀𝑥

𝑌𝑥 = 𝑌𝑀𝑥



CAUSAL NETWORKS – COUNTERFACTUALS FALL 2021 FABIO STELLA

63PART III: NONDETERMINISTIC COUNTERFACTUALS

Predicted
Potential Outcomes

Observed
Outcomes

Participant 𝑌0 𝑌1 𝑌0 𝑌1

1 1.05 1.95 1.05 

2 0.44 1.34  1.34

3 0.56 1.46  1.46

4 0.50 1.40  1.40

5 1.22 2.12 1.22 

6 0.66 1.56 0.66 

7 0.92 1.82  1.82

8 0.44 1.34 0.44 

9 0.46 1.36  1.36

10 0.62 1.52 0.62 

Under such conditions, the adjustment formula
student 

Joe

Table 14.4

True average

treatment effect

0.90

Figure 14.4 (b)

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑑𝑜(𝑋 = 𝑥)

𝑀𝑥

𝑌𝑥 = 𝑌𝑀𝑥

is applicable with 𝐙 = ∅ , yielding 

𝔼 𝑌𝑥 = 𝔼 𝑌|𝑋 = 𝑥 , 

where 𝑋 = 1 represents treated units and 𝑋 = 0 untreated.

𝑃 𝑌𝑥 = 𝑦 =෍

𝒛

𝑃 𝑌 = 𝑦|𝐙 = 𝒛, 𝑋 = 𝑥 𝑃 𝐙 = 𝒛
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Predicted
Potential Outcomes

Observed
Outcomes

Participant 𝑌0 𝑌1 𝑌0 𝑌1

1 1.05 1.95 1.05 

2 0.44 1.34  1.34

3 0.56 1.46  1.46

4 0.50 1.40  1.40

5 1.22 2.12 1.22 

6 0.66 1.56 0.66 

7 0.92 1.82  1.82

8 0.44 1.34 0.44 

9 0.46 1.36  1.36

10 0.62 1.52 0.62 

Table 14.4 helps us understand what is actually 

computed when we take sample averages in 

experimental settings and how those averages 

are related to the underlying counterfactuals, 𝑌1
and 𝑌0.

student 

Joe

Table 14.4

True average

treatment effect

0.90

Figure 14.4 (b)

𝑋

𝑊3

𝑍1 𝑍2

𝑍3

𝑊1

𝑊2

𝑑𝑜(𝑋 = 𝑥)

𝑀𝑥

𝑌𝑥 = 𝑌𝑀𝑥

Study average

treatment effect

0.68
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In nonparametric models, counterfactual quantities of the form

may not be identifiable, even if we have the luxury of running experiments. 

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒛

In fully linear models, however, things are much easier; any counterfactual quantity is identifiable whenever the 

model parameters are identified.

This is because the parameters fully define the model’s functions, and as we have 

seen earlier, once the functions are given, counterfactuals are computable using
𝑌𝑥 𝑢 = 𝑌𝑀𝑥

𝑢

Since in linear models every model parameter is identifiable from interventional studies using the interventional 

definition of direct effects, we conclude that in linear models, every counterfactual is experimentally identifiable.

Can counterfactuals be identified 

in observational studies, when 

some of the model parameters 

are not identified?

LINEAR COUNTERFACTUAL IDENTIFIABILITY

Any counterfactual of the form

with 𝒆 an arbitrary set of evidence, is identified whenever

𝔼 𝑌|𝑑𝑜(𝑋 = 𝑥)

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆

is identified.
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can be computed by:

1) calculating the best estimate of 𝑌
conditioned on the evidence 𝒆, 

𝔼 𝑌|𝐙 = 𝒆 , 

2) adding to it whatever change is 

expected in 𝑌 when 𝑋 is shifted from its 

current best estimate, 𝔼 𝑌|𝐙 = 𝒆 , to its 

hypothetical value, 𝑥.

Can counterfactuals be identified 

in observational studies, when 

some of the model parameters 

are not identified?

LINEAR COUNTERFACTUAL IDENTIFIABILITY

Any counterfactual of the form

with 𝒆 an arbitrary set of evidence, is identified whenever

𝔼 𝑌|𝑑𝑜(𝑋 = 𝑥)

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆

is identified.

RELATIONSHIP BETWEEN 𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 and 𝔼 𝑌|𝑑𝑜(𝑋 = 𝑥)

Let 𝜏 be the slope of the total effect of 𝑋 on 𝑌,

then, for any evidence 𝐙 = 𝒆, we have

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 = 𝔼 𝑌|𝐙 = 𝒆 + 𝜏 𝑥 − 𝔼 𝑋|𝐙 = 𝒆

𝜏 = 𝔼 𝑌|𝑑𝑜(x + 1) − 𝔼 𝑌|𝑑𝑜(x + 1)𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆

Intuitive interpretation of counterfactuals in 

linear models: 
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Methodologically, the importance of the theorem 

to the right lies in enabling researchers to 

answer hypothetical questions about individuals 

(or sets of individuals) from population data.

In the situation illustrated by Figure 14.1, we 

computed the counterfactual 𝑌𝐻=2 under the 

evidence
𝒆 = 𝑋 = 0.5, 𝐻 = 1, 𝑌 = 1

We now demonstrate how the Theorem to the left can be applied to this model in computing the

EFFECT OF TREATMENT ON THE TREATED

RELATIONSHIP BETWEEN 𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 and 𝔼 𝑌|𝑑𝑜(𝑋 = 𝑥)

Let 𝜏 be the slope of the total effect of 𝑋 on 𝑌,

then, for any evidence 𝐙 = 𝒆, we have

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 = 𝔼 𝑌|𝐙 = 𝒆 + 𝜏 𝑥 − 𝔼 𝑋|𝐙 = 𝒆

𝜏 = 𝔼 𝑌|𝑑𝑜(x + 1) − 𝔼 𝑌|𝑑𝑜(x + 1)

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4𝑬𝑻𝑻 = 𝔼 𝑌1 − 𝑌0|𝑋 = 1
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Methodologically, the importance of the theorem 

to the right lies in enabling researchers to 

answer hypothetical questions about individuals 

(or sets of individuals) from population data.

In the situation illustrated by Figure 14.1, we 

computed the counterfactual 𝑌𝐻=2 under the 

evidence
𝒆 = 𝑋 = 0.5, 𝐻 = 1, 𝑌 = 1

We now demonstrate how the Theorem to the left can be applied to this model in computing the

EFFECT OF TREATMENT ON THE TREATED

𝑬𝑻𝑻 = 𝔼 𝑌1 − 𝑌0|𝑋 = 1

RELATIONSHIP BETWEEN 𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 and 𝔼 𝑌|𝑑𝑜(𝑋 = 𝑥)

Let 𝜏 be the slope of the total effect of 𝑋 on 𝑌,

then, for any evidence 𝐙 = 𝒆, we have

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 = 𝔼 𝑌|𝐙 = 𝒆 + 𝜏 𝑥 − 𝔼 𝑋|𝐙 = 𝒆

𝜏 = 𝔼 𝑌|𝑑𝑜(x + 1) − 𝔼 𝑌|𝑑𝑜(x + 1)

Substituting the evidence 𝒆 = 𝑋 = 0.5 to (*)

(*)

𝑬𝑻𝑻 = 𝔼 𝑌1|𝑋 = 1 − 𝔼 𝑌0|𝑋 = 1

= 𝔼 𝑌|𝑋 = 1 + 𝜏 1 − 𝔼 𝑋|𝑋 = 1 − 𝔼 𝑌|𝑋 = 1 − 𝜏 0 − 𝔼 𝑋|𝑋 = 1

= 𝜏

= 𝛽 + 𝛼𝛾 = 0.9

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4

The effect of treatment on the treated is equal to 

the effect of treatment on the entire population.
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RELATIONSHIP BETWEEN 𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 and 𝔼 𝑌|𝑑𝑜(𝑋 = 𝑥)

Let 𝜏 be the slope of the total effect of 𝑋 on 𝑌,

then, for any evidence 𝐙 = 𝒆, we have

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 = 𝔼 𝑌|𝐙 = 𝒆 + 𝜏 𝑥 − 𝔼 𝑋|𝐙 = 𝒆

𝜏 = 𝔼 𝑌|𝑑𝑜(x + 1) − 𝔼 𝑌|𝑑𝑜(x + 1)

(*)

A general result in linear systems that can be 

seen directly from (*)

independent on the evidence of 𝒆.

𝔼 𝑌𝑥+1 − 𝑌𝑥|𝐙 = 𝒆 = 𝜏

Things are different when a multiplicative (i.e., nonlinear) interaction term is added to the output equation. 

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4For example, if the arrow 𝑋 → 𝐻 were reversed in 

Figure 14.1, and the equation for 𝑌 read
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RELATIONSHIP BETWEEN 𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 and 𝔼 𝑌|𝑑𝑜(𝑋 = 𝑥)

Let 𝜏 be the slope of the total effect of 𝑋 on 𝑌,

then, for any evidence 𝐙 = 𝒆, we have

𝔼 𝑌𝑋=𝑥|𝐙 = 𝒆 = 𝔼 𝑌|𝐙 = 𝒆 + 𝜏 𝑥 − 𝔼 𝑋|𝐙 = 𝒆

𝜏 = 𝔼 𝑌|𝑑𝑜(x + 1) − 𝔼 𝑌|𝑑𝑜(x + 1)

(*)

A general result in linear systems that can be 

seen directly from (*)

independent on the evidence of 𝒆.

𝔼 𝑌𝑥+1 − 𝑌𝑥|𝐙 = 𝒆 = 𝜏

(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌

Figure 14.5

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝛿𝑋𝐻 + 𝑈𝑌

nonlinear 

interaction 

term

𝜏 ≠ 𝐸𝑇𝑇

Things are different when a multiplicative (i.e., nonlinear) interaction term is added to the output equation. 

For example, if the arrow 𝑋 → 𝐻 were reversed in 

Figure 14.1, and the equation for 𝑌 read
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PART IV

MATHEMATICAL TOOL KITS FOR

ATTRIBUTION AND MEDIATION

COUNTERFACTUALS
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Assuming binary events, let

▪ 𝑋 = 𝑥 and 𝑌 = 𝑦 represent treatment and outcome, 

respectively, and

▪ 𝑋 = 𝑥′, 𝑌 = 𝑦′ their negations.

PART IV: MATHEMATICAL TOOL KITS FOR ATTRIBUTION AND MEDIATION

Our target quantity is defined by the English sentence:

“Find the probability that if 𝑋 had been 𝑥′, 𝑌 would 

be 𝑦′, given that, in reality, 𝑋 is 𝑥 and 𝑌 is 𝑦.”

𝑃𝑁 𝑥, 𝑦 = 𝑃 𝑌𝑥′ = 𝑦′|𝑋 = 𝑥, 𝑌 = 𝑦

mathematically

Captures the legal criterion of “but for,” according to 

which judgment in favor of a plaintiff should be made 

if and only if it is “more probable than not” that the 

damage would not have occurred but for the 

defendant’s action.

PROBABILITY OF NECESSITY (PN)

What assumptions permit us to identify PN from 

empirical studies, be they observational, 

experimental, or a combination thereof?

If 𝑌 is monotonic relative to 𝑋, that is, 𝑌1(𝑢) ≥ 𝑌0(𝑢) for all 𝑢, then 𝑃𝑁 is identifiable whenever the causal effect 

𝑃 𝑦|𝑑𝑜(𝑥) is identifiable, and

or, substituting𝑃𝑁 =
𝑃 𝑦 − 𝑃(𝑦|𝑑𝑜 𝑥′ )

𝑃(𝑥, 𝑦)

𝑃𝑁 =
𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

𝑃 𝑦 = 𝑃 𝑦 𝑥 𝑃 𝑥 + 𝑃 𝑦 𝑥′ 1 − 𝑃(𝑥)
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𝑃𝑁 =
𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

EXCESS RISK RATIO

(ERR)

often used in court 

cases in the absence 

of experimental data

CONFOUNDING FACTOR

(CF)

represents a correction 

needed to account for 

confounding bias, that is, 

𝑃(𝑦|𝑑𝑜(𝑥′) ≠ 𝑃(𝑦|𝑥′)

Confounding occurs when the 

proportion of population for whom 

𝑌 = 𝑦, when 𝑋 is set to 𝑥′ for 

everyone is not the same as the 

proportion of the population for 

whom 𝑌 = 𝑦 among those 

acquiring 𝑋 = 𝑥′ by choice.

For instance, suppose there is a case brought against a car manufacturer, claiming that its car’s faulty design 

led to a man’s death in a car crash. 

Tells us how much 

more likely people 

are to die in crashes 

when driving one of 

the manufacturer’s 

cars.

Corrects for the bias that 

people who buy the 

manufacturer’s cars are more 

likely to drive fast (leading to 

deadlier crashes) than the 

general populations.

If it turns out that people who buy the manufacturer’s cars are more likely to drive fast (leading to deadlier 

crashes) than the general populations, the second term will correct for that bias.
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𝑃𝑁 =
𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

EXCESS RISK RATIO

(ERR)

often used in court 

cases in the absence 

of experimental data

CONFOUNDING FACTOR

(CF)

represents a correction 

needed to account for 

confounding bias, that is, 

𝑃(𝑦|𝑑𝑜(𝑥′) ≠ 𝑃(𝑦|𝑥′)

The formula provides an estimable measure of NECESSARY CAUSATION, which can be used for monotonic 𝑌𝑥(𝑢)
whenever the causal effect 𝑃 𝑦 𝑑𝑜(𝑥) can be estimated, be it from randomized trials or from graph-assisted 

observational studies (e.g., through the backdoor criterion).

It has also been shown that the 

expression

𝑃𝑁 =
𝑃 𝑦 − 𝑃(𝑦|𝑑𝑜 𝑥′ )

𝑃(𝑥, 𝑦)

provides a lower bound for PN in 

the general nonmonotonic case.

In particular, the upper and lower bounds on PN are given by

𝑚𝑎𝑥 0,
𝑃(𝑦) − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)
≤ 𝑃𝑁 ≤ 𝑚𝑖𝑛 1,

𝑃 𝑦′ 𝑑𝑜(𝑥′) − 𝑃(𝑥′, 𝑦′)

𝑃(𝑥, 𝑦)



CAUSAL NETWORKS – COUNTERFACTUALS FALL 2021 FABIO STELLA

75PART IV: MATHEMATICAL TOOL KITS FOR ATTRIBUTION AND MEDIATION

𝑃𝑁 =
𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

EXCESS RISK RATIO

(ERR)

often used in court 

cases in the absence 

of experimental data

CONFOUNDING FACTOR

(CF)

represents a correction 

needed to account for 

confounding bias, that is, 

𝑃(𝑦|𝑑𝑜(𝑥′) ≠ 𝑃(𝑦|𝑥′)

In drug-related litigation, it is not uncommon to obtain data from both experimental and observational studies. 

The former is usually available from the manufacturer or the agency that approved the drug for distribution 

(e.g., FDA, WHO), whereas the latter is often available from surveys of the population.

𝑚𝑎𝑥 0,
𝑃(𝑦) − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)
≤ 𝑃𝑁 ≤ 𝑚𝑖𝑛 1,

𝑃 𝑦′ 𝑑𝑜(𝑥′) − 𝑃(𝑥′, 𝑦′)

𝑃(𝑥, 𝑦)

A few algebraic steps allow us to express the lower bound (LB) and 

upper bound (UB) as

𝐿𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 𝑈𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 + 𝑞

𝐶𝐹 ≜
𝑃 𝑦 𝑥′ − 𝑝(𝑌𝑥′)

𝑃(𝑥, 𝑦)

𝐸𝑅𝑅 ≜ 1 −
1

𝑅𝑅
= 1 −

𝑃 𝑦 𝑥′

𝑃 𝑦 𝑥

𝑞 ≜
𝑃 𝑦′ 𝑥

𝑃 𝑦 𝑥



CAUSAL NETWORKS – COUNTERFACTUALS FALL 2021 FABIO STELLA

76PART IV: MATHEMATICAL TOOL KITS FOR ATTRIBUTION AND MEDIATION

𝑃𝑁 =
𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

EXCESS RISK RATIO

(ERR)

often used in court 

cases in the absence 

of experimental data

CONFOUNDING FACTOR

(CF)

represents a correction 

needed to account for 

confounding bias, that is, 

𝑃(𝑦|𝑑𝑜(𝑥′) ≠ 𝑃(𝑦|𝑥′)

▪ 𝐶𝐹 represents the 

normalized degree of 

confounding among the 

unexposed (𝑋 = 𝑥′),

▪ 𝐸𝑅𝑅 is the “excess risk ratio” 

and,

▪ 𝑞 is the ratio of negative to 

positive outcomes among 

the exposed.

𝑚𝑎𝑥 0,
𝑃(𝑦) − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)
≤ 𝑃𝑁 ≤ 𝑚𝑖𝑛 1,

𝑃 𝑦′ 𝑑𝑜(𝑥′) − 𝑃(𝑥′, 𝑦′)

𝑃(𝑥, 𝑦)

A few algebraic steps allow us to express the lower bound (LB) and 

upper bound (UB) as

𝐿𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 𝑈𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 + 𝑞

𝐶𝐹 ≜
𝑃 𝑦 𝑥′ − 𝑝(𝑌𝑥′)

𝑃(𝑥, 𝑦)

𝐸𝑅𝑅 ≜ 1 −
1

𝑅𝑅
= 1 −

𝑃 𝑦 𝑥′

𝑃 𝑦 𝑥

𝑞 ≜
𝑃 𝑦′ 𝑥

𝑃 𝑦 𝑥
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𝑚𝑎𝑥 0,
𝑃(𝑦) − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)
≤ 𝑃𝑁 ≤ 𝑚𝑖𝑛 1,

𝑃 𝑦′ 𝑑𝑜(𝑥′) − 𝑃(𝑥′, 𝑦′)

𝑃(𝑥, 𝑦)

𝐿𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 𝑈𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 + 𝑞

𝐶𝐹 ≜
𝑃 𝑦 𝑥′ − 𝑝(𝑌𝑥′)

𝑃(𝑥, 𝑦)

𝐸𝑅𝑅 ≜ 1 −
1

𝑅𝑅
= 1 −

𝑃 𝑦 𝑥′

𝑃 𝑦 𝑥

𝑞 ≜
𝑃 𝑦′ 𝑥

𝑃 𝑦 𝑥

𝑃𝑁 =
𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

The figure to the right shows bounds as a 

function of 𝐸𝑅𝑅.

▪ regardless of confounding, the interval 

𝑈𝐵 − 𝐿𝐵 remains constant and depends on 

only one observable parameter, 
𝑃 𝑦′ 𝑥

𝑃 𝑦 𝑥 .

▪ 𝐶𝐹 may raise the lower bound to meet the 

criterion of “more probable than not,” 𝑃𝑁 >
1

2
, 

when the 𝐸𝑅𝑅 alone would not suffice.

▪ the amount of “rise” to both bounds is given 

by 𝐶𝐹, which is the only estimate needed 

from the experimental data; the causal effect 

P 𝑦𝑥 − 𝑃(𝑦𝑥′) is not needed.
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𝑚𝑎𝑥 0,
𝑃(𝑦) − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)
≤ 𝑃𝑁 ≤ 𝑚𝑖𝑛 1,

𝑃 𝑦′ 𝑑𝑜(𝑥′) − 𝑃(𝑥′, 𝑦′)

𝑃(𝑥, 𝑦)

𝐿𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 𝑈𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 + 𝑞

If monotonicity can be assumed, the upper 

and lower bounds coincide, and the gap 

collapses entirely, as shown in the 

figure(b) to the right. 

This collapse does not reflect 𝑞 = 0, but 

a shift from the bounds of bottom right to 

the identified condition of

𝑃𝑁 =
𝑃 𝑦 − 𝑃(𝑦|𝑑𝑜 𝑥′ )

𝑃(𝑥, 𝑦)

If it is the case that the experimental and 

survey data have been drawn at random 

from the same population, then the 

experimental data can be used to 

estimate the counterfactuals of interest, 

for example, P(𝑌𝑥 = 𝑦), for the 

observational as well as experimental 

sampled populations.
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ATTRIBUTION IN LEGAL SETTING

▪ The manufacturer claims that experimental data on patients with back pains 

show conclusively that drug 𝑋 has only minor effects on death rates. 

▪ A lawsuit is filed against the manufacturer of drug 𝑋, charging that the drug is 

likely to have caused the death of Mr A, who took it to relieve back pains. 

▪ To support this argument, the plaintiff furnishes nonexperimental data on patients who, like Mr A, chose 

drug 𝑋 to relieve back pains but were not part of any experiment, and who experienced lower death rates 

than those who didn’t take the drug. 

▪ However, the plaintiff argues that the experimental study is of little 

relevance to this case because it represents average effects on patients 

in the study, not on patients like Mr A who did not participate in the 

study. 

▪ In particular, argues the plaintiff, Mr A is unique in that he used the drug 

of his own volition, unlike subjects in the experimental study, who took 

the drug to comply with experimental protocols.

▪ The court must now decide, based on both the experimental and nonexperimental studies, whether it is 

“more probable than not” that drug 𝑋 was in fact the cause of Mr A’s death.
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ATTRIBUTION IN LEGAL SETTING

To illustrate the usefulness of the 

bounds

Consider (hypothetical) data associated with the 

two studies shown in Table 14.5. (In the analyses 

below, we ignore sampling variability.)

𝑚𝑎𝑥 0,
𝑃(𝑦) − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)
≤ 𝑃𝑁 ≤ 𝑚𝑖𝑛 1,

𝑃 𝑦′ 𝑑𝑜(𝑥′) − 𝑃(𝑥′, 𝑦′)

𝑃(𝑥, 𝑦)

𝐿𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 𝑈𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 + 𝑞

Experimental Nonexperimental

𝑑𝑜(𝑥) 𝑑𝑜(𝑥′) 𝑥 𝑥′

Deaths (𝑦) 16 14 2 28

Survivals (𝑦′) 984 986 998 972

Table 14.5

The experimental data provide the estimates

𝑃 𝑦|𝑑𝑜 𝑥 =
16

1,000
= 0.016

𝑃 𝑦|𝑑𝑜 𝑥′ =
14

1,000
= 0.014 𝑃 𝑦 =

30

2,000
= 0.015

whereas the nonexperimental data provide the 

estimates

𝑃 𝑥, 𝑦 =
2

2,000
= 0.001

𝑃 𝑦|𝑥 =
2

1,000
= 0.002 𝑃 𝑦|𝑥′ =

28

1,000
= 0.028
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ATTRIBUTION IN LEGAL SETTING

Assuming that drug 𝑋 can only cause (but never 

prevent) death, monotonicity holds, thus we can 

apply the equation to the right to obtain:
𝑃𝑁 =

𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

=
0.002 − 0.028

0.002
+
0.028 − 0.014

0.001

The experimental data provide the estimates

𝑃 𝑦|𝑑𝑜 𝑥 =
16

1,000
= 0.016

𝑃 𝑦|𝑑𝑜 𝑥′ =
14

1,000
= 0.014 𝑃 𝑦 =

30

2,000
= 0.015

whereas the nonexperimental data provide the 

estimates

𝑃 𝑥, 𝑦 =
2

2,000
= 0.001

𝑃 𝑦|𝑥 =
2

1,000
= 0.002 𝑃 𝑦|𝑥′ =

28

1,000
= 0.028
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ATTRIBUTION IN LEGAL SETTING

Assuming that drug 𝑋 can only cause (but never 

prevent) death, monotonicity holds, thus we can 

apply the equation to the right to obtain:
𝑃𝑁 =

𝑃 𝑦 𝑥 − 𝑃 𝑦 𝑥′

𝑃(𝑦|𝑥)
+
𝑃 𝑦 𝑥′ − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)

=
0.002 − 0.028

0.002
+
0.028 − 0.014

0.001

EXCESS RISK RATIO

(ERR)

often used in court 

cases in the 

absence of 

experimental data

−13

gives the 

impression that 

the drug 𝑋 is 

actually 

preventing deaths

CONFOUNDING FACTOR

(CF)

a correction needed to 

account for confounding 

bias, that is, 

𝑃(𝑦|𝑑𝑜(𝑥′) ≠ 𝑃(𝑦|𝑥′)

14

rectifies this 

impression and 

sets the probability 

of necessity to 

𝑃𝑁 = 1.
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ATTRIBUTION IN LEGAL SETTING

Moreover, since the lower bound of to 

the right becomes 1, we conclude that 

𝑃𝑁 = 1 even without assuming 

monotonicity. 

=
0.002 − 0.028

0.002
+
0.028 − 0.014

0.001

EXCESS RISK RATIO

(ERR)

often used in court 

cases in the 

absence of 

experimental data

−13

gives the 

impression that 

the drug 𝑋 is 

actually 

preventing deaths

CONFOUNDING FACTOR

(CF)

a correction needed to 

account for confounding 

bias, that is, 

𝑃(𝑦|𝑑𝑜(𝑥′) ≠ 𝑃(𝑦|𝑥′)

14

rectifies this 

impression and 

sets the probability 

of necessity to 

𝑃𝑁 = 1.

𝑚𝑎𝑥 0,
𝑃(𝑦) − 𝑃 𝑦 𝑑𝑜(𝑥′)

𝑃(𝑥, 𝑦)
≤ 𝑃𝑁 ≤ 𝑚𝑖𝑛 1,

𝑃 𝑦′ 𝑑𝑜(𝑥′) − 𝑃(𝑥′, 𝑦′)

𝑃(𝑥, 𝑦)

𝐿𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 𝑈𝐵 = 𝐸𝑅𝑅 + 𝐶𝐹 + 𝑞

Thus, the plaintiff was correct; barring 

sampling errors, the data provide us with 

100% assurance that drug 𝑋 was in fact 

responsible for the death of Mr A.
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The canonical model for a typical MEDIATION PROBLEM

takes the form:
𝑋 ≔ 𝑓𝑋 𝑈𝑋

𝑀 ≔ 𝑓𝑀 𝑋, 𝑈𝑀

𝑌 ≔ 𝑓𝑌 𝑋,𝑀,𝑈𝑌

Treatment

Mediator

Outcome

Discrete or 

continuous 

random 

variables

𝑓𝑋, 𝑓𝑀 , 𝑓𝑌 arbitrary functions

𝑈𝑋, 𝑈𝑀 , 𝑈𝑌
omitted factors 

that influence 

𝑋, 𝑀 and 𝑌

𝑈𝑋, 𝑈𝑀 , 𝑈𝑌
random vector that accounts 

for all variations among 

individuals

In Figure 14.6(a), the omitted factors are assumed to 

be arbitrarily distributed but mutually independent. 

In Figure 14.6(b), the dashed arcs connecting 𝑈𝑋 and 

𝑈𝑀 (as well as 𝑈𝑀 and 𝑈𝑋) encode the understanding 

that the factors in question may be dependent.

𝑋 𝑌

𝑀
𝑈𝑋

𝑈𝑀

𝑈𝑌

Figure 14.6(b)

𝑓𝑀 𝑋,𝑈𝑀

𝑓𝑌 𝑋,𝑀,𝑈𝑌

𝑋 𝑌

𝑀
𝑈𝑋

𝑈𝑀

𝑈𝑌

Figure 14.6(a)

𝑓𝑀 𝑋,𝑈𝑀

𝑓𝑌 𝑋,𝑀,𝑈𝑌
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COUNTERFACTUAL DEFINITION OF DIRECT AND INDIRECT EFFECTS

Using the structural model to the right and the 

counterfactual notation, four types of effects can be 

defined for the transition from 𝑋 = 0 to 𝑋 = 1.

𝑋 ≔ 𝑓𝑋 𝑈𝑋

𝑀 ≔ 𝑓𝑀 𝑋, 𝑈𝑀

𝑌 ≔ 𝑓𝑌 𝑋,𝑀,𝑈𝑌

Treatment

Mediator

Outcome

Discrete or 

continuous 

random 

variables

𝑓𝑋, 𝑓𝑀 , 𝑓𝑌 arbitrary functions

𝑈𝑋, 𝑈𝑀 , 𝑈𝑌
omitted factors 

that influence 

𝑋, 𝑀 and 𝑌

𝑈𝑋, 𝑈𝑀 , 𝑈𝑌
random vector that accounts 

for all variations among 

individuals

Generalizations to arbitrary reference points, say from 

𝑋 = 𝑥 to 𝑋 = 𝑥′, are straightforward:

𝑇𝐸 measures the expected increase in 𝑌 as the treatment 

changes from 𝑋 = 0 to 𝑋 = 1, while the mediator is allowed 

to track the change in 𝑋 naturally, as dictated by the 

function 𝑓𝑀.

TOTAL EFFECT

𝑇𝐸 = 𝔼 𝑌1 − 𝑌0 = 𝔼 𝑌|𝑑𝑜(𝑋 = 1) − 𝔼 𝑌|𝑑𝑜(𝑋 = 0)

𝐶𝐷𝐸 measures the expected increase in 𝑌 as the treatment changes from 𝑋 = 0 to 𝑋 = 1, while the mediator 

is set to a specified level 𝑀 = 𝑚 uniformly over the entire population.

CONTROLLED EFFECT

𝐶𝐷𝐸 𝑚 = 𝔼 𝑌1,𝑚 − 𝑌0,𝑚 = 𝔼 𝑌|𝑑𝑜(𝑋 = 1,𝑀 = 𝑚) − 𝔼 𝑌|𝑑𝑜(𝑋 = 0,𝑀 = 𝑚)
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COUNTERFACTUAL DEFINITION OF DIRECT AND INDIRECT EFFECTS

Using the structural model to the right and the 

counterfactual notation, four types of effects can be 

defined for the transition from 𝑋 = 0 to 𝑋 = 1.

𝑋 ≔ 𝑓𝑋 𝑈𝑋

𝑀 ≔ 𝑓𝑀 𝑋, 𝑈𝑀

𝑌 ≔ 𝑓𝑌 𝑋,𝑀,𝑈𝑌

Treatment

Mediator

Outcome

Discrete or 

continuous 

random 

variables

𝑓𝑋, 𝑓𝑀 , 𝑓𝑌 arbitrary functions

𝑈𝑋, 𝑈𝑀 , 𝑈𝑌
omitted factors 

that influence 

𝑋, 𝑀 and 𝑌

𝑈𝑋, 𝑈𝑀 , 𝑈𝑌
random vector that accounts 

for all variations among 

individuals

𝑁𝐷𝐸 measures the expected increase in 𝑌 as the 

treatment changes from 𝑋 = 0 to 𝑋 = 1, while the mediator 

is set to whatever value it would have attained (for each 

individual) prior to the change, that is, under 𝑋 = 0.

NATURAL DIRECT EFFECT

𝑁𝐷𝐸 = 𝔼 𝑌1,𝑀0
− 𝑌0,𝑀0

𝑁𝐼𝐸 measures the expected increase in 𝑌 when the treatment is held constant, at 𝑋 = 0, and 𝑀 changes to 

whatever value it would have attained (for each individual) under 𝑋 = 1. It captures, therefore, the portion of 

the effect that can be explained by mediation alone, while disabling the capacity of 𝑌 to respond to 𝑋.

NATURAL INDIRECT EFFECT

𝑁𝐼𝐸 = 𝔼 𝑌0,𝑀1
− 𝑌0,𝑀0

Generalizations to arbitrary reference points, say from 

𝑋 = 𝑥 to 𝑋 = 𝑥′, are straightforward:
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We note that, in general, the TOTAL EFFECT

can be decomposed as

𝑇𝐸 = 𝔼 𝑌1 − 𝑌0 = 𝔼 𝑌|𝑑𝑜(𝑋 = 1) − 𝔼 𝑌|𝑑𝑜(𝑋 = 0)

𝑇𝐸 = 𝑁𝐷𝐸 − 𝑁𝐼𝐸𝑟 𝑁𝐼𝐸𝑟 = 𝔼 𝑌0,𝑀0
− 𝑌0,𝑀1

This implies that 𝑁𝐼𝐸 is identifiable whenever 𝑁𝐷𝐸
and 𝑇𝐸 are identifiable. 

In linear systems, where reversal of transitions 

amounts to negating the signs of their effects, we 

have the standard additive formula to the right.

𝑇𝐸 = 𝑁𝐷𝐸 + 𝑁𝐼𝐸

We further note that 𝑇𝐸 and 𝐶𝐷𝐸 𝑚 are 

do-expressions and can, therefore, be 

estimated from experimental data or in 

observational studies using the backdoor or 

front-door adjustments.

Not so for the 𝑁𝐷𝐸 and 𝑁𝐼𝐸; a new set of 

assumptions is needed for their 

identification.

CONDITIONS FOR IDENTIFYING NATURAL EFFECTS

The following set of conditions, are sufficient for identifying 

both direct and indirect natural effects.

We can identify the 𝑁𝐷𝐸 and 𝑁𝐼𝐸 provided that there 

exists a set 𝐖 of measured covariates such that:

i. No member of 𝐖 is a descendant of 𝑋.

ii. 𝐖 blocks all backdoor paths from 𝑀 to 𝑌 (after 

removing 𝑋 → 𝑀 and 𝑋 → 𝑌).

iii. The 𝐖-specific effect of 𝑋 on 𝑀 is identifiable (possibly 

using experiments or adjustments).

iv. The 𝐖- specific joint effect of 𝑋,𝑀 on 𝑌 is identifiable 

(possibly using experiments or adjustments).
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IDENTIFICATION OF THE NDE

When conditions i ) and ii ) hold, the natural direct effect is experimentally identifiable and is given by

𝑁𝐷𝐸 =෍

𝑚

෍

𝒘

𝔼 𝑌|𝑑𝑜 𝑋 = 1,𝑀 = 𝑚 ,𝐖 = 𝒘 − 𝔼 𝑌|𝑑𝑜 𝑋 = 0,𝑀 = 𝑚 ,𝐖 = 𝒘 × 𝑃 𝑀 = 𝑚|𝑑𝑜 𝑋 = 0 ,𝐖 = 𝒘 𝑃 𝐖 = 𝒘

The identifiability of the do-expressions in the above equation is guaranteed by conditions iii ) and iv ) and can 

be determined using the backdoor or front-door criteria.

IDENTIFICATION OF THE NDE

If conditions i ) and ii ) are satisfied by a set 𝐖 that also deconfounds the relationships in iii ) and iv ), then the 

do-expressions in the above equation are reducible to conditional expectations, and the natural direct effect 

becomes

𝑁𝐷𝐸 =෍

𝑚

෍

𝒘

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚,𝐖 = 𝒘 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚,𝐖 = 𝒘 × 𝑃 𝑀 = 𝑚|𝑋 = 0,𝐖 = 𝒘 𝑃 𝐖 = 𝒘

In the nonconfounding case (Figure 14.6(a)), 𝑁𝐷𝐸 reduces to

𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0
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IDENTIFICATION OF THE NDE

If conditions i ) and ii ) are satisfied by a set 𝐖 that also deconfounds the relationships in iii ) and iv ), then the 

do-expressions in the above equation are reducible to conditional expectations, and the natural direct effect 

becomes

𝑁𝐷𝐸 =෍

𝑚

෍

𝒘

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚,𝐖 = 𝒘 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚,𝐖 = 𝒘 × 𝑃 𝑀 = 𝑚|𝑋 = 0,𝐖 = 𝒘 𝑃 𝐖 = 𝒘

In the nonconfounding case (Figure 14.6(a)), 𝑁𝐷𝐸 reduces to

𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0

𝑋 𝑌

𝑀
𝑈𝑋

𝑈𝑀

𝑈𝑌

Figure 14.6(a)

𝑓𝑀 𝑋,𝑈𝑀

𝑓𝑌 𝑋,𝑀,𝑈𝑌
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IDENTIFICATION OF THE NDE

If conditions i ) and ii ) are satisfied by a set 𝐖 that also deconfounds the relationships in iii ) and iv ), then the 

do-expressions in the above equation are reducible to conditional expectations, and the natural direct effect 

becomes

𝑁𝐷𝐸 =෍

𝑚

෍

𝒘

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚,𝐖 = 𝒘 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚,𝐖 = 𝒘 × 𝑃 𝑀 = 𝑚|𝑋 = 0,𝐖 = 𝒘 𝑃 𝐖 = 𝒘

In the nonconfounding case (Figure 14.6(a)), 𝑁𝐷𝐸 reduces to

𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0

𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0

Similarly, using 𝑇𝐸 = 𝑁𝐷𝐸 − 𝑁𝐼𝐸𝑟 𝑁𝐼𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 𝑃 𝑀 = 𝑚|𝑋 = 1 − 𝑃 𝑀 = 𝑚|𝑋 = 0

MEDIATION FORMULAS

and 𝑇𝐸 = 𝔼 𝑌|𝑋 = 1 − 𝔼 𝑌|𝑋 = 0
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𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0

𝑁𝐼𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 𝑃 𝑀 = 𝑚|𝑋 = 1 − 𝑃 𝑀 = 𝑚|𝑋 = 0
We see that while 𝑁𝐷𝐸 is a weighted 

average of 𝐶𝐷𝐸, no such interpretation 

can be given to 𝑁𝐼𝐸.

𝐶𝐷𝐸 𝑚 = 𝔼 𝑌|𝑑𝑜(𝑋 = 1,𝑀 = 𝑚) − 𝔼 𝑌|𝑑𝑜(𝑋 = 0,𝑀 = 𝑚)

𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0

The counterfactual definitions of 𝑁𝐷𝐸 and 𝑁𝐼𝐸

𝑁𝐷𝐸 = 𝔼 𝑌1,𝑀0
− 𝑌0,𝑀0

𝑁𝐼𝐸 = 𝔼 𝑌0,𝑀1
− 𝑌0,𝑀0

permit us to give these effects meaningful 

interpretations in terms of “RESPONSE FRACTIONS.” 

measures the fraction of the response that 

is transmitted directly, with 𝑀 “frozen.”
▪

𝑁𝐷𝐸

𝑇𝐸

measures the fraction of the response that may 

be transmitted through 𝑀, with 𝑌 blinded to 𝑋.
▪

𝑁𝐼𝐸

𝑇𝐸

Consequently,

▪
𝑇𝐸−𝑁𝐷𝐸

𝑇𝐸

measures the fraction of the response that is 

necessarily due to 𝑀.
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ENCOURAGEMENT DESIGN (Figure 14.1).
(Encouragement)

𝑋
(Homework)

𝐻
(Exam Score)

𝑌▪ 𝑋; amount of time a student spends in an 

after-school remedial program,

▪ 𝐻; the amount of homework a student does, 

and

▪ 𝑌; a student’s score on the exam. 

Figure 14.1

𝛼 = 0.5

𝛽 = 0.7

𝛾 = 0.4

For example, if 𝑌 = 1, then the student scored 1 standard 

deviation above the mean on his or her exam. 

This model represents a randomized pilot program, in 

which students are assigned to the remedial sessions by 

the luck of the draw. 𝑋 ≔ 𝑈𝑋

𝐻 ≔ 𝛼𝑋 + 𝑈𝐻

𝑌 ≔ 𝛽𝑋 + 𝛾𝐻 + 𝑈𝑌

𝜎𝑈𝑖𝑈𝑗 = 0, ∀𝑖, 𝑗 ∈ 𝑋,𝐻, 𝑌

𝛼 = 0.5
𝛽 = 0.7
𝛾 = 0.4

given or 

recovered from 

population data



CAUSAL NETWORKS – COUNTERFACTUALS FALL 2021 FABIO STELLA

93PART IV: MATHEMATICAL TOOL KITS FOR ATTRIBUTION AND MEDIATION

NUMERICAL EXAMPLE: MEDIATION WITH BINARY VARIABLES

To anchor these mediation formulas in a concrete 

example, we return to the encouragement design 

example and assume that

▪ 𝑋 = 1 stands for participation in an 

enhanced training program,

▪ 𝑌 = 1 for passing the exam, and 

▪ 𝑀 = 1 for a student spending more 

than 3 hours per week on homework. 
(Encouragement)

𝑋

(Homework)

𝑀

(Exam Score)

𝑌

𝑈𝑋

𝑈𝑀

𝑈𝑌

Figure 14.6(a)

𝑓𝑀 𝑋,𝑈𝑀

𝑓𝑌 𝑋,𝑀,𝑈𝑌

Assume further that the data described in Tables 14.6 and 14.7 were obtained in a randomized trial with 

no mediator-to-outcome confounding (Figure 14.6(a)).

Treatment

𝑋
Homework

𝑀
Success Rate

𝔼 𝑌|𝑋 = 𝑥,𝑀 = 𝑚

1 1 0.8

1 0 0.4

0 1 0.3

0 0 0.2

Table 14.6

Treatment

𝑋
Homework

𝔼 𝑀|𝑋 = 𝑥

0 0.40

1 0.75

Table 14.7

Our research question asks for the 

extent to which students’ homework 

contributes to their increased 

success rates regardless of the 

training program.
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The policy implications of such questions lie in evaluating policy options that either curtail or enhance 

homework efforts, for example, by counting homework effort in the final grade or by providing students with 

adequate work environments at home.

▪ Opposing this theory, we may have teachers who 

argue that the program’s success is substantive, 

achieved mainly due to the unique features of the 

curriculum covered, whereas the increase in homework 

efforts cannot alone account for the success observed.

Treatment

𝑋
Homework

𝑀
Success Rate

𝔼 𝑌|𝑋 = 𝑥,𝑀 = 𝑚

1 1 0.8

1 0 0.4

0 1 0.3

0 0 0.2

Table 14.6

Treatment

𝑋
Homework

𝔼 𝑀|𝑋 = 𝑥

0 0.40

1 0.75

Table 14.7

▪ An extreme explanation of the data, with 

significant impact on educational policy, might 

argue that the program does not contribute 

substantively to students’ success, save for 

encouraging students to spend more time on 

homework, an encouragement that could be 

obtained through less expensive means. 

Our research question asks for the 

extent to which students’ homework 

contributes to their increased 

success rates regardless of the 

training program.
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Substituting the data into

Treatment

𝑋
Homework

𝑀
Success Rate

𝔼 𝑌|𝑋 = 𝑥,𝑀 = 𝑚

1 1 0.8

1 0 0.4

0 1 0.3

0 0 0.2

Table 14.6

Treatment

𝑋
Homework

𝔼 𝑀|𝑋 = 𝑥

0 0.40

1 0.75

Table 14.7

𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0

𝑁𝐼𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 𝑃 𝑀 = 𝑚|𝑋 = 1 − 𝑃 𝑀 = 𝑚|𝑋 = 0

𝑁𝐷𝐸 = (0.40 − 0.20)(1 − 0.40) + (0.80 − 0.30) 0.40 = 0.32

𝑁𝐼𝐸 = (0.75 − 0.40)(0.30 − 0.20) = 0.035

𝑇𝐸 = 0.80 × 0.75 + 0.40 × 0.25 − (0.30 × 0.40 + 0.20 × 0.10) = 0.46

𝑁𝐼𝐸

𝑇𝐸
= 0.07,

𝑁𝐷𝐸

𝑇𝐸
=0.696, 1 −

𝑁𝐷𝐸

𝑇𝐸
= 0.304

the program as a whole has increased the success 

rate by 46%

a significant portion, 30.4%, of this increase is due to 

the capacity of the program to stimulate improved 

homework effort.

Our research question asks for the 

extent to which students’ homework 

contributes to their increased 

success rates regardless of the 

training program.

measures the fraction of the response that 

is transmitted directly, with 𝑀 “frozen.”
▪

𝑁𝐷𝐸

𝑇𝐸
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Substituting the data into

Treatment

𝑋
Homework

𝑀
Success Rate

𝔼 𝑌|𝑋 = 𝑥,𝑀 = 𝑚

1 1 0.8

1 0 0.4

0 1 0.3

0 0 0.2

Table 14.6

Treatment

𝑋
Homework

𝔼 𝑀|𝑋 = 𝑥

0 0.40

1 0.75

Table 14.7

𝑁𝐷𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 1,𝑀 = 𝑚 − 𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 × 𝑃 𝑀 = 𝑚|𝑋 = 0

𝑁𝐼𝐸 =෍

𝑚

𝔼 𝑌|𝑋 = 0,𝑀 = 𝑚 𝑃 𝑀 = 𝑚|𝑋 = 1 − 𝑃 𝑀 = 𝑚|𝑋 = 0

𝑁𝐼𝐸

𝑇𝐸
= 0.07,

𝑁𝐷𝐸

𝑇𝐸
=0.696, 1 −

𝑁𝐷𝐸

𝑇𝐸
= 0.304

a significant portion, 30.4%, of this increase is due to 

the capacity of the program to stimulate improved 

homework effort.

Our research question asks for the 

extent to which students’ homework 

contributes to their increased 

success rates regardless of the 

training program.

At the same time, only 7% of the increase (46%) 

can be explained by stimulated homework alone 

without the benefit of the program itself

measures the fraction of the response that may 

be transmitted through 𝑀, with 𝑌 blinded to 𝑋.
▪

𝑁𝐼𝐸

𝑇𝐸


