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These pages are only a schedule of some lessons for the final part of a course on Optimal Control. It
is a collection of some things that I use during my lessons: in particular, I would like to mention the very
interesting paper due to Bressan [3], the book [2], the sixth chapter of the note by Evans [7] and ....

In this schedule we use the optimal control theory, without recalling the fundamental notions and results:
I will use the notations used in [4].
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Chapter 1

Introduction

1.1 Concepts of equilibrium in game theory

Game theory deals with situations in which a finite number of players do maximize their own payoff, deciding
a strategy among all the available options. Generally each player establishes his own strategy at the same
time, taking into account that the game’s result depends also on the choice taken by others. Without loss
of generality, let’s consider the case with two players; both of them have to solve the following problem:

max
xi∈Xi

Ji(x1,x2) (1.1)

where xi ∈ Xi, which is the set of all possible options for Player i = 1, 2. This is a “one shot game” meaning
the payoff is entirely determined by the particular selected strategy.
In general it is not possible to find a solution (x∗1,x

∗
2) ∈ X1 × X2 which leads both Player 1 and Player

2 to get the maximum payoff; indeed, the outcome could be favourable only for one of them. This is the
reason why there exist different concepts of equilibrium that differ from each other in some features, such
as the type of available information, games’ mechanism in terms of choices’ sequence or, as an alternative,
the faculty to cooperate. Hereafter there are the main concepts of solution: Nash equilibrium, Stackelberg
equilibrium and Pareto optimality, but first it is necessary to introduce some notations.
In the simplest case of two players, say “Player A” and “Player B” the required ingredients are given by:

• The two (finite/infinite) sets of strategy A and B: the players choose their particular strategy, respec-
tively a ∈ A and b ∈ B, so that the payoffs achieved are JA(a, b) and JB(a, b).

• The two payoff functions: JA : A×B → R and JB : A×B → R which are continuous and known by
both players.

Definition 1.1 (Nash equilibrium). The pair of strategies (a∗, b∗) is a Nash equilibrium of the game if,
for every a ∈ A and b ∈ B, one has

JA(a, b∗) ≤ JA(a∗, b∗) JB(a∗, b) ≤ JB(a∗, b∗)

In this situation none of the players may increase his payoff changing his own strategy if the other do not
deviate from his one. This is a solution concept of non-cooperative game.

Definition 1.2 (Stackelberg equilibrium). A pair of strategies (a∗, b∗) ∈ A × B is called a Stackelberg
equilibrium if b∗ ∈ RB(a∗) and moreover

JA(a, b) ≤ JA(a∗, b∗) ∀(a, b), b ∈ RB(a), a ∈ A,

where RB(a) is the set of Best Replies of Player B (the follower), since Player A (the leader) has already
announced the strategy a, i.e.

RB(a) = {b′ ∈ B : JB(a, b) ≤ JB(a, b′), ∀b ∈ B}.

1



2 Chapter 1

Note that b∗ stands for the best reply of Player B, which can choose his strategy only after Player A (the
leader) has announced his own one. In other words, first Player A establishes his strategy optimizing his
utility function, then Player B defines his strategy taking into account what the first player has decided
(asymmetry of information).

1.2 Differential games

Let x ∈ Rn describe the state of the system, evolving in time according to the ODE (called dyinamics)

ẋ(t) = g(t,x,u1,u2 . . .uN ), a.e. t ∈ [0, T ] (1.2)

with an initial data

x(0) = x0 ∈ Rn, (1.3)

and with final condition

(T,x(T )) ∈ T (1.4)

where T ⊂ R+ × Rn is the target set ; in this note we will consider closed target sets. Let us list some
particular case of target set, depending on the final condition on the trajectory:

• (fixed time and fixed value of the trajectory): for x(T ) = β, with T and β fixed, we have T = {(T,β)};

• (fixed time and free value of the trajectory): we have T = {T} × Rn;

• (free time and fixed value of the trajectory): we have T = R+ × {β}, with β ∈ Rn fixed.

Here u1, u2, . . . ,uN are the controls of the N players (clearly we suppose N ≥ 2). We assume that they
satisfy the pointwise constraints

ui(t) ∈ Ui, i = 1, . . . N,

where Ui ⊂ Rki are the control sets for the i-Player.

It is clear that the possibility to solve the Cauchy problem (1.2)–(1.3) is not clear: however, we usually as-
sume that the function g is continuous, differentiable w.r.t. x and with the derivatives ∂g

∂xj
(t,x,u1,u2 . . .uN )

continuous.

The aim of the i-player is to maximize

Ji(u1, . . .uN ) =

∫ T

0
fi(t,x,u1, . . .uN ) dt+ ψi(T,x(T )),

where, as usual in the control theory, fi are the running cost and ψi are the payoff. Clearly the i-player
controls only the choice of ui.

In all that follows we suppose that there are only two players (N = 2), but it is easy to generalize.

The information available to players, such as the current state of the system and the strategy adopted
by the competitor, determine the kind of game that has to be undertaken by them. Let’s first give some
assumptions upon which the following analysis will be established and then let’s expose some of the most
well-known differential games. Each player has perfect knowledge of:

• the evolution of the system (identified by the function g), and the control sets U1, U2.

• the two payoff functions J1, J2.

• the instantaneous time t ∈ [0, T ]

• the initial condition for the system x0
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1.2.1 Some particular two-persons games

Let us introduce some particular situation for the two-persons games. We say that the game is symmetric if

f1(t,x,u1,u2) = f2(t,x,u2,u1),

ψ1 = ψ2, g(t,x,u1,u2) = g(t,x,u2,u1), U1 = U2.

A game is completely cooperative if

f1 = f2, ψ1 = ψ2, U1 = U2.

A game is zero-sum if

f1 = −f2, ψ1 = −ψ2;

in this case, setting f = f1 and ψ = ψ1, the strike of the first player is to find a strategy u1 in order to

max
u1

J(u1,u2),

where

J(u1,u2) =

∫ T

0
f(t,x,u1,u2) dt+ ψ(T,x(T ));

while the strike of second player is to minimize the same functional, controlling u2, since

max
u2

∫ T

0
−f(t,x,u1,u2) dt− ψ(x(T )) = −min

u2

J(u1,u2).

1.2.2 Information structure: open-loop and feedback in two–persons game

In this context are just discussed two differential games: Open–loop strategies and Feedback (or Markovian)
strategies. Essentially, open–loop means that the players base their decision only on time and an initial
condition; whereas, the players use the position/state of the game as information basis in a feedback context.
A feature that is common to those two information structure is that the players do not need to remember
the whole history of the game when making a decision: only running time and the initial position x0 are
relevant for the open–loop information structure, while for the feedback structure, only information on the
current position is relevant.

We focus our attention on two–persons game:

Definition 1.3. Open–loop strategies. The set Si of strategies available to the i-th Player, with i = 1, 2,
will consist of the functions ui : [0, T ]→ Ui such that

ui(t) = νi(t,x0),

where x0 is the initial data and νi is a decision rule, i.e. a measurable function νi : [0, T ]× Rn → Ui.

Definition 1.4. Feedback strategies (or Markovian strategies). Here, the control implemented by
Player i, for i = 1, 2, is ui, depending on both time t and system’s state x. The set Si of strategies available
to the i-th Player will consist of the functions ui : [0, T ]→ Ui such that

ui(t) = νi(t,x(t)),

where νi is a decision rule, i.e. a measurable function νi : [0, T ] × Rn → Ui; the Player i observes the
system’s position (t,x(t)) and chooses his action as described decision rule νi.



4 Chapter 1

Other concepts of strategies can be given (see for example [2]).
Clearly, as we will see in the next lines, we require that the previous controls are admissible too. To be

more precise, let us consider the problem

Player I: max
u1

J1(u1,u2) Player II: max
u2

J2(u1,u2)

Ji(u1,u2) =

∫ T

0
fi (t,x,u1,u2) dt+ ψi(T,x(T )), i = 1, 2

ẋ = g(t,x,u1,u2)
x(0) = x0

(T,x(T )) ∈ T

(1.5)

We have the following definition:

Definition 1.5. The class AOL and the class AFB. We say that (u1,u2), with ui(t) = νi(t,x0), is
an admissible control (or strategy) in the class AOL of open loop strategies for the game (1.5) if t 7→
(ν1(t,x0),ν2(t,x0)) ∈ U1 × U2 is a measurable function such that there exists a unique solution x (called
trajectory) of the ODE 

ẋ(t) = g(t,x(t),ν1(t,x0),ν2(t,x0)) a.e. t ∈ [0, T ]
x(0) = x0

(T,x(T )) ∈ T

We say that (u1,u2), with ui(t) = νi(t,x(t)), is an admissible control (or strategy) in the class AFB of
feedback strategies for the game (1.5) if (t,x) 7→ (ν1(t,x),ν2(t,x)) ∈ U1×U2 is a measurable function such
that there exists a unique solution x (called trajectory) of the ODE

ẋ(t) = g(t,x(t),ν1(t,x(t)),ν2(t,x(t))) a.e. t ∈ [0, T ]
x(0) = x0

(T,x(T )) ∈ T

1.2.3 The game set

We define the game set G ⊂ R+ × Rn for the game (1.5) as the points (τ, ξ) ∈ [0,∞)× Rn such that there
exists at least a trajectory x : [τ, T ]× Rn such that

x(τ) = ξ and (T,x(T )) ∈ T ;

usually we say that x transfers (τ, ξ) ∈ G in T . Clearly

T ⊂ G.

As usual we define the exit time Tx for the trajectory x by (since T is closed)

Tx = inf{t ≥ 0 : (t,x(t)) ∈ T }. (1.6)
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Nash equilibria for two–persons game

In all this chapter we are considering a two–person game (the general case of a N–person game is similar)
Player I: max

u1

J1(u1,u2) Player II: max
u2

J2(u1,u2)

Ji(u1,u2) =

∫ T

0
fi (t,x,u1,u2) dt+ ψi(x(T )), i = 1, 2

ẋ = g(t,x,u1,u2)
x(0) = x0

(2.1)

where U1 and U2 are closed control sets for the players and (u1,u2) is an admissible control, i.e. depending
on the information structure. In this chapter we restrict our attention on problems with the final time T
fixed and the final value of the trajectory x(T ) free.

A Nash equilibrium (u∗1,u
∗
2) is such that

J1(u∗1,u
∗
2) ≥ J1(u1,u

∗
2), ∀u1

J2(u∗1,u
∗
2) ≥ J2(u∗1,u2), ∀u2,

taking into account the information structure and the admissibility of the controls, as we will study in the
next sections.

2.1 Open-loop Nash equilibria

Definition 2.1. A pair of control functions (u∗1,u
∗
2) ∈ AOL, with decision rule u∗i (t) = ν∗i (t,x0) and

trajectory x∗ such that {
ẋ∗(t) = g(t,x∗(t),ν∗1(t,x0),ν∗2(t,x0)) a.e. t ∈ [0, T ]
x∗(0) = x0

is a Nash equilibrium within the class of open–loop strategies AOL for the game (2.1) if the following
holds:

I the control u∗1 provides a solution to the optimal control problem for the Player I, i.e. for
max

(u1,u∗2)∈AOL

∫ T

0
f1 (t,x(t),ν1(t,x0),ν∗2(t,x0)) dt+ ψ1(x(T ))

ẋ(t) = g(t,x(t),ν1(t,x0),ν∗2(t,x0))
x(0) = x0

with u1(t) = ν1(t,x(t));

5
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II the control u∗2 provides an optimal open–loop control for the problem for the Player II, i.e. for
max

(u∗1,u2)∈AOL

∫ T

0
f2 (t,x(t),ν∗1(t,x0),ν2(t,x0)) dt+ ψ2(x(T ))

ẋ(t) = g(t,x(t),ν∗1(t,x0),ν2(t,x0))
x(0) = x0

with u2(t) = ν2(t,x0).

In order to find a pair of open-loop strategies (u∗1,u
∗
2) yielding a Nash equilibrium, it is reasonable to

introduce

H1(t,x,u1,u2,λ1) = f1(t,x,u1,u2) + λ1 · g(t,x,u1,u2) (2.2)

H2(t,x,u1,u2,λ2) = f2(t,x,u1,u2) + λ2 · g(t,x,u1,u2)

A necessary condition for optimality is given by Theorem A.1, taking into account that since T is fixed and
the final value of the trajectory is free we can assume that the control is normal (see Theorem 6.13 in [2]):

Theorem 2.1. Let us consider the problem (2.1) with fi, ψi and g in C1. Let (u∗1,u
∗
2), with ui(t) = νi(t,x0),

be a Nash equilibrium in the class of open–loop strategies. Let x∗ be the associated trajectory.

Then there exists a continuous multiplier λ∗i : [0, T ]→ Rn, with i = 1, 2, such that

i) for all t ∈ [0, T ] we have

u∗1(t) ∈ arg max
v∈U1

H1(t,x∗(t),v,u∗2(t),λ∗1(t))

u∗2(t) ∈ arg max
v∈U2

H2(t,x∗(t),u∗1(t),v,λ∗2(t));

ii) in [0, T ] we have λ̇∗1 = −∇xH1(t,x∗,u∗1,u
∗
2,λ
∗
1), λ̇∗2 = −∇xH2(t,x∗,u∗1,u

∗
2,λ
∗
2);

iii) we have λ∗1(T ) = ∇xψ1(x∗(T )), λ∗2(T ) = ∇xψ2(x∗(T )).

Since Theorem A.1 gives only a necessary condition for optimality, we have to consider sufficient results
such as Mangasarian’s sufficient conditions (see Theorem A.2) or Arrow’s sufficient conditions (see Theorem
A.3), in order to be sure the couple of controls (u∗1,u

∗
2) stands for an open-loop Nash equilibrium.

2.1.1 Workers versus capitalists

This model is due to Lancaster (see [15]). Let us denote by k = k(t) the capital stock of the economy,
and the rate of production is proportional to k, i.e. the production at time t is αk(t), with α > 0 fixed.
Within the limits a and b, workers decide their share u = u(t) of production; the remaining production
(1− u)αk is controlled by the capitalists, who invest a fraction v = v(t) and consume the other portion, i.e.
(1− v)(1− u)αk. Both workers and capitalists want to maximize their own total consumption.

Workers: max
u

∫ T

0
uαk dt Capitalists: max

v

∫ T

0
(1− v)(1− u)αk dt

0 < a ≤ u ≤ b < 1 0 ≤ v ≤ 1
k̇ = v(1− u)αk
k(0) = k0 > 0

Although workers usually do gain future benefits from investments, their willingness to sacrifice consumption
can be exploited to the capitalists. On the other hand, a willingness to invest will be less effective if the
workers too soon press their share towards the limit b. The final time T is fixed. We choose the time unit
such that the constant of proportionality α is 1.
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We have the Hamiltonians

H1 = uk + λ1v(1− u)k, H2 = (1− v)(1− u)k + λ2v(1− u)k,

and using Theorem 2.1 we have

u∗(t) ∈ arg max
p∈[a,b]

k∗(t)p(1− λ∗1(t)v∗(t)) =


b if λ∗1(t)v∗(t) < 1
[a, b] if λ∗1(t)v∗(t) = 1
a if λ∗1(t)v∗(t) > 1

(2.3)

v∗(t) ∈ arg max
q∈[0,1]

k∗(t)q(λ∗2(t)− 1) =


1 if λ∗2(t) > 1
[0, 1] if λ∗2(t) = 1
0 if λ∗2(t) < 1

(2.4)

k̇∗ = v∗(1− u∗)k∗

λ̇∗1 = −u∗ − λ∗1v∗(1− u∗) (2.5)

λ̇∗2 = (u∗ − 1)(1− v∗ + λ∗2v
∗) (2.6)

λ∗1(T ) = 0 (2.7)

λ∗2(T ) = 0 (2.8)

where in order to obtain (2.3) and (2.4) we use that k∗(t) ≥ k0 > 0 since k̇∗ ≥ 0. We note that u∗ and v∗ in
(2.3) and (2.4) do not depend on k: hence we are in the position to looking for a open–loop solution.
It is easy to see that (2.4) implies that

λ̇∗2(t) < 0, ∀t ∈ [0, T ] : (2.9)

indeed by the adjoint equation (2.6) and the Maximum principle (2.4),

if λ∗2(t) > 1, ⇒ λ̇∗2(t) = (u∗(t)− 1)λ∗2(t) < 0

if λ∗2(t) ≤ 1, ⇒ λ̇∗2(t) = (u∗(t)− 1) < 0.

Hence, by (2.8), there exists τ ∈ [0, T ) such that

λ∗2(t) < 1 ∀t ∈ (τ, T ]. (2.10)

This implies, by (2.3) and (2.4), v∗(t) = 0 and u∗(t) = b in (τ, T ]. Relations (2.5)–(2.8) give

λ∗1(t) = −b(t− T ), λ∗2(t) = (1− b)(T − t) ∀t ∈ (τ, T ]; (2.11)

Condition (2.10) implies

τ = T − 1

1− b
. (2.12)

Note that λ∗2(τ) = 1 and together with (2.9) we have λ∗2(t) > 1 in [0, τ): hence, by (2.4), we obtain

v∗(t) = 1 ∀t ∈ [0, τ ]. (2.13)

Now we have to distinguish two cases: b ≥ 1
2 and b < 1

2 .

• b ≥ 1
2 . Note that for such b, by (2.11), we have λ∗1(τ) = b

1−b ≥ 1; hence there exists ε > 0 such that

λ∗1(t) > 1/2 for t ∈ [τ−ε, τ ] which implies, by (2.5), λ̇∗1(t) = (u∗(t)−1)λ∗1(t)−u∗(t) < 0 for a.e. t ∈ [τ−ε, τ ].
This gives that λ∗1(t) > 1 for t ∈ [τ − ε, τ) for some positive ε: now, replacing the same arguments we obtain
that λ∗1(t) > 1 in [0, τ ]. Hence, this inequality and (2.13) give by (2.3) that u∗(t) = a in [0, τ ]. We obtain
that the candidate to be a Nash equilibrium is (u∗, v∗) with

u∗(t) =

{
a if t ∈ [0, τ ]
b if t ∈ (τ, T ]

, v∗(t) =

{
1 if t ∈ [0, τ ]
0 if t ∈ (τ, T ]
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and with τ as in (2.12). First, we have to guarantee that (u∗, v∗) is admissible, i.e. there exists a unique
path k∗, solution of the dynamics and the initial condition. We have that{

k̇ = v∗(1− u∗)k = (1− a)k if t ∈ [0, τ ]
k(0) = k0

gives k∗(t) = k0e
(1−a)t, for t ∈ [0, τ ]; moreover{

k̇ = v∗(1− u∗)k = 0 if t ∈ [τ, T ]
k(τ) = k0e

(1−a)τ

gives k∗(t) = k0e
(1−a)τ , for t ∈ [τ, T ]. Second, let us notice that (λ∗1, λ

∗
2) exists since (2.5)-(2.8) is a Cauchy

problem with final value and a first order ODE in (λ1, λ2) linear with KC coefficients.1 Hence (u∗, v∗) is
admissible.

In order to prove that (u∗, v∗) is really a Nash equilibrium, we remark that (k, u) 7→ H1(t, k, u, v∗(t), λ∗1(t))
and (k, v) 7→ H2(t, k, u∗(t), v, λ∗2(t)) are not concave functions (for fixed t) and hence we are not in the
position to apply Theorem A.2; however, if we construct the maximized Hamiltonian functions H0

1 and H0
2

for H1 and H2 respectively, we obtain

H0
1 (t, k, v∗(t), λ∗1(t)) = max

u∈[a,b]
H1(t, k, u, v∗(t), λ∗1(t)) = k[λ∗1(t)v∗(t) + max

u∈[a,b]
u(1− λ∗1(t))v∗(t))],

H0
2 (t, k, u∗(t), λ∗2(t)) = max

v∈[0,1]
H2(t, k, u∗(t), v, λ∗2(t)) = k(1− u∗(t))[1 + max

v∈[0,1]
(λ∗2(t)− 1)v)];

it is easy to verify that such two functions are concave in k, for fixed t, and hence Theorem A.3 guarantees
that (u∗, v∗) is a Nash equilibrium.
• b < 1

2 . Note that λ1(τ) = b
1−b < 1; then there exists τ ′ ∈ [0, τ) such that

λ∗1(t) < 1 ∀t ∈ [τ ′, τ ]. (2.14)

This inequality with (2.13) imply that, by (2.3), u∗(t) = b. The adjoint equation (2.5) and the condition for
λ∗1 in τ give the ODE {

λ̇∗1 = −b− λ∗1(1− b) for t ∈ [τ ′, τ ],
λ∗1(τ) = b

1−b

The solution is

λ∗1(t) =
2b

1− b
e−(1−b)(t−τ) − b

1− b
.

It is easy to see that for

τ ′ = τ +
1

1− b
ln(2b) (2.15)

we have λ∗1(τ ′) = 1. Now the same argument of the case b ≥ 1/2 gives that λ∗1(t) > 1 in [0, τ ′] and we obtain,
as before, u∗(t) = a. Hence we have that the candidate to be a Nash equilibrium is (u∗, v∗),

u∗(t) =

{
a if t ∈ [0, τ ′]
b if t ∈ (τ ′, T ]

, v∗(t) =

{
1 if t ∈ [0, τ ]
0 if t ∈ (τ, T ]

1To be precise, in [0, τ ] we have to solve 
λ̇∗1 = −a+ λ∗1(a− 1)
λ̇∗2 = (a− 1)λ∗2
λ∗1(τ) = b

1−b
λ∗2(τ) = 1



2.2. FEEDBACK NASH EQUILIBRIA 9

with τ and τ ′ as in (2.12) and (2.15). In order to prove that (u∗, v∗) is really a Nash equilibrium, we use
arguments similar to the previous case.

2.2 Feedback Nash equilibria

Definition 2.2. A pair of control functions (u∗1,u
∗
2) ∈ AFB, with decision rule u∗i (t) = ν∗i (t,x

∗(t)) and
trajectory x∗ such that{

ẋ∗(t) = g(t,x∗(t),ν∗1(t,x∗(t)),ν∗2(t,x∗(t))) a.e. t ∈ [0, T ]
x∗(0) = x0

is a Nash equilibrium within the class of feedback strategies AFB for the game (2.1) if the following
holds:

I the control u∗1 provides an optimal feedback control to the problem for the first Player, i.e. for
max

(u1,u∗2)∈AFB

∫ T

0
f1 (t,x(t),ν1(t,x(t)),ν∗2(t,x(t))) dt+ ψ1(x(T ))

ẋ(t) = g(t,x(t),ν1(t,x(t)),ν∗2(t,x(t)))
x(0) = x0

where u1(t) = ν1(t,x(t));

II the control u∗2 provides an optimal feedback control to the problem for the second Player, i.e. for
max

(u∗1,u2)∈AFB

∫ T

0
f2 (t,x(t),ν∗1(t,x(t)),ν2(t,x(t))) dt+ ψ2(x(T ))

ẋ(t) = g(t,x(t),ν∗1(t,x(t)),ν2(t,x(t)))
x(0) = x0

where u2(t) = ν2(t,x(t)).

Variational approach is not useful

Let us suppose that we are interesting on finding a feedback strategy using the variational method: we
will show that the Pontryagin necessary condition is much more complicated and it is not useful. In
order to do that, let us suppose that (u∗1,u

∗
2) ∈ AFB, where u∗i (t) = ν∗i (t,x

∗(t)), is a Nash equilibrium
within the class of feedback strategies, with x∗ its trajectory. Without lost of generality, we assume that
n = k1 = k2 = 1; moreover, we assume U1 = U2 = R and fi, g and ψi are C1 functions. Hence we have
(t, x) 7→ (ν∗1(t, x), ν∗2(t, x)) ∈ R2 measurable function such that x∗ is the solution of the ODE{

ẋ(t) = g(t, x(t), ν∗1(t, x(t)), ν∗2(t, x(t)))
x(0) = x0

and u∗1(t) = ν∗1(t, x∗(t)), u∗2(t) = ν∗2(t, x∗(t)).

Let us put our attention on the first Player and we fix a continuous function h : [0, T ]→ R and for every
constant ε ∈ R we define the new decision rule ν1,ε for the first Player by

ν1,ε(t, x) = ν∗1(t, x) + εh(t) (2.16)

and we suppose that there exists the trajectory xε associated to (ν1,ε, ν
∗
2), i.e. the solution of the ODE{

ẋ(t) = g(t, x(t), ν1,ε(t, x(t)), ν∗2(t, x(t)))
x(0) = x0
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(note that we change the initial data x0 with x0). Hence (u1,ε, u2,ε) ∈ AFB, where u1,ε(t) = ν1,ε(t, xε(t))
and u2,ε(t) = ν∗2(t, xε(t)). Clearly

u∗1(t) = ν1,0(t, x0(t)) u∗2(t) = ν∗2(t, x0(t)) x0(t) = x∗(t), xε(0) = x0. (2.17)

As usual in the variational approach to a problem of optimal control, we define the function Jh : R→ R2 as

Jh(ε) =

∫ T

0
f1(t, xε(t), ν1,ε(t, xε(t)), ν

∗
2(t, xε(t))) dt+ ψ1(xε(T ))

We introduce the Hamiltonian H1 as in (2.2). Using the dynamics and by integrating by part we have

Jh(ε) =

∫ T

0

[
H1(t, xε, ν1,ε(t, xε), ν

∗
2(t, xε), λ1) + λ̇1xε

]
dt−

(
λ1xε

∣∣∣T
0

+ ψ1(xε(T ))

Since (u∗1, u
∗
2) is a Nash equilibrium, for the first Player we have that optimal Jh(0) ≥ Jh(ε), for every ε,

and hence
dJh
dε

(0) = 0. Classical calculation gives

0 =
dJh
dε

(0)

=

∫ T

0

{[
∂H1

∂x
(t, x∗, u∗1, u

∗
2, λ1) + λ̇1 +

∂H1

∂u1
(t, x∗, u∗1, u

∗
2, λ1)

∂ν∗1
∂x

(t, x∗) +

+
∂H1

∂u2
(t, x∗, u∗1, u

∗
2, λ1)

∂ν∗2
∂x

(t, x∗)

]
dxε
dε

(0) +
∂H1

∂u1
(t, x∗, u∗1, u

∗
2, λ1)h

}
dt+

−
[
λ1(T )− ∂ψ1

∂x
(x∗(T ))

]
dxε(T )

dε
(0)

We note that the bad new are the two terms
∂H1

∂ui
(t, x∗, u∗1, u

∗
2, λ1)

∂ν∗i
∂x

(t, x∗): they arrive from the fact that

we are working with feedback controls, i.e. ν∗i (t, x). In [10] (see Theorem 7.1) and in [12] (see Theorem 2.2)
appear sufficient conditions for a particular type of games in order to obtain a feedback Nash equilibrium
using the variational approach and the maximized Hamiltonias: such conditions are not really useful.

With the Dynamic Programming approach

Let us start with the definition of the value function that, with respect to the situation of optimal control
problems, it must be specialized:

Definition 2.3. Let’s suppose that a pair of control functions (u∗1,u
∗
2) ∈ AFB, where u∗i (t) = ν∗i (t,x

∗(t)),
is a Nash equilibrium within the class of feedback strategies AFB for the game (2.1). Then we define the
value functions Vi : [0, T ]× Rn → [−∞,+∞], for Player i, by

V1(τ, ξ) = sup
(u1,u∗2)∈AFB

∫ T

τ
f1(t,x(t),ν1(t,x(t)),ν∗2(t,x(t))) dt+ ψ1(x(T ))

where u1(t) = ν1(t,x(t)). Similarly, we define

V2(τ, ξ) = sup
(u∗1,u2)∈AFB

∫ T

τ
f2(t,x(t),ν∗1(t,x(t)),ν2(t,x(t))) dt+ ψ2(x(T ))

where u2(t) = ν2(t,x(t)).
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Some comments: first we remark that such definition is on a Nash equilibrium. Second, to be clear, in the
definition of V1 we consider the sup on all the feedback controls u1, with u1(t) = ν1(t,x(t)), where (for the
fixed feedback decision rule ν∗2) x is the unique solution of{

ẋ(t) = g(t,x(t),ν1(t,x(t)),ν∗2(t,x(t))) a.e. in [τ, T ]
x(τ) = ξ

The existence of such solution is not guarantee and hence V1(τ, ξ) can be −∞. Similar situation appears in
definition of V2.

Now, we are in the position to apply the Dynamic Programming results. Let us suppose that the
value functions Vi, defined on a feedback Nash equilibrium (u∗1,u

∗
2) with trajectory x∗, are continuously

differentiable. The idea is to write the Bellman-Hamilton-Jacobi system for the first Player with its value
function V1 and the Bellman-Hamilton-Jacobi system for the second Player with its value function V2, i.e.

∂V1

∂t
(t,x) + max

v1∈U1

[
f1(t,x,v1,ν

∗
2(t,x)) +∇xV1(t,x) · g(t,x,v1,ν

∗
2(t,x))

]
= 0, ∀(t,x) ∈ [0, T ]× Rn

∂V2

∂t
(t,x) + max

v2∈U2

[
f2(t,x,ν∗1(t,x),v2) +∇xV2(t,x) · g(t,x,ν∗1(t,x),v2)

]
= 0, ∀(t,x) ∈ [0, T ]× Rn

V1(T,x) = ψ1(x), ∀x ∈ Rn
V2(T,x) = ψ2(x), ∀x ∈ Rn

A version of Theorem A.6 in this context is the following (see Theorem 6.16 in [2])

Theorem 2.2. Let us consider the us consider the problem (2.1) where fi, ψi and g are continuous functions.
Let us suppose that there exist two continuously differentiable functions Wi : [0, T ]× Rn → R, i = 1, 2, and
two measurable functions ν∗i : [0, T ]× Rn → Ui, i = 1, 2, such that

−∂W1

∂t
(t,x) = max

v1∈U1

[
f1(t,x,v1,ν

∗
2(t,x)) +∇xW1(t,x) · g(t,x,v1,ν

∗
2(t,x))

]
= f1(t,x,ν∗1(t,x),ν∗2(t,x)) +∇xW1(t,x) · g(t,x,ν∗1(t,x),ν∗2(t,x))

−∂W2

∂t
(t,x) = max

v2∈U2

[
f2(t,x,ν∗1(t,x),v2) +∇xW2(t,x) · g(t,x,ν∗1(t,x),v2)

]
= f2(t,x,ν∗1(t,x),ν∗2(t,x)) +∇xW2(t,x) · g(t,x,ν∗1(t,x),ν∗2(t,x))

W1(T,x) = ψ1(x)

W2(T,x) = ψ2(x),

for every (t,x) ∈ [0, T ]× Rn.
Suppose that there exists x∗ solution of the ODE{

ẋ(t) = g(t,x(t),ν∗1(t,x(t)),ν∗2(t,x(t))) in [0, T ]
x(0) = x0

Then x∗ is the optimal trajectory and (u∗1,u
∗
2), where u∗i (t) = ν∗i (t,x

∗(t)), is a Nash equilibrium in the class
AFB.

A similar sufficient conditions appears in [10] (see Theorem 7.2) and in [12] (see Theorem 2.1).

2.2.1 Affine–Quadratic differential games

Now let us consider a particular type of games: we say that a two person differential games is Linear–
Quadratic if 

max
u1

1

2

∫ T

0

(
x′Q1x + 2x′S1 + u′1R1,1u1 + u′2R1,2u2

)
dt+

1

2
x(t1)′P1x(t1)

max
u2

1

2

∫ T

0

(
x′Q2x + 2x′S2 + u′1R2,1u1 + u′2R2,2u2

)
dt+

1

2
x(t1)′P2x(t1)

g(t,x,u1,u2) = Ax +B1u1 +B2u2 + C
x(0) = α
C = {(u1,u2) : [0, T ]→ Rk1 × Rk2 , admissible}
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where v′ is the transpose of the matrix v; we denote the trajectory x and the control u such that x =
(x1, x2, . . . , xn)′ and ui = (ui,1, ui,2, . . . , ui,ki)

′ respectively; with Qi = Qi(t) and Pi = Pi(t) symmetric
matrices, and Ri,j = Ri,j(t), A = A(t), Bi = Bi(t) and C = C(t) matrices. We have the following result
(see [2]):

Proposition 2.1. Let us suppose that for a Linear–Quadratic two person differential games there exist the
value functions Vi, then we have

Vi(t,x) =
1

2
x′Zix + xWi + Yi (2.18)

for i = 1, 2, with Zi = Zi(t), Wi = Wi(t) and Yi = Yi(t) matrices.

Moreover, let us mention the following particular situation (see [2], [3] for details):

Remark 2.1. Let us consider the Linear–Quadratic two person differential games in the linear and homo-
geneous case, i.e. with

C = 0, and Si = 0.

If there exists the value functions for the problem, then

Vi(t,x) =
1

2
x′Zi(t)x.

2.2.2 Infinite horizon case

Let us consider a two–person, infinite horizon with discount, differential game
Player I: max

u1

J1(u1,u2) Player II: max
u2

J2(u1,u2)

Ji(u1,u2) =

∫ ∞
0

fi (x,u1,u2) e−rtdt, i = 1, 2

ẋ = g(x,u1,u2)
x(0) = x0

(2.19)

where r ≥ 0 and Ui are the two control sets for the players. In this situation we are in the position to
introduce the current value functions V c

i : Rn → Rn. More precisely, since f and g do not depend on t, it
is possible to prove (as in a optimal control problem) that the existence of the value function (V1, V2) that
satisfies the BHJ system is equivalent to the existence of the current value function (V c

1 , V
c

2 ) that satisfies a
current BHJ system: moreover

Vi(t,x) = e−rtV c
i (x), ∀(t,x) ∈ [0,∞)× Rn

Taking into account that

∇xVi(t,x) = e−rt∇xV
c
i (x),

∂Vi
∂t

(t,x) = −re−rtV c
i (x),

Theorem 2.2 becomes

Remark 2.2. Let us consider the problem (2.19) where fi and g are continuous functions.
Let us suppose that there exists two continuously differentiable functions V c

i : Rn → R, i = 1, 2, and two
measurable functions ν∗i : [0,∞)× Rn → Ui, i = 1, 2, such that

rV c
1 (x) = max

v1∈U1

[
f1(x,v1,ν

∗
2(t,x)) +∇xV

c
1 (x) · g(x,v1,ν

∗
2(t,x))

]
= f1(x,ν∗1(t,x),ν∗2(t,x)) +∇xV

c
1 (x) · g(x,ν∗1(t,x),ν∗2(t,x))

rV c
2 (x) = max

v2∈U2

[
f2(x,ν∗1(t,x),v2) +∇xV

c
2 (x) · g(x,ν∗1(t,x),v2)

]
= f2(x,ν∗1(t,x),ν∗2(t,x)) +∇xV

c
2 (x) · g(x,ν∗1(t,x),ν∗2(t,x))
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for every x ∈ Rn and t ≥ 0.
Suppose that there exists x∗ solution of the ODE{

ẋ(t) = g(t,x(t),ν∗1(t,x(t)),ν∗2(t,x(t))) in [0,∞)
x(0) = x0

Then x∗ is the optimal trajectory and (u∗1,u
∗
2), where u∗i (t) = ν∗i (t,x

∗(t)), is a Nash equilibrium in the class
AFB.

In many situation of the previous remark we have that the decision rule does not depend explicity by t,
i.e.

u∗i (t) = ν∗i (x(t)). (2.20)

We mention that in the case of problem (2.19) one can decide to restrict the attention only to the feedback
control of the type (2.20), called stationary feedback strategies (see [16]). It has to emphasize, however, that
such a game may have nonstationary feedback strategies as well: an example is Exercise 5 of Chapther 5
(page 108) in [5].

2.2.3 Two firms in competition

Suppose two firms produce an identical product. The cost of producing is governed by the total cost function

C(ui) = cui +
1

2
u2
i ,

where ui = ui(t) refers to the i-firm’s production level at time t and c is a positive constant. Each firm sells
all it produces at time t into a market with a common price p = p(t). The relationship between the total
amount of production u1 + u2 supplied and the change in price is described by

ṗ = s(a− u1 − u2 − p),

where s and a are positive constants and p0 is the price at the initial time t = 0. Hence the situation is (this
model is presented in see [13], page 278)

I Prod.: max
u1

∫ ∞
0

e−rt
(
pu1 − cu1 −

1

2
u2

1

)
dt u1 ≥ 0

II Prod.: max
u2

∫ ∞
0

e−rt
(
pu2 − cu2 −

1

2
u2

2

)
dt u2 ≥ 0

ṗ = s(a− u1 − u2 − p)
p(0) = p0 > 0 p(t) ≥ 0

with the rate of discount r that is a positive constant. Note that it is a symmetric game. We are interested
on a non zero Nash equilibrium in the family of feedback strategies, i.e. strategies for the two firms that
depend, at every time, on the price p(t).

With a infinite and discounted problems, it is convenient to introduce the current value functions V c
1 =

V c
1 (p) and V c

2 = V c
2 (p) and their Bellman–Hamilton–Jacobi equations: for every p we have

−rV c
1 + max

v≥0

[
pv − cv − 1

2
v2 + s(V c

1 )′(a− v − ν∗2(t, p)− p)
]

= 0

⇒ −rV c
1 + s(a− ν2 − p)(V c

1 )′ + max
v≥0

[
(p− c− s(V c

1 )′)v − 1

2
v2

]
= 0

−rV c
2 + max

v≥0

[
pv − cv − 1

2
v2 + s(V c

2 )′(a− ν∗1(t, p)− v − p)
]

= 0

⇒ −rV c
2 + s(a− ν1 − p)(V c

2 )′ + max
v≥0

[
(p− c− s(V c

2 )′)v − 1

2
v2

]
= 0
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Clearly we obtain, for i = 1, 2

ν∗i (t, p) =

{
0 if p− c− s(V c

i )′(p) ≤ 0
p− c− s(V c

i )′(p) if p− c− s(V c
i )′(p) > 0

Note that such strategies are stationary feedback strategies: hence if our strategy is zero, for some t, we
have that such strategy is zero at every time. Let’s concentrate our attention on strategies that are different
from zero: hence we have

ν∗1(t, p) = p− c− s(V c
1 )′(p), ν∗2(t, p) = p− c− s(V c

2 )′(p). (2.21)

in the assumption
p− c− s(V c

i )′(p) > 0, i = 1, 2 (2.22)

Let us consider the first current BHJ equation; we obtain

−rV c
1 + s

(
a− 2p+ c+ s(V c

2 )′
)

(V c
1 )′ +

1

2

(
p− c− s(V c

1 )′
)2

= 0, ∀p.

Since the problem is Linear-Quadratic (see Proposition 2.1), we looking for value functions as

V c
1 (p) = α1 + β1p+

1

2
γ1p

2, V c
2 (p) = α2 + β2p+

1

2
γ2p

2, (2.23)

where αi, βi and γi are constants. We obtain, using (2.21) and (2.23), that the two current BHJ equations
now require that for every p

−r
(
α1 + β1p+

1

2
γ1p

2

)
+ s
[
a− 2p+ c+ s (β2 + γ2p)

]
(β1 + γ1p) +

1

2

(
p− c− s (β1 + γ1p)

)2
= 0 (2.24)

−r
(
α2 + β2p+

1

2
γ2p

2

)
+ s
[
a− 2p+ c+ s (β1 + γ1p)

]
(β2 + γ2p) +

1

2

(
p− c− s (β2 + γ2p)

)2
= 0 (2.25)

The previous equations give two polynomials of degree 2 in p and they are identically zero for every p:
equating the coefficients of p2, we obtain

s2γ2
1 + (−r − 6s+ 2s2γ2)γ1 + 1 = 0 (2.26)

s2γ2
2 + (−r − 6s+ 2s2γ1)γ2 + 1 = 0

• Let us prove that γ1 = γ2: in order to do that, let us subtract the previous two equation obtaining

(γ1 − γ2)[s2(γ1 + γ2)− r − 6s] = 0.

If γ1 6= γ2, we have
s2(γ1 + γ2) = r + 6s (2.27)

Now let us consider the dynamic: with u1 = ν∗1 and u2 = ν∗2 given in (2.21) and taking into account (2.23),
we obtain

u1 = p− c− s(β1 + γ1p), u2 = p− c− s(β2 + γ2p)

and hence
ṗ = s[s(γ1 + γ2)− 3]p+ s[a+ 2c+ s(β1 + β2)].

The solution of this ODE in p is

p(t) = Aes[s(γ1+γ2)−3]t − a+ 2c+ s(β1 + β2)

s(γ1 + γ2)− 3
(2.28)

where A is a constant that depends on p0. We note that, by (2.27),

s(γ1 + γ2)− 3 =
r + 3s

s
> 0.
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Hence, A 6= 0, for the price p(t) goes to sgn(A) · ∞, for t → ∞: this is not reasonable. If A = 0, then
p(t) = p0 is constant; relation (2.21) give u∗i (t) = ν∗i (p0) and this is not a feedback strategy. Hence γ1 6= γ2

is impossible.
From now on, let us simplify the notations setting γ = γ1 = γ2. The price, by (2.28), now is

p(t) = Aes(2sγ−3)t − a+ 2c+ s(β1 + β2)

2sγ − 3
(2.29)

and equation (2.27) becomes
3s2γ2 − (r + 6s)γ + 1 = 0

with solutions

γ± =
r + 6s±

√
(r + 6s)2 − 12s2

6s2
.

We note that

γ+ >
6s+

√
36s2 − 12s2

6s2
=

3 +
√

6

3s
>

3

2s

implies again that the price in (2.29) goes to ∞ for t→∞. Hence we consider only the solution γ = γ− and
we obtain

γ− =
r + 6s−

√
(r + 6s)2 − 12s2

6s2
(2.30)

•• Let us prove that β1 = β2. Let us note that

0 < s2γ− < 6s2γ− < r + (6− 2
√

6)s < r + 3s. (2.31)

Equating the coefficients of p in (2.24) and (2.25) we obtain

(2s2γ− − r − 3s)β1 + s2γ−β2 = c− 2scγ− − saγ− (2.32)

s2γ−β1 + (2s2γ− − r − 3s)β2 = c− 2scγ− − saγ−

Let us subtract the previous two equation obtaining

(β1 − β2)(s2γ− − r − 3s) = 0.

This relation, by (2.31), gives β1 = β2. Let us set β = β1 = β2: by (2.32)

β =
sγ−(2c+ a)− c
r + 3s− 3s2γ−

. (2.33)

It is easy to see that β > 0. Moreover, by (2.21) and (2.23) we have

ν∗1(p) = ν∗2(p) = p− c− s(β + γ−p). (2.34)

Note that such strategy are stationary.
• • • Now let us prove that α1 = α2 (note that such coefficients play no role in the strategies, but we

have to guarantee that exist (V c
1 , V

c
2 ) solutions of the current BHJ equations). Taking into account that

β1 = β2 = β, equating the coefficients of zero degree on p in (2.24) and (2.25) we obtain

−rαi + s(a+ c+ sβ)β +
1

2
(c+ sβ)2 = 0, i = 1, 2.

Clearly such αi exist and are equal. Finally, we obtain by (2.34)

u∗i (t) = ν∗i (p∗(t)) = (1− sγ−)p∗(t)− (βs+ c), i = 1, 2 (2.35)

p∗(t) =

(
p0 −

a+ 2c+ 2sβ

3− 2sγ−

)
es(2sγ−−3)t +

a+ 2c+ 2sβ

3− 2sγ−
(2.36)
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where γ− and β are defined in (2.30) and (2.33) respectively.

Let us set k̃ = a+2c+2sβ
3−2sγ−

. It is easy to see, using β > 0, that k̃ > 0 and hence the shape of the trajectory–

price function in (2.36) implies that

p∗(t) ≥ min
(
p∗(0), lim

t→∞
p∗(t)

)
= min

(
p0, k̃

)
> 0.

Hence p∗ is a good price, i.e. p∗(t) ≥ 0. Finally, the assumption (2.22) is now

(1− sγ−)p > (βs+ c) :

this condition requires that the trajectory p lies in a region2 R

R = {(t, p) ∈ [0,∞)× (0,∞) : (1− sγ−)p > (βs+ c)}.

Clearly R depends on the constants involved in the model. More precisely, our trajectory p∗ lies is this
region R if and only if, again by the shape of p∗ in (2.36), the following

min
(
p∗(0), lim

t→∞
p∗(t)

)
= min

(
p0, k̃

)
>

βs+ c

1− sγ−
(2.37)

is satisfied. Some computations gives that for some choice of (a, c, r, s, p0) the previous condition holds and
for some others choice is not true. However, if (2.37) is satisfied, then Remark 2.2 guarantees that (u∗1, u

∗
2)

in (2.35) is a Nash equilibrium in the family of feedback strategies.

2.3 Further examples and models

2.3.1 Two fishermen at the lake

In the present model (see [13], page 285) we will see that the open–loop Nash equilibrium and the feedback
Nash equilibrium coincide.

The model. Suppose that the evolution of the stock of fish x = x(t) in a lake is governed by

ẋ = αx− βx lnx

for t ≥ 0 and where α and β are positive constants. We assume that x(t) ≥ 2, one of each gender, for the
fish population to survive and x(0) = x0 ≥ 2. At every time, the stock x generates αx births and it has
βx lnx deaths.

Two fishermen harvest fish from the lake and each fisherman’s catch ci is directly related to the level of
effort wi = wi(t) he devotes to this activity and the stock of fish: thus

ci = xiwi.

Clearly, the fisherman’s activity reduced the fish stock in the lake and with respect the equation of the
evolution of the fish we have

ẋ = αx− βx lnx− w1x− w2x.

Each fisherman derives satisfaction from his catch according to a log utility function Ui as

Ui = ai ln(wix),

where ai are positive constants, in an infinite period. Hence we will introduce a discount factor e−rt, with
r > 0, for such utility.

2We note that (1− sγ−) > 0.
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It is convenient for computations to set y(t) = lnx(t): hence ẏ = ẋ
x . the target of very player–fisherman

is to realize

max
wi

∫ ∞
0

ai(y + lnwi)e
−rt dt = ai max

wi

∫ ∞
0

(y + lnwi)e
−rt dt,

since ai > 0. Hence we have the following symmetric game:3
I F.: max

w1

∫ ∞
0

(y + lnw1)e−rt dt II F.: max
w2

∫ ∞
0

(y + lnw2)e−rt dt

w1 ≥ 0 w2 ≥ 0
ẏ = α− w1 − w2 − βy

y(0) = y0 ≥ ln 2, y(t) ≥ ln 2

Let us assume for simplicity

α− 3β > 2r. (2.39)

We are interested on non zero Nash equilibria in the class of open–loop strategies and in the class of feedback
strategies.

Open–loop Nash equilibrium.4 Let us introduce the two current Hamiltonians:

Hc
1 = y + lnw1 + λ1c(α− w1 − w2 − βy)

Hc
2 = y + lnw2 + λ2c(α− w1 − w2 − βy)

We have to guarantee the following conditions:

νi(t, y) ∈ arg max
v≥0

Hc
i = arg max

v≥0
(ln v − λicv) =

{
1
λic

if λic > 0
6 ∃ if λic ≤ 0

(2.40)

λ̇ic = rλic −
∂Hc

i

∂y
= (r + β)λic − 1 (2.41)

for i = 1, 2. We note that ν1 and ν2 in (2.40) do not depend on the trajectory y: hence we are in the position
to looking for a open–loop equilibrium. Let us looking for some non zero Nash equilibrium, we obtain by
(2.40)

w1(t) = ν1(t) =
1

λ1c(t)
w2(t) = ν2(t) =

1

λ2c(t)
(2.42)

in the assumption that

λic > 0. (2.43)

The adjoint equations (2.41) give

λ1c(t) = Ae(β+r)t +
1

β + r
, λ2c(t) = Be(β+r)t +

1

β + r
,

with A and B constants. Clearly (2.42) gives, putting in evidence the dependence by the two constants,

wA1 (t) =
β + r

A(β + r)e(β+r)t + 1
, wB2 (t) =

β + r

B(β + r)e(β+r)t + 1
. (2.44)

3Suggestion: In order to solve the Bellman–Hamilton–Jacobi equation for the current value functions, we suggest to looking
for the solution in the family of functions

V c1 (y) = ay + b, V c2 (y) = cy + d, (2.38)

with a, b, c, d constants.
4In subsection we looking for a open–loop Stackelberg equilibrium.
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The dynamics now gives

yAB(t) = e−βt
[∫ t

0

(
α− wA1 (s)− wB2 (s)

)
eβs ds+ y0

]
. (2.45)

We claim that the case A = B = 0 is the unique candidate to a be a Nash equilibrium. In order to prove
that, first we put A < 0 and, for t sufficiently large, we obtain wA1 < 0 which is impossible. The case B < 0
is similar. Now, let us suppose that A and B are non negative; note in this case (2.43) hold: we want to
prove that ∫ ∞

0
(yAB + lnwA1 )e−rt dt <

∫ ∞
0

(y0B + lnw0
1)e−rt dt, (2.46)

i.e. that (wA1 , w
B
2 ) is not a Nash equilibrium since for the first player, with wB2 fixed, there exists a better

strategy with respect to wA1 . Now, taking into account that∫ t

0

A(β + r)2e(β+r)s

A(β + r)e(β+r)s + 1
ds =

= ln
(
A(β + r)e(β+r)t + 1

)
− ln(A(β + r) + 1) (2.47)

for every fixed t we have, by (2.44) and (2.45),

yAB(t) + lnwA1 (t) = e−βt
[∫ t

0

(
α− β + r

A(β + r)e(β+r)s + 1
− wB2 (s)

)
eβs ds+ y0

]
+

+ ln(β + r)− ln
(
A(β + r)e(β+r)t + 1

)
(by (2.47)) = e−βt

[∫ t

0

(
α− wB2 (s)

)
eβs ds+ y0

]
+ ln(β + r) +

−(β + r)

∫ t

0

A(β + r)e(β+r)s + eβ(s−t)

A(β + r)e(β+r)s + 1
ds− ln (A(β + r) + 1)

<† e−βt
[∫ t

0

(
α− wB2 (s)

)
eβs ds+ y0

]
+ ln(β + r)− (β + r)

∫ t

0
eβ(s−t) ds

= y0B(t) + lnw0
1(t), (2.48)

where in the inequality “<†”we use A(β + r) > 0 and the fact that, for every h and k positive5 we have,

−k + h

k + 1
≤ −h ⇔ h ≤ 1.

Clearly relation (2.48) implies (2.46).

Let us study the case A = B = 0, i.e.

w∗1(t) = w∗2(t) = β + r (2.49)

y∗(t) = y0e
−βt +

α− 2(β + r)

β
(1− e−βt)

λ∗1c(t) = λ∗2c(t) =
1

β + r

Let us check that y∗(t) ≥ ln 2: in fact, by plotting the function y∗ and by (2.39), we have

y∗(t) ≥ min

(
y0,

α− 2(β + r)

β

)
≥ 1, t ≥ 0.

5in our case h = eβ(s−t)
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We recall that in order to guarantee some sufficient condition of optimality in a infinite horizon problem
(see subsection A.1.1), we require that limt→∞ λ∗(t) · (x(t) − x∗(t)) ≥ 0 where λ∗ is the multiplier, x a
generic trajectory and x∗ the trajectory candidate to the optimal. Since λ∗i (t) = e−rtλ∗ic(t) = e−rt/(β + r),
this sufficient condition for the i-problem is

lim
t→∞

λ∗i (t)(y(t)− y∗(t)) ≥ lim
t→∞

1

β + r
e−rt(ln 2− y∗(t)) = 0

Finally it is easy to see that the Hamiltonians

(y, w1) 7→ Hc
1(y, w1, w

∗
2(t), λ∗1c(t)) and (y, w2) 7→ Hc

2(y, w∗1(t), w2, λ
∗
2c(t))

are concave functions, for every fixed t, and that the control sets U1 = U2 = [0,∞) are convex. Hence
(w∗1, w

∗
2) in (2.49) is a open–loop Nash equilibrium.

Feedback Nash equilibrium. Let us introduce the two current value functions V c
1 = V c

1 (y) and V c
2 =

V c
2 (y): the BHJ equations are−rV

c
1 + y + (V c

1 )′(α− ν∗2 − βy) + max
v≥0

[
ln v − v(V c

1 )′
]

= 0

−rV c
2 + y + (V c

2 )′(α− ν∗1 − βy) + max
v≥0

[
ln v − v(V c

2 )′
]

= 0

We obtain that we realize the previous two max for

ν∗i (t, y) =


1

(V c
i )′(y)

if (V c
i )′(y) > 0

6 ∃ if (V c
i )′(y) ≤ 0

(2.50)

Let us looking for a Nash equilibrium and hence let us suppose (V c
i )′(y) > 0. Hence the BHJ equations

become 
−rV c

1 + y + (V c
1 )′
(
α− 1

(V c
2 )′
− βy

)
− ln(V c

1 )′ − 1 = 0

−rV c
2 + y + (V c

2 )′
(
α− 1

(V c
1 )′
− βy

)
− ln(V c

2 )′ − 1 = 0

Now, using the suggestion (2.38), an easy computation in the previous system gives a = c = 1
β+r . Note that

the previous assumption (V c
i )′(y) > 0 is true. It is clear, by (2.50), that we obtain the stationary strategies

ν∗i (y) = β + r

as in (2.49). Since such (w∗1, w
∗
2), with w∗i (t) = ν∗i (t, y) = β + r, is admissible (solve the dynamics ẏ =

α− ν∗1(t, y)− ν∗2(t, y)− βy with the initial condition and check that y∗ ≥ 2 with calculations similar to the
open–loop case) then it is a feedback Nash–equilibrium.

2.3.2 On international pollution

We denote by ui = ui(t), for i = 1, 2, the level of emissions of two economies and let x = x(t) be the stock
of pollution at time t. The system has a (little) capacity to self-cleaning; let us fix α ∈ (0, 1) such that
ẋ = −αx describes this capacity of the system.
The damage of the emission is quadratic with respect to x with coefficients 1

2φi, for every i-player, and
we suppose that the utility for the i-economy related to its emission ui is given by the concave function
ui
(
ki − 1

2ui
)
, with ki positive constants. Hence we have

I Econ.: max
u1

∫ ∞
0

e−rt
(
u1

(
k1 −

1

2
u1

)
− 1

2
φ1x

2

)
dt u1 ≥ 0

II Econ.: max
u2

∫ ∞
0

e−rt
(
u2

(
k2 −

1

2
u2

)
− 1

2
φ2x

2

)
dt u2 ≥ 0

ẋ = u1 + u2 − αx
x(0) = x0, x(t) ≥ 0
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with the rate of discount r that is a positive constant. This model is proposed in [6].
Open loop Nash equilibrium, in the general case. Let us introduce the two current Hamiltonians:

Hc
1 = k1u1 −

1

2
u2

1 −
1

2
φ1x

2 + λ1c(u1 + u2 − αx)

Hc
2 = k2u2 −

1

2
u2

2 −
1

2
φ2x

2 + λ2c(u1 + u2 − αx)

We have to guarantee the following conditions:

νi(t, x) ∈ arg max
v≥0

Hc
i = arg max

v≥0

(
(ki + λic)v −

1

2
v2

)
=

=

{
ki + λic if ki + λic ≥ 0
0 if ki + λic < 0

(2.51)

λ̇ic = rλic −
∂Hc

i

∂x
= (α+ r)λic + φix (2.52)

for i = 1, 2. We note that ν1 and ν2 in (2.51) do not depend on the trajectory x: hence we are in the position
to looking for a open–loop equilibrium.

Let us looking for some non zero Nash equilibrium: more precisely we are interested in the case where
the emissions ui are positive in [0,∞), i.e. we assume that in (2.51) we have

ki + λic(t) > 0, ∀t (2.53)

Taking into account (2.51) in the dynamics and with (2.52), we have to solve the system

ẋ

λ̇1c

λ̇2c


= A



x

λ1c

λ2c


+



k1 + k2

0

0


, with A =



−α 1 1

φ1 α+ r 0

φ2 0 α+ r


The eigenvalues of A are θ = α+ r and

θ± =
r ±

√
r2 + 4(α2 + αr + φ1 + φ2)

2
. (2.54)

Three eigenvectors for each eigenvalue are v = (0, 1,−1)T (related to θ) and v± = (α+ r − θ±,−φ1,−φ2)T

respectively. Hence the general solution for the homogeneous part of our system is given by

(x, λ1c, λ2c)
T = c1e

tθv + c2e
tθ+v+ + c3e

tθ−v−

where ci are generic constants. It is easy to see that a particular solution of our system is given by

(xpart, λpart1c , λpart2c )T =
(k1 + k2)

α(α+ r) + φ1 + φ2
((α+ r), −φ1, −φ2)T

Hence we obtain

x(t) = c2e
tθ+(α+ r − θ+) + c3e

tθ−(α+ r − θ−) + xpart

λ1c(t) = c1e
(α+r)t − φ1

(
c2e

tθ+ + c3e
tθ−
)

+ λpart1c (2.55)

λ2c(t) = −c1e
(α+r)t − φ2

(
c2e

tθ+ + c3e
tθ−
)

+ λpart2c
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Using the expression of λ1c given by (2.55), putting (see (2.51))

u1(t) = ν1(t) = k1 + λ1c(t),

and taking into account that

2θ − r > 0 2θ+ − r > 0,

it is easy to see that, if (c1, c2) 6= (0, 0), then for t→∞ we have

e−rt
(
u1

(
k1 −

1

2
u1

)
− 1

2
ψ1x

2

)
∼ −1

2
e−rt

(
(λ1c)

2 + ψ1x
2
)
→ −∞

Hence we have c1 = c2 = 0 and, by the initial condition on the stock of pollution

x∗(t) =

(
x0 −

(α+ r)(k1 + k2)

α(α+ r) + φ1 + φ2

)
etθ− +

(α+ r)(k1 + k2)

α(α+ r) + φ1 + φ2

λ∗1c(t) = − φ1

α+ r − θ−

(
x0 −

(α+ r)(k1 + k2)

α(α+ r) + φ1 + φ2

)
etθ− − (k1 + k2)φ1

α(α+ r) + φ1 + φ2

λ∗2c(t) = − φ2

α+ r − θ−

(
x0 −

(α+ r)(k1 + k2)

α(α+ r) + φ1 + φ2

)
etθ− − (k1 + k2)φ2

α(α+ r) + φ1 + φ2

Note that x∗(t) > 0. We have to verify that (2.53) holds. In order to do that note that

λ̇∗ic(t) > 0 ⇔ x0 > xpart

Hence, in the case x0 ≥ xpart we have to check that λ∗ic(0) + ki > 0, while in the case x0 < xpart we have to
check that λpartic + ki > 0. We are not interested on this tedious calculations.

Let us prove that (u∗1, u
∗
2) defined by (2.51)

u∗1(t) = ν∗1(t) = k1 + λ∗1c(t), u∗2(t) = ν∗2(t) = k2 + λ∗2c(t),

and using λ∗ic as in the last expression. Let us study the situation from the point of view of the first player.
It is immediate to see that

(x, u1) 7→ Hc
1(t, x, u1, u

∗
2(t), λ∗1c(t))

is, for every fixed t, a concave function. It is clear that for every admissible trajectory x = x(t) we have, in
order to have x2e−rt integrable for t→∞,

x2(t)e−rt → 0, t→∞.

Note that this is equivalent x(t)e−rt/2 → 0, for t→∞. Recalling that λ∗1(t) = e−rtλ∗1c(t), we have

lim
t→∞

λ∗i (t)(x(t)− x∗(t)) = λpartic lim
t→∞

e−rt(x(t)− xpart) = 0

Hence u∗1 is optimal for the first player (see subsection A.1.1): similar arguments hold for the second economy
and hence we have really that (u∗1, u

∗
2), defined by (2.51), is a Nash equilibrium in the class of open loop

strategies.

2.3.3 Nonrenewable resources and environmental economics

We present a simple model of common-property resources (see [5], page 316). Consider a natural resource,
such as on oil field, that can be exploited simultaneously by N firms, or N countries. The equilibrium path
of extraction depends on whether the Players (firms or countries) cooperate or not. Let us consider the
non-cooperative case, with N = 2 for simplicity.
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The model. Let x = x(t) and ci = ci(t) for i = 1, 2 denote respectively the stock of the resource and
Players i’s rate of extraction at time t. Clearly ci(t) ≥ 0 and x(t) ≥ 0. The dynamic is given by

ẋ = −c1 − c2.

Note that if x(t′) = 0, for some t′ > 0, then the unique admissible rate of extraction is c1(t) = c2(t) = 0 for
every t ≥ t′. Each Player i has a HARA utility function Ui(ci) = 1

γ1
cγ1

1 defined for ci ≥ 0, with γi ∈ (0, 1).

Utility is discounted at a common constant rate r > 0. Hence we have the following game:6
I Play.: max

c1

∫ ∞
0

1

γ1
cγ1

1 e
−rt dt II Play.: max

c2

∫ ∞
0

1

γ2
cγ2

2 e
−rt dt

c1 ≥ 0 c2 ≥ 0
ẋ = −c1 − c2

x(0) = x0 > 0, x(t) ≥ 0

Let us assume that
γ1 + γ2 < 1. (2.57)

We are interested on a Nash equilibria in the class of feedback strategies.
Feedback Nash equilibrium. Let us introduce the two current value functions V c

1 = V c
1 (x) and V c

2 =
V c

2 (x): the BHJ equations are
−rV c

1 (x) + max
v≥0

[
1

γ1
vγ1 − [(V c

1 )′(x)](v + ν∗2(t, x))

]
= 0

−rV c
2 (x) + max

v≥0

[
1

γ2
vγ2 − [(V c

2 )′(x)](ν∗1(t, x) + v)

]
= 0

for every t ≥ 0 and x ≥ 0. We obtain that we realize the previous two max, i = 1, 2, for

ν∗i (t, x) =

{
[(V c

i )′(x)]
1

γi−1 if (V c
i )′(x) > 0

6 ∃ if (V c
i )′(x) ≤ 0

(2.58)

Let us looking for a Nash equilibrium and hence let us suppose (V c
i )′(x) > 0. Hence the BHJ equations

become 
−rV c

1 (x) +
1− γ1

γ1
[(V c

1 )′(x)]
γ1
γ1−1 − [(V c

1 )′(x)][(V c
2 )′(x)]

1
γ2−1 = 0

−rV c
2 (x) +

1− γ2

γ2
[(V c

2 )′(x)]
γ2
γ2−1 − [(V c

1 )′(x)]
1

γ1−1 [(V c
2 )′(x)] = 0,

for every x ≥ 0. Now, using the suggestion (2.56), an easy computation in the previous system gives
−rA1x

γ1 +
1− γ1

γ1
(γ1A1)

γ1
γ1−1xγ1 − γ1A1(γ2A2)

1
γ2−1xγ1 = 0

−rA2x
γ2 +

1− γ2

γ2
(γ2A2)

γ2
γ2−1xγ2 − γ2A2(γ1A1)

1
γ1−1xγ2 = 0,

for every x ≥ 0, and hence  (1− γ1)γ
1

γ1−1

1 A
1

γ1−1

1 − γ1γ
1

γ2−1

2 A
1

γ2−1

2 = r

−γ2γ
1

γ1−1

1 A
1

γ1−1

1 + (1− γ2)γ
1

γ2−1

2 A
1

γ2−1

2 = r.

6Suggestion: In order to solve the Bellman–Hamilton–Jacobi equation for the current value functions, we suggest to looking
for the solution in the family of functions

V c1 (x) = A1x
γ1 , V c2 (x) = A2x

γ2 , (2.56)

with Ai constants.
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We obtain

A
1

γ1−1

1 γ
1

γ1−1

1 = r
1 + γ1 − γ2

1− γ1 − γ2
and A

1
γ2−1

2 γ
1

γ2−1

2 = r
1− γ1 + γ2

1− γ1 − γ2
. (2.59)

If (2.57) holds, then

A1 =
1

γ1

(
r

1 + γ1 − γ2

1− γ1 − γ2

)γ1−1

and A2 =
1

γ2

(
r

1− γ1 + γ2

1− γ1 − γ2

)γ2−1

.

Note that A1 and A2 are positive constants and (V c
i )′(x) > 0 holds for every x > 0 and i. Hence (2.58) and

(2.59) give the following stationary strategies

ν∗1(t, x) = ν∗1(x) = [A1γ1x
γ1−1]

1
γ1−1 = r

1− γ2 + γ1

1− γ1 − γ2
x, ν∗2(t, x) = ν∗2(x) = r

1− γ1 + γ2

1− γ1 − γ2
x.

Let us consider now the ODE {
ẋ = −ν∗1(x)− ν∗2(x) = − 2r

1− γ1 − γ2
x

x(0) = x0

Its unique solution is the optimal trajectory x∗(t) = x0e
− 2r

1−γ1−γ2
t

of the Nash equilibria (c∗1, c
∗
2) in the class

of feedback strategies, where

c∗1(t) = ν∗1(x∗(t)) = rx0
1− γ2 + γ1

1− γ1 − γ2
e
− 2r

1−γ1−γ2
t
, c∗2(t) = ν∗2(x∗(t)) = rx0

1− γ1 + γ2

1− γ1 − γ2
e
− 2r

1−γ1−γ2
t
.
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Chapter 3

Stackelberg equilibria

In 1934, von Stackelberg introduced a concept of a hierarchical solution for markets where some firms have
power of domination over others. This solution concept is now known as the Stackelberg equilibrium or the
Stackelberg solution which, in the context of two-persons nonzero-sum games, involves players with asym-
metric roles, one leading (accordingly called the Leader) and the other one following (called the Follower).
Some references are chapter 5 in [5] and section 2.6 in [12].

In all this chapter we are considering the following hierarchy two–person game

Player I (Leader): max
uL

JL(uL,uF )

JL(uL,uF ) =

∫ T

0
fL (t,x,uL,uF ) dt+ ψL(x(T ))

Player II (Follower): max
uF

JF (uL,uF )

JF (uL,uF ) =

∫ T

0
fF (t,x,uL,uF ) dt+ ψF (x(T ))

ẋ = g(t,x,uL,uF )
x(0) = x0

(3.1)

where T is fixed and (uL,uF ) is an admissible control, i.e. depending on the information structure. We
assume that the control sets for the Leader and for the Follower are UL and UF respectively, closed. In this
chapter we restrict our attention on problems with the final time T fixed and the final value of the trajectory
x(T ) free.

3.1 Open-loop Stackelberg equilibria

Let us consider a open–loop strategy uL, with uL(t) = νL(t,x0), for the Leader. We define the set of best
possible replies of the Follower RF (uL) in the family of the open–loop strategies, where the Leader has
already announced the strategy uL, as

RF (uL) =
{

uF : (uL,uF ) ∈ AOL,

JF (uL,u
′
F ) ≤ JF (uL,uF ) ∀(uL,u′F ) ∈ AOL

}
.

Clearly (uL,uF ) ∈ RF (uL) is an admissible pair of strategies and the set RF (uL) can be empty.

Definition 3.1. A pair of control functions (u∗L,u
∗
F ) ∈ AOL, with u∗L(t) = ν∗L(t,x0) and u∗F (t) = ν∗F (t,x0),

is a Stackelberg equilibrium within the class of open–loop strategies AOL if

i. u∗F ∈ RF (u∗L), with associated trajectory x∗;
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ii. given any open–loop strategy uL for the Leader and every best reply uF ∈ RF (uL) for the Follower,
the following holds ∫ T

0
fL(t,xLF ,uL,uF ) dt+ ψL(xLF (T )) ≤

≤
∫ T

0
fL(t,x∗,u∗L,u

∗
F ) dt+ ψL(x∗(T ))

where xLF is the trajectory associated to the pair (uL,uF ).

In this case the problem has to be solved backward.
First of all, let us assume that

As1 the function fL, fF , g, ψL are continuously differentiable w.r.t. x.

From the point of view of the Follower, for every uL fixed, we construct the set of best possible replies
RF (uL). We have to solve, for a fixed uL

max
uF

∫ T

0
fF (t,x,uL,uF ) dt+ ψF (x(T ))

ẋ = g(t,x,uL,uF )
x(0) = x0

(3.2)

Applying Theorem A.1, if uF ∈ RF (uL) and x is the trajectory associated to (uL,uF ), then there exists a
continuous multiplier1 λF : [0, T ]→ Rn such that

νF (t,x0) ∈ arg max
v∈UF

HF (t,x(t),uL(t),v,λF (t)) ∀t ∈ [0, T ] (3.3)

λ̇F = −∇xHF (t,x,uL,uF ,λF ) in [0, T ] (3.4)

λF (T ) = ∇ψF (x(T )) (3.5)

where uF (t) = νF (t,x0) and the Hamiltonian HF of the Follower is defined by

HF (t,x,uL,uF ,λF ) = fF (t,x,uL,uF ) + λF · g(t,x,uL,uF ). (3.6)

We note that x depends on the choice of uL and on the choice of uF in RF (uL) (with the possibility that
this second choice can be not unique): hence x depends on (t,uL,uF ), i.e. x = x(t,uL,uF ). Moreover,
the multiplier is associated to the pair trajectory–control functions (x, (uL,uF )): hence λF depends on
(x,uL,uF ), i.e. λF = λF (x,uL,uF ).
We are looking for a open–loop strategy: hence let us assume that

As2 for every (t,x0,x,uL,λF ) there exists a unique max in

νF ∈ arg max
v∈UF

HF (t,x,uL,v,λF )

which does not depend on x.

Taking into account of the previous dependence, we have νF = νF (t,x0,uL,λF ). Moreover, since in this
situation the value x(T ) of the trajectory at the final fixed time T is free, then our controls are normal: this
is the reason of our definition of HF in (3.6). At this point we have to guarantee some sufficient conditions
for the game of the Follower.

Now, let us consider the point of view of the Leader. For every uL we associated (uF ,x,λF ) where
uF ∈ RF (uL) is given by (3.3) and by uF (t) = νF (t,x0,uL(t),λF (t)); x is given by the dynamics of the
problem and λL is given by (3.4): in this procedure, the best choice for the Leader is u∗L. Hence the Leader

1We omit all the “*”.



3.1. OPEN-LOOP STACKELBERG EQUILIBRIA 27

has to solve the following problem, where its control is uL and its trajectory is (x,λF ) with the conditions
x(0) = x0 and (3.5): 

max
uL

∫ T

0
fL (t,x,uL,νF (t,x0,uL,λF )) dt+ ψL(x(T ))

ẋ = g(t,x,uL,νF (t,x0,uL,λF ))
λ̇F = −∇xHF (t,x,uL,νF (uL,λF ),λF )
x(0) = x0

λF (T ) = ∇ψF (x(T ))

(3.7)

In this case the Hamiltonian HL for the Leader is defined by

HL(t,x,λF ,uL, λ0L,λ1L,λ2L) = λ0LfL(t,x,uL,νF (t,x0,uL,λF )) +

+λ1L · g(t,x,uL,νF (t,x0,uL,λF )) +

−λ2L · ∇xHF (t,x,uL,νF (t,x0,uL,λF ),λF ) (3.8)

We note that in the definition of HL, since the value of the trajectory (x,λF ) has a condition in the initial
point t = 0 and in the final point t = T (more precisely the final equation in (3.7) represents a surface), we
are not in the position to guarantee the normality of the extremal: hence we insert λ0.
In order to apply again Theorem A.1, let us assume that (taking into account (3.6))

As3 for every (t,uL) the functions

(x,λF ) 7→ fL(t,x,uL,νF (t,x0,uL,λF ))

(x,λF ) 7→ g(t,x,uL,νF (t,x0,uL,λF ))

(x,λF ) 7→ fF (t,x,uL,νF (t,x0,uL,λF )) + λF · g(t,x,uL,νF (t,x0,uL,λF ))

are in C1.

Hence if u∗L is a Stackelberg equilibrium, there then there exists a continuous multiplier2 (λ0L,λ1L,λ2L) :
[0, T ]→ R2n+1 such that λ0L is a non negative constant, (λ0L,λ1L,λ2L) 6= (0, 0, 0) and

νL(t,x0) ∈ arg max
v∈UL

HL(t,x(t),λF (t),v, λ0L,λ1L(t),λ2L(t)) ∀t ∈ [0, T ]

λ̇1L = −∇xHL(t,x,λF ,uL, λ0L,λ1L,λ2L) in [0, T ]

λ̇2L = −∇λFHL(t,x,λF ,uL, λ0L,λ1L,λ2L) in [0, T ]

λ1L(T ) = λ0L∇ψL(x(T ))− λ2L(T )D2ψF (x(T )) (3.9)

λ2L(0) = 0

with uL(t) = νL(t,x0) since we are looking for a open–loop strategy. In (3.9) D2ψF (x(T )) denotes the
Hessian matrix of second derivatives of ψF , evaluated in x(T ); such transversality condition (3.9) is a
consequence of the mentioned surface (3.5): see section 4.2 in [3] for all details.

Clear, up to now we are discussing only of sufficient conditions of optimality for the two problems (3.2)
and (3.7): in order to find a Stackelberg equilibrium for (3.1) we have to guarantee some sufficient conditions
for the two mentioned previous problems.

3.1.1 On international pollution with hierarchical relations

Let us denote by uL = uL(t) and uF = uF (t) the level of emissions of two economies, where the first (the
Leader) has a sort of domination with respect to the second economy (the Follower); for example, this is
the situation that occurs when the Follower has a big debit with the Leader. Now, as in subsection 2.3.2,
let x = x(t) be the stock of pollution at time t, α ∈ (0, 1) is the coefficient of capacity to self-cleaning of the

2We omit again all the “*”.
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system. The damage of the emission is quadratic with respect to x with coefficients 1
2φL and 1

2φF , and we
suppose that the utility for the the two economies related to its emission are quadratic. As in subsection
2.3.2, we have 

Leader: max
uL

∫ ∞
0

e−rt
(
uL

(
kL −

1

2
uL

)
− 1

2
φLx

2

)
dt uL ≥ 0

Follower: max
uF

∫ ∞
0

e−rt
(
uF

(
kF −

1

2
uF

)
− 1

2
φFx

2

)
dt uF ≥ 0

ẋ = uL + uF − αx
x(0) = x0, x(t) ≥ 0

with the rate of discount r that is a positive constant and with φL, φF ,KL and KF positive constants. Let
us looking for a non zero Stackelberg equilibrium in the family of open–loop strategies.

Let us introduce the current Hamiltonian Hc
F for the Follower

Hc
F = kFuF −

1

2
u2
F −

1

2
φFx

2 + λFc(uL + uF − αx).

Let us fix uL: hence all that follows for the Follower depends on such uL. We have to guarantee the following
conditions:

νF ∈ arg max
uF≥0

Hc
F = arg max

v≥0

(
(kF + λFc)v −

1

2
v2

)
=

=

{
kF + λFc if kF + λFc ≥ 0
0 if kF + λFc < 0

(3.10)

λ̇Fc = rλFc −
∂Hc

F

∂x
= (α+ r)λFc + φFx (3.11)

where νF = νF (t, x, uL), λFc = λFc(t, uL) and x = x(t, uL). We note that νF in (3.10) does not depend on
the trajectory x: hence we are in the position to looking for a open–loop equilibrium.

Let us looking for some Stackelberg equilibrium where the emissions are positive in [0,∞), i.e. we assume
that in (3.10) we have

kF + λFc(t, uL) > 0, ∀t (3.12)

We add to these necessary conditions (3.10)–(3.11), some considerations with respect to the sufficient con-
ditions of optimality for the Follower, for every uL fixed by the Leader. Suppose that for every fixed uL we
have a extremal tern (x∗F (t, uL), λ∗Fc(t, uL), u∗F (t, uL)): it is immediate to see that, always for every fixed uL,

(x, uF ) 7→ Hc
F (t, x, uL(t), uF , λ

∗
Fc(t, uL))

is, for every fixed t, a concave function. Moreover we have to guarantee that for every admissible trajectory
x = x(t, uL) we have

lim
t→∞

λ∗Fc(t, uF )e−rt(x(t, uL)− x∗(t, uL)) ≥ 0. (3.13)

In order to do that, let us note that if x(t, uL) is associated to an admissible control, then−φF
2 (x(t, uL))2e−rt →

0 for t→∞, and hence

lim
t→∞

e−rt/2x(t, uL) = 0 (3.14)

Now, if |λ∗Fc(t, uF )| → ∞ for t → ∞, then |u∗(t, uF )| = |kF + λ∗Fc(t, uF )| → ∞. Again, if u∗(t, uF ) is
admissible, then −1

2(u∗(t, uL))2e−rt → 0 for t→∞, and hence

lim
t→∞

u∗(t, uL)e−rt/2 = lim
t→∞

λ∗Fc(t, uF )−rt/2 = 0. (3.15)

Clearly, (3.14) and (3.15) imply (3.13).
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Let us pass to the point of view of the Leader; its current Hamiltonian Hc
L is, taking into account (3.10),

(3.11) and (3.12),

Hc
L = λ0

(
kLuL −

1

2
u2
L −

1

2
φLx

2

)
+ λ1Lc(uL +KF + λFc − αx) +

+λ2Lc ((α+ r)λFc + φFx) .

We note that we have no conditions on the final point t =∞ of the trajectory t 7→ (x(t), λFc(t)): hence we
are in the position to put λ0 = 1. Now we have to guarantee the following necessary conditions:

νL ∈ arg max
uL≥0

Hc
L = arg max

v≥0

(
(kF + λ1Lc+)v − 1

2
v2

)
=

{
kL + λ1Lc if kL + λ1Lc ≥ 0
0 if kL + λ1Lc < 0

(3.16)

λ̇1Lc = rλ1Lc −
∂Hc

L

∂x
= (α+ r)λ1Lc + φLx− φFλ2Lc (3.17)

λ̇2Lc = rλ2Lc −
∂Hc

L

∂λFc
= −λ1Lc − αλ2Lc (3.18)

λ2Lc(0) = 0 (3.19)

Since that νL in (3.16) does not depend on the trajectory x, we are in the position to looking for a open–loop
equilibrium. Let us assume

kL + λ1Lc(t) > 0, ∀t (3.20)

Hence, by (3.10) and (3.16), we have uF = KF +λFc and uL = KL +λ1Lc. Putting these information in the
dynamic, together with (3.11), (3.17), (3.18), we have to solve the system

ż = Az + z0 (3.21)

where

z =



x

λFc

λ1Lc

λ2Lc


, z0 =



k1 + k2

0

0

0


, A =



−α 1 1 0

φF α+ r 0 0

φL 0 α+ r −φF

0 0 −1 −α


with the conditions

x(0) = x0, λ2Lc(0) = 0 (3.22)

The eigenvalues θ of A solve det(A− Iθ) = 0, i.e. using the first line for the computation of the determinant

[(−α− θ)(r + α− θ)− φF ]2 − (−α− θ)(r + α− θ)φL = 0.

Setting
A = (−α− θ)(r + α− θ) (3.23)

we obtain A2 −A(2φF + φL) + φ2
F = 0. Hence

A± =
2φF + φL ±

√
4φLφF + φ2

L

2
. (3.24)
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Note that A± > 0. Putting A± in (3.23) and solving we obtain

θ±± =
r ±

√
r2 + 4(α2 + αr +A±)

2
. (3.25)

where the first “±” in the subscript of θ is related to the ± in front of “
√

” and the second is related to A±.

Let zpart = (xpart, λpartFc , λ
part
1Lc , λ

part
2Lc )T 6= 0 be such that Azpart = 0; clear this is a particular solution of

(3.21). Hence the general solution of (3.21) is

z(t) = c1e
tθ++v++ + c2e

tθ+−v+− + c3e
tθ−+v−+ + c4e

tθ−−v−− + zpart (3.26)

where ci are generic constants and v±± eigenvectors relative to the eigenvalue θ±±.
We claim that c1 = c2 = 0: in order to prove that, let us denote by v++ ∈ R4 the eigenvector related

to the eigenvalue θ++. Let us suppose that the first component v1
++ of v++ is zero. It is easy to see that

(A− Iθ++)v++ = 0 implies v++ = 0. Hence v1
++ 6= 0.

Now, if c1 6= 0, (3.26) implies that, for t→∞,

x(t)2e−rt ∼
(
c1v

1
++

)2
e(2θ++−r)t →∞

and integral, in our model, does not converge. Hence c1 = 0. Similar arguments imply that c2 = 0. Hence
we obtain

z(t) = (x∗(t), λ∗Fc(t), λ
∗
1Lc(t), λ

∗
2Lc(t))

T

= c3e
tθ−+v−+ + c4e

tθ−−v−− + zpart (3.27)

where the two constants c3 and c4 depends on the two initial conditions (3.22). We are not interested to
discuss the sufficient conditions for the Leader.

3.1.2 Father and son, fishermens at the lake

The model is presented in 2.3.1, but now the situation for the two players is hierarchical. The first player, the
father, decide to use its influence on the second player, the son. Let us looking for a Stackelberg equilibrium
in the family of open–loop strategies. Let us rewrite the problem taking into account that the the father is
the Leader and the son is the Follower:


Leader (father): max

wL

∫ ∞
0

(y + lnwL)e−rt dt Follower (son): max
wF

∫ ∞
0

(y + lnwF )e−rt dt

wL ≥ 0 wF ≥ 0
ẏ = α− wL − wF − βy
y(0) = y0 ≥ ln 2, y(t) ≥ ln 2

Let us assume for simplicity
α− 3β > 2r. (3.28)

Let us fix wL the strategy of the father. We consider the point of view of the Follower–son and we
look for RF (wL), the set of best replies for the son: the current Hamiltonian is

Hc
F = y + lnwF + λFc(α− wL − wF − βy).

We have to guarantee the following conditions:

νF (t) ∈ arg max
v≥0

Hc
F = arg max

v≥0
(ln v − vλFc(t)) =

{
1
λFc

if λFc(t) > 0
6 ∃ if λFc(t) ≤ 0

(3.29)

λ̇Fc = rλFc −
∂Hc

F

∂y
= (r + β)λFc − 1 (3.30)
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Note that νF in (3.29) do not depend on the trajectory y: hence we are in the position to looking for a
open–loop equilibrium

wF (t) = νF (t) =
1

λFc(t)
(3.31)

in the assumption that

λFc(t) > 0. (3.32)

The adjoint equation (3.30) gives

λFc(t) = Be(β+r)t +
1

β + r
,

with B constants. Clearly (3.31) gives, putting in evidence the dependence by B,

wBF (t) =
β + r

B(β + r)e(β+r)t + 1
(3.33)

and the dynamics implies

yB(t) = e−βt
[∫ t

0

(
α− wL(s)− wBF (s)

)
eβs ds+ y0

]
. (3.34)

We claim that the case B = 0 is the unique candidate to be in RF (wL). In order to prove that, first we put
B < 0 and, for t sufficiently large, we obtain wBF < 0 which is impossible. Now, let us suppose that B ≥ 0:
note that in this case (3.32) holds: we want to prove that∫ ∞

0
(yB + lnwBF )e−rt dt <

∫ ∞
0

(y0 + lnw0
F )e−rt dt, (3.35)

i.e. wBF 6∈ RF (wL) for B > 0. Now, taking into account that∫ t

0

B(β + r)2e(β+r)s

B(β + r)e(β+r)s + 1
ds =

= ln
(
B(β + r)e(β+r)t + 1

)
− ln(B(β + r) + 1) (3.36)

for every fixed t we have, by (3.33) and (3.34),

yB(t) + lnwBF (t) = e−βt
[∫ t

0

(
α− wL(s)− β + r

B(β + r)e(β+r)s + 1

)
eβs ds+ y0

]
+

+ ln(β + r)− ln
(
B(β + r)e(β+r)t + 1

)
(by (3.36)) = e−βt

[∫ t

0
(α− wL(s)) eβs ds+ y0

]
+ ln(β + r) +

−(β + r)

∫ t

0

B(β + r)e(β+r)s + eβ(s−t)

B(β + r)e(β+r)s + 1
ds− ln (B(β + r) + 1)

<† e−βt
[∫ t

0
(α− wL(s)) eβs ds+ y0

]
+ ln(β + r)− (β + r)

∫ t

0
eβ(s−t) ds

= y0(t) + lnw0
F (t), (3.37)

where in the inequality “<†”we use B(β + r) > 0 and the fact that, for every h and k positive3 we have,

−k + h

k + 1
≤ −h ⇔ h ≤ 1.

3in our case h = eβ(s−t)
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Clearly relation (3.37) implies (3.35). By (3.34), we have

w0
F (t) = β + r (3.38)

y0(t) = y0e
−βt +

α− (β + r)

β
(1− e−βt)−

∫ t

0
wL(s)eβ(s−t) ds

λFc(t) =
1

β + r

for every wL fixed. Since such wL is generic, we are not in the position to guarantee that y0(t) ≥ ln 2, i.e.
(wL, wF ) ∈ AOL. However, if RF (wL) is nonempty, then RF (wL) = {wF } with wF as in (3.38).

Let us pass to the point of view of the Leader–father. For every strategy of the Leader–father, the
Follower–son consider the strategy in wF in (3.38). The current Hamiltonians for the Leader is similar to
the definition in (3.8), taking into account that we use the current adjoint equation for the Follower:

Hc
L = y + lnwL + λ1Lc(α− wL − (β + r)− βy) + λ2Lc((β + r)λFc − 1).

We have to guarantee the following conditions:

νL(t) ∈ arg max
v≥0

Hc
L = arg max

v≥0
(ln v − vλ1Lc(t)) =

{
1

λ1Lc(t)
if λ1Lc(t) > 0

6 ∃ if λ1Lc(t) ≤ 0
(3.39)

λ̇1Lc = rλ1Lc −
∂Hc

L

∂y
= (r + β)λ1Lc − 1 (3.40)

λ̇2Lc = rλ2Lc −
∂Hc

L

∂λFc
= −βλ2Lc (3.41)

λ2Lc(0) = 0 (3.42)

Note that (3.41) and (3.42) imply λ2Lc(t) = 0. Moreover the two conditions (3.39)–(3.40) are exactly the
same of the two conditions (3.29)–(3.30): all the same arguments of before used to obtain the strategy for
the follower in (3.38) can be used to show that the candidate to be the optimal strategy for the Leader, the
associated trajectory and multiplier are

wL(t) = β + r (3.43)

y(t) = y0e
−βt +

α− 2(β + r)

β
(1− e−βt) (3.44)

λ1Lc(t) =
1

β + r

λ2Lc(t) = 0

Let us check that y(t) ≥ ln 2: in fact, by plotting the function y and by (3.28), we have

y(t) ≥ min

(
y0,

α− 2(β + r)

β

)
≥ 1, t ≥ 0.

Now, considering

w∗L(t) = w∗F (t) = β + r

y∗(t) = y0e
−βt +

α− 2(β + r)

β
(1− e−βt)

λ∗Fc(t) = λ∗1Lc(t) =
1

β + r

λ∗2Lc(t) = 0
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we know that (w∗L, w
∗
F ) ∈ AOL; in order to conclude our problem, we have to prove that RF (w∗L) = {w∗F }

and that wL is optimal for the point of view of the Leader. In order to do that, note that

lim
t→∞

λ∗F (t)(y(t)− y∗(t)) ≥ lim
t→∞

1

β + r
e−rt(ln 2− y∗(t)) = 0

lim
t→∞

λ∗1L(t)(y(t)− y∗(t)) ≥ lim
t→∞

1

β + r
e−rt(ln 2− y∗(t)) = 0

lim
t→∞

λ∗2L(t)(λFc(t)− λ∗Fc(t)) = lim
t→∞

0(λFc(t)− λ∗Fc(t)) = 0.

Finally it is easy to see that the Hamiltonians

(y, wF ) 7→ Hc
1(y, wF , w

∗
L(t), λ∗Fc(t)) and (y, λFc, wL) 7→ Hc

2(y, λFc, wF (t), wL, λ
∗
1Lc(t), λ

∗
2Lc(t))

are concave functions, for every fixed t, and that the control sets U1 = U2 = [0,∞) are convex. Hence
(w∗L, w

∗
F ) is a Stackelberg equilibrium.
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Chapter 4

Two-persons zero-sum games

We are interested in the game
Player I: max

u1

J(u1,u2), Player II: min
u2

J(u1,u2)

J(u1,u2) =

∫ T

0
f(t,x,u1,u2) dt+ ψ(x(T ))

ẋ = g(t,x,u1,u2)
x(0) = α

(4.1)

where T is fixed and U1 and U2 are the two closed control sets for the players.
Note that Player I, whose control is u1, wants to maximize the functional J ; Player II has the control u2

and wants to minimize J. This is a two-persons zero-sum differential game. In this context

Definition 4.1. A pair of control functions (u∗1,u
∗
2) ∈ AOL, where u∗i (t) = ν∗i (t,x0), is a Nash equilibrium

within the class of open–loop strategies AOL for (4.1) if

J(u1,u
∗
2) ≤ J(u∗1,u

∗
2) ≤ J(u∗1,u2) (4.2)

for every (u1,u
∗
2) ∈ AOL and for every (u∗1,u2) ∈ AOL.

A pair of control functions (u∗1,u
∗
2) ∈ AFB, where u∗i (t) = ν∗i (t,x

∗(t)), is a Nash equilibrium within
the class of feedback strategies AFB for (4.1) if (4.2) holds for every (u1,u

∗
2) ∈ AFB and for every

(u∗1,u2) ∈ AFB.

Relation (4.2) implies that (u∗1,u
∗
2) is a saddle-point for J.

4.1 Open–loop Nash equilibria with the variational approach

In this case, the variational approach is useful and the Pontryagin necessary condition is as follows (see
Theorem 6.13 in [2]):

Theorem 4.1. Let us consider the problem (4.1) with f, g and ψ in C1. Let (u∗1,u
∗
2) ∈ AOL, where

u∗i (t) = ν∗i (t,x0), be a Nash equilibrium with x∗ associated trajectory.
Then there exists a continuous multiplier λ∗ : [0, T ]→ Rn such that

i. (min–max principle) for all t ∈ [0, T ], u1 ∈ U1 and u2 ∈ U2

H(t,x∗(t),u1,u
∗
2(t),λ∗(t)) ≤
≤ H(t,x∗(t),u∗1(t),u∗2(t),λ∗(t)) ≤

≤ H(t,x∗(t),u∗1(t),u2,λ
∗(t));

ii. (adjoint equation) in [0, T ] we have λ̇∗ = −∇xH(t,x∗,u∗1,u
∗
2,λ
∗);

35
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iii. (transversality condition) λ∗(T ) = ∇xψ(x∗(T )),

where H is the Hamiltonian function H defined by1

H(t,x,u1,u2,λ) = f(t,x,u1,u2) + λ · g(t,x,u1,u2).

Now, in order to give sufficient conditions to obtain a Nash equilibrium in the class AOL, we apply
Theorem A.2 and A.3 to the two players, taking into account that the first one maximizes, while the second
minimizes.

In some situation, there exists a Nash equilibrium with the class of feedback strategies for the problem
(4.1), while the Nash equilibrium in the class of the open–loop strategies does not exists (see for example “the
lady in the lake” in subsection 4.4.1). In this situation the previous Theorem 4.1 and the variational approach
is not useful for the reasons explained in subsection 2.2. Even if an open–loop Nash equilibrium does not
exists, a version of the previous theorem can still be utilized to obtain the feedback Nash equilibrium: let
us give the details since this approach is largely adopted in the literature for solving pursuit–evasion games.

Let (u∗1,u
∗
2) ∈ AFB, where

u∗i (t) = ν∗i (t,x
∗(t)), (4.3)

with the corresponding trajectory x∗ with x(0) = α, be a Nash equilibrum within the class of feedback
strategies for the game (4.1). However, let us consider the pair of functions

(u∗1,u
∗
2) (4.4)

given by (4.3); we don’t know, in general, if such pair of functions is an open–loop strategies, i.e. if there
(ν̃1, ν̃2) measurable such that

u∗i (t) = ν̃i(t,x0).

However, this pair of functions in (4.4) is usually called open–loop representation of the feedback
strategy. We have (see Theorem 8.2 in [2] and the comments in Remark 8.2 of [2]):

Theorem 4.2. As in Theorem 4.1, let us consider the problem (4.1) with f, g and ψ in C1. We assume
that there exists a Nash equilibrum within the class of feedback strategies (u∗1,u

∗
2) ∈ AFB, where u∗i (t) =

ν∗i (t,x
∗(t)), with x∗ associated trajectory. Let us consider its open–loop representation in (4.4). Then there

exists a continuous multiplier λ∗ : [0, T ]→ Rn such that i.–iii. in Theorem 4.1 are satisfied.

This result will play a fundamental role in “the lady in the lake” in subsection 4.4.1.

4.1.1 War of attrition and attack

This model is due to Isaacs (see section 5.4 in [11] and page 91 in [7]). We assume that two opponents
A and B are at war with each other, for a very long time. Let us define x1 = x1(t) and x2 = x2(t) the
supply of resources for A and B respectively, at time t. Each player at each time can devote some fraction
of the efforts, (α = α(t) for Player A, β = β(t) Player for B) to attrition (= guerrilla warfare, for example
to destroy the production of resources of the competitor) and the remaining fraction (1 − α and 1 − β
respectively) to direct attack. Clearly α and β have values in [0, 1].

Let us introducemi the constant rate of production of war material for the two players, c1 the effectiveness
of B’s weapons against A’s production and c2 the effectiveness of A’s weapons against B’s production. We
will assume c2 > c1, a hypothesis that introduces an asymmetry into the problem. The dynamics are
governed by the system of ODE {

ẋ1 = m1 − c1βx2

ẋ2 = m2 − c2αx1

1Note that in our problem (4.1), the final time T is fixed and the trajectory in such final time, i.e. x(T ), is free: hence we
can set λ∗0 = 1.
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The A opponent want to realize an advantage with respect to B in the direct attack, i.e

max

∫ T

0
[(1− α)x1 − (1− β)x2] dt;

the B opponent want to realize an advantage with respect to A in the direct attack, i.e

max

∫ T

0
[(1− β)x2 − (1− α)x1] dt = −min

∫ T

0
[(1− α)x1 − (1− β)x2] dt.

Hence we have the following two-persons zero-sum game

Player A: max
α

J(α, β), Player B: min
β
J(α, β)

0 ≤ α ≤ 1 0 ≤ β ≤ 1

J(α, β) =

∫ T

0
[(1− α)x1 − (1− β)x2] dt

ẋ1 = m1 − c1βx2

ẋ2 = m2 − c2αx1

xi(0) = xi0 > 0

The final time T is very large and fixed. Note that it is reasonable to require that xi(t) > 0 but, since it is
strictly related to the constants involved in the game, we remove it.

Let us looking for some Nash equilibrium in the family of open–loop strategies. Using the variational
approach, the Hamiltonian H = H(t, x1, x2, α, β, λ1, λ2) is

H = (1− α)x1 − (1− β)x2 + λ1(m1 − c1βx2) + λ2(m2 − c2αx1).

Note that the final value of the trajectory (x1, x2) is free and hence we put λ0 = 1. We have to guarantee
the conditions of Theorem 4.1:

α∗(t) ∈ arg max
a∈[0,1]

H(t, x∗1(t), x∗2(t), a, β∗(t), λ∗1(t), λ∗2(t))

= arg max
a∈[0,1]

a(−1− c2λ
∗
2(t)) =


1 if λ∗2(t) < − 1

c2

? if λ∗2(t) = − 1
c2

0 if λ∗2(t) > − 1
c2

(4.5)

β∗(t) ∈ arg min
b∈[0,1]

H(t, x∗1(t), x∗2(t), α∗(t), b, λ∗1(t), λ∗2(t))

= arg min
b∈[0,1]

b(1− c1λ
∗
1(t)) =


0 if λ∗1(t) < 1

c1

? if λ∗1(t) = 1
c1

1 if λ∗1(t) > 1
c1

(4.6)

λ̇∗1 = −∂H
∂x1

(t, x∗1, x
∗
2, α
∗, β∗, λ∗1, λ

∗
2) = −(1− α∗) + c2α

∗λ∗2 (4.7)

λ̇∗2 = −∂H
∂x2

(t, x∗1, x
∗
2, α
∗, β∗, λ∗1, λ

∗
2) = (1− β∗) + c1β

∗λ∗1 (4.8)

λ∗1(T ) = λ∗2(T ) = 0 (4.9)

First, let us notice that in arg max and arg min in (4.5) and (4.6) we use the condition x∗i (t) > 0. Moreover,
we remark that the arg max and arg min in (4.5) and (4.6) do not depend on (x1, x2): hence we are in the
position to looking for a Nash equilibrium in the family of open–loop strategies.

The adjoint equation (4.7) and the Maximum Principle (4.5) imply that λ∗1 is a decreasing function since

λ̇∗1 ≤ −1 : (4.10)
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indeed

if λ∗2(t) < −1/c2 ⇒ α∗(t) = 1 ⇒ λ̇∗1(t) = −(1− α∗(t)) + c2α
∗(t)λ∗2(t) < −1

if λ∗2(t) = −1/c2 ⇒ λ̇∗1(t) = −(1− α∗(t)) + c2α
∗(t)λ∗2(t) = −1

if λ∗2(t) > −1/c2 ⇒ α∗(t) = 0 ⇒ λ̇∗1(t) = −(1− α∗(t)) + c2α
∗(t)λ∗2(t) = −1

A similar argument, using the adjoint equation (4.8) and the Minimum Principle (4.6), implies that λ∗2 is
an increasing function since

λ̇∗2 ≥ 1. (4.11)

Now, by (4.9) there exists τ ∈ [0, T ) such that

λ∗1(t) <
1

c1
, λ∗2(t) > − 1

c2
, ∀t ∈ (τ, T ], (4.12)

i.e. α∗(t) = β∗(t) = 0 in (τ, T ]. The adjoint equation λ̇∗1 = −1, λ̇∗2 = 1, and the transversality conditions
(4.9) give

λ∗1(t) = T − t, λ∗2(t) = t− T ;

the assumptions in (4.12), taking into account that c2 > c1, imply

τ = T − 1

c2
(4.13)

and λ∗2(τ) = − 1
c2

. Now, by (4.11), there exists τ ′ ∈ [0, τ) such that

λ∗1(t) <
1

c1
, λ∗2(t) < − 1

c2
, ∀t ∈ (τ ′, τ) (4.14)

i.e. α∗(t) = 1, β∗(t) = 0 in (τ ′, τ). The adjoint equation λ̇∗1 = c2λ
∗
2, λ̇

∗
2 = 1, and the continuity of the

multipliers in the point t = τ give

λ∗1(t) =
c2

2
(T − t)2 +

1

2c2
, λ∗2(t) = t− T ; in (τ ′, τ ].

the assumptions in (4.14), taking into account that 2c2 > c2 > c1, imply

τ ′ = T − 1

c2

√
2c2 − c1

c1
(4.15)

and λ∗1(τ ′) = 1
c1

. Now, by (4.10), we have

λ∗1(t) >
1

c1
, λ∗2(t) < − 1

c2
, ∀t ∈ [0, τ ′) (4.16)

i.e. α∗(t) = β∗(t) = 1 in [0, τ ′). The adjoint equation give

λ̇∗1 = c2λ
∗
2 and λ̇∗2 = c1λ

∗
1 (4.17)

and hence

λ̈∗1 − c1c2λ
∗
1 = 0 ⇒ λ∗1(t) = Ae

√
c1c2t +Be−

√
c1c2t

⇒ λ∗2(t) =

√
c1

c2

(
Ae
√
c1c2t −Be−

√
c1c2t

)
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for some constants A and B. Using the continuity of the multipliers in the point t = τ ′ we have, taking into
account (4.15),

λ∗1(t) =

(
1−

√
2c2 − c1

c2

)
e
√
c1c2(t−τ ′)

2c1
+

(
1 +

√
2c2 − c1

c2

)
e−
√
c1c2(t−τ ′)

2c1

λ∗2(t) =

(
1−

√
2c2 − c1

c2

)
e
√
c1c2(t−τ ′)

2
√
c1c2

−
(

1 +

√
2c2 − c1

c2

)
e−
√
c1c2(t−τ ′)

2
√
c1c2

,

for every t ∈ [0, τ ′].

The pair (α∗, β∗) candidate to be a Nash equilibrium is

α∗(t) =

{
1 if t ∈ [0, τ ]
0 if t ∈ (τ, T ]

β∗(t) =

{
1 if t ∈ [0, τ ′]
0 if t ∈ (τ ′, T ]

where τ and τ ′ is defined in (4.15) and (4.13). Since (α∗, β∗) is constant, except two points, and consequently
the dynamics is linear in (x1, x2) with constant coefficients, except such two points, then there exists a
unique solution (x∗1, x

∗
2) of such ODE with initial data xi(0) = xi0 and the strategy (α∗, β∗) is admissible.

Let λ∗ = (λ∗1, λ
∗
2) be the multiplier obtained by the previous calculations.

Let us note that the function (t, x1, x2, α, β) 7→ H(t, x1, x2, α, β, λ
∗
1(t), λ∗2(t)), for a fixed t, is not concave

in (x1, x2, α) variable and convex in (x1, x2, β) variable: let us use Theorem A.3 in order to guarantee some
sufficient condition of optimality. First we consider the maximed Hamiltonian for the Player A:

H0
A(t, x1, x2, λ

∗
1(t), λ∗2(t)) = max

a∈[0,1]
H(t, x1, x2, a, β

∗(t), λ∗1(t), λ∗2(t))

= x2β
∗(t)(1− c1λ

∗
1(t)) + x1 − x2 +m1λ

∗
1(t) +m2λ

∗
2(t) + x1[ max

a∈[0,1]
a(−1− c2λ

∗
2(t))]

It is easy to see that, for every fixed t, the function (x1, x2) 7→ H0
A(t, x1, x2, λ

∗
1(t), λ∗2(t)) is linear and hence

concave in (x1, x2): hence α∗ is really a optimal solution for the max problem of the First Player, with β∗

fixed. A similar argument holds for the minimized Hamiltonian

H0
B(t, x1, x2, λ

∗
1(t), λ∗2(t)) = min

b∈[0,1]
H(t, x1, x2, α

∗(t), b, λ∗1(t), λ∗2(t)),

showing that, for every fixed t, the function (x1, x2) 7→ H0
B(t, x1, x2, λ

∗
1(t), λ∗2(t)) is linear and hence convex

in (x1, x2). Hence β∗ is a optimal solution for the min problem of the Player B, with α∗ fixed. We obtain
that (α∗, β∗) is a Nash equilibrium in the class of open-loop strategies.
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4.2 An introduction to upper and lower value functions with the DP

We intend now to study Nash equilibria in the class of feedback strategies; in this context we know that the
variational approach is not useful (see subsection 2.2). The idea is to use the Dynamic Programming (DP)
and to study the value functions. However, the general theory about the value functions with respect to the
feedback strategies is very complicated and long: since our aim is to give only an idea of the problems and the
tools, in this section we concentrate our attention only on open-loop strategies with Dynamic
Programming approach. The definitions and the proofs of the main results are mostly based on the
Belmann-Hamilton-Jacobi equations and such results can be generalized in the class AFB (see for example
chapter 8 in [1]). In the next sections we will consider the class AFB, using the idea and generalizations of
this section.

4.2.1 Upper and lower value functions for nonanticipative strategies

Let us consider the problem (4.1) and the following two assumptions:

1. f : [0, T ]× Rn × U1 × U2 → R and g : [0, T ]× Rn × U1 × U2 → Rn and ψ : Rn → R are bounded and
uniformly continuous with

|f(t,x,u1,u2)| ≤ C1 |f(t,x,u1,u2)− f(t,x′,u1,u2)| ≤ C1‖x− x′‖,
‖g(t,x,u1,u2)‖ ≤ C1 ‖g(t,x,u1,u2)− g(t,x′,u1,u2)‖ ≤ C1‖x− x′‖,
|ψ(x)| ≤ C, |ψ(x)− ψ(x′)| ≤ C‖x− x′‖,

for some constant C and for every x,x′ ∈ Rn, u1 ∈ U1, u2 ∈ U2;

2. the control sets Ui are compacts; more precisely we assume Ui ⊂ BRki (0, Ri) for some fixed and positive
Ri.

For the Player I, let us introduce the set of controls at time τ , with τ ∈ [0, T ] fixed, as

U1(τ) = {u1 : [τ, T ]→ U1, measurable}.

In a similar way, we define U2(τ) = {u2 : [τ, T ]→ U2, measurable}.

Remark 4.1. By the previous assumptions 1. on g and 2., for every (τ, ξ) ∈ [0, T ] × Rn and (u1,u2) ∈
U1(τ)× U2(τ), then (u1,u2) is admissible, i.e. there exists a unique solution x of{

ẋ = g(t,x,u1,u2) for a.e. t ∈ [τ, T ]
x(τ) = ξ

Let us introduce a new notion of strategies that is useful in the zero-sum games:

Definition 4.2. Let us fix τ ∈ [0, T ]. A map

Φ1 : U2(τ)→ U1(τ)

is a nonanticipative strategy for the Player I at time τ if, for any time s ∈ [τ, T ] and any con-
trols u2,u

′
2 ∈ U2(τ) such that u2 = u′2 almost everywhere in [τ, s], then we have Φ1[u2] = Φ1[u′2] almost

everywhere in [τ, s].2

2 If , then .
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We denote by S1(τ) the set of nonanticipative strategies at time τ for the Player I.
In a symmetric way we denote by S2(τ) the set of nonanticipative strategies at time τ for Player II,

which are the nonanticipative maps
Φ2 : U1(τ)→ U2(τ)

The simplest example of nonanticipative strategy Φ1 for the Player I at time τ is the constant one: more
precisely, let us fix ũ1 ∈ U1(τ) and let us define the constant strategy Φũ1

1 by

Φũ1
1 [u2] = ũ1, ∀u2 ∈ U2(τ)

These notion of nonanticipative strategy allow us to introduce for the problem (4.1), in the assumptions
1. and 2., two value functions as follows (see for example Definition 1.6 of Chapter VIII in [1]):

Definition 4.3. Let us consider the problem (4.1) with the assumptions 1. and 2. The lower value
function V − : [0, T ]× Rn → R is defined by

V −(τ, ξ) = inf
Φ2∈S2(τ)

sup
u1∈U1(τ)

∫ T

τ
f(t,x,u1,Φ2[u1]) dt+ ψ(x(T )),

where x is the trajectory associated to the control (u1,Φ2[u1]) ∈ U1(τ)× U2(τ) with initial data x(τ) = ξ.
The upper value function V + : [0, T ]× Rn → R is defined as

V +(τ, ξ) = sup
Φ1∈S1(τ)

inf
u2∈U2(τ)

∫ T

τ
f(t,x,Φ1[u2],u2) dt+ ψ(x(T )).

where x is the trajectory associated to the control (Φ1[u2],u2) ∈ U1(τ)× U2(τ) with initial data x(τ) = ξ.

Note that assumptions 1. on g and 2., with Remark 4.1, imply that every pair (Φ1[u2],u2) and (u1,Φ2[u1])
is admissible and hence we are considering sup and inf on a nonempty sets; moreover, assumption 1. on f
and ψ implies that V + and V − are bounded.

In Definition 4.3 we introduce two value functions V − and V + for a game with 2 Players; let us emphasize
that also in Definition 2.3 we introduce two value functions V1 and V2 for a game with 2 Players, but the idea
is completely different: in a non zero-sum game we introduce such value functions on a Nash equilibrium,
while here we use the fact that the two players optimize the same functional.

One of the two players announces his strategy in response to the other’s choice of control, the other
player chooses the control. The player who “plays second”, i.e., who chooses the strategy, has an advantage.
In the definition of V +, the Player II choices its nonanticipative strategies Φ2 and “after” the Player I choices
its optimal u1. Hence we have that

Remark 4.2. For every (τ, ξ) ∈ [0, T ]× Rn we have

V −(τ, ξ) ≤ V +(τ, ξ) (4.18)

In general V + and V − are different functions (as we will see in Example 4.2.1). The next example is in [1]:

Example 4.2.1. Let us consider the problem

Player I: max
u1

J(u1, u2), Player II: min
u2

J(u1, u2)

|u1| ≤ 1 |u2| ≤ 1

J(u1, u2) =

∫ ∞
0

sgn(x)
(

1− e−|x|
)
e−t dt

ẋ = (u1 − u2)2

x(0) = x0

By definition we have

V −(0, ξ) = inf
Φ2∈S2(0)

sup
u1∈U1(0)

∫ ∞
0

ϕ(t, x) dt

V +(0, ξ) = sup
Φ1∈S1(0)

inf
u2∈U2(0)

∫ ∞
0

ϕ(t, x) dt
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where f(t, x, u1, u2) = ϕ(t, x) = sgn(x)
(

1− e−|x|
)
e−t and x is the trajectory associated to (u1, u2) with x(0) = ξ. We show

that, for every ξ ≥ 0, we have

V −(0, ξ) < V +(0, ξ) (4.19)

Let us fix ξ ≥ 0. First we note that the dynamics gives x(t) ≥ ξ, for every (u1, u2). Moreover, it is easy to see that the
function x 7→ ϕ(t, x) is increasing, for every x ≥ 0 and t.

For every u1 ∈ U1(0), where Ui(0) = {u : [0,∞) → [−1, 1], measurable}, let us consider the nonanticipative strategy

Φ̃2 : U1(0)→ U2(0) defined by Φ̃2[u1] = u1. Hence the trajectory x associated to such pair (u1, Φ̃2[u1]) is the solution of{
ẋ = (u1 − Φ̃2[u1])2 = 0
x(0) = ξ

(4.20)

hence x(t) = ξ. Clearly, since x 7→ ϕ(t, x) is increasing and x(t) ≥ ξ, such particular strategy Φ̃2 for the second Player is the
best possible (remember that the second Player want to minimize). Hence we obtain

V −(0, ξ) ≤ sup
u1∈U1(0)

∫ ∞
0

f(t, x, u1, Φ̃2[u1]) dt (we choose Φ2 = Φ̃2 and, for every u1, x solves (4.20))

=

∫ ∞
0

(
1− e−ξ

)
e−t dt

= 1− e−ξ (4.21)

Now for every u2 ∈ U2(0) let us consider the nonanticipative strategy Φ̃1 : U2(0)→ U1(0) defined by

Φ̃1[u2](t) =

{
+1 if u2(t) ≤ 0
−1 if u2(t) > 0

Hence the trajectory x associated to such pair (Φ̃1[u2], u2) is the solution of{
ẋ = (Φ̃1[u2]− u2)2 = (1 + |u2|)2

x(0) = ξ
(4.22)

Clearly, for such particular strategy Φ̃1 for the first Player, the optimal control for the second player is u2 = 0; in this case the
associated trajectory is x(t) = ξ + t. Hence we obtain

V +(0, ξ) ≥ inf
u2∈U2(0)

∫ ∞
0

f(t, x, Φ̃1[u2], u2) dt (we choose Φ1 = Φ̃1 and, for every u2, x solves (4.22))

=

∫ ∞
0

(
1− e−(ξ+t)

)
e−t dt (we choose u2 = 0)

= 1− e−ξ

2
(4.23)

Hence, by (4.21) and (4.23), we obtain

V +(0, ξ) ≥ 1− e−ξ

2
> 1− e−ξ ≥ V −(0, ξ), ∀ξ ≥ 0

i.e. relation (4.19).

Definition 4.4. We say that the game (4.1) has value function V : [0, T ] × Rn → R when (4.18) is an
equality, for every (τ, ξ), and in this case we set

V (t,x) = V +(t,x) = V −(t,x),

for every (t,x) ∈ [0, T ]× Rn. In this case, V is the value function for the problem (4.1).

Clearly, the problem to guarantees that (4.1) has value function is very interesting and crucial: we will
discuss this problem in subsection 4.2.4.

4.2.2 Isaacs’ condition

In the next subsections we are interested on giving the main ideas of Isaacs theory. Let us start:
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Definition 4.5. Let us define the upper Hamiltonian of Dynamic Programming H+
DP : [0, T ]×R2n →

R defined by

H+
DP (t,x,λ) = min

v2∈U2

max
v1∈U1

(
f(t,x,v1,v2) + λ · g(t,x,v1,v2)

)
and the lower Hamiltonian of Dynamic Programming H−DP : [0, T ]× R2n → R defined by

H−DP (t,x,λ) = max
v1∈U1

min
v2∈U2

(
f(t,x,v1,v2) + λ · g(t,x,v1,v2)

)
.

We note that in the definition of V + we have a “sup–inf”, while in the definition of H+
DP we have a “min–

max”.

Remark 4.3. We have

H−DP (t,x,λ) ≤ H+
DP (t,x,λ) (4.24)

Proof. Let us fix (t,x,λ) and let us denote by h the function h(v1,v2) = f(t,x,v1,v2) +λ · g(t,x,v1,v2).
Clearly

min
v2∈U2

h(v1,v2) ≤ h(v1,v2), ∀(v1,v2) ∈ U1 × U2.

This implies

max
v1∈U1

min
v2∈U2

h(v1,v2) ≤ max
v1∈U1

h(v1,v2), ∀v2 ∈ U2

and hence the thesis.

The next example shows that inequality (4.24) can be strict.

Example 4.2.2. Let us consider the problem in Example 4.2.1. Clearly we have

H+
DP (t, x, λ) = min

|v2|≤1
max
|v1|≤1

(
sgn(x)

(
1− e−|x|

)
e−t + λ(v1 − v2)2

)
= sgn(x)

(
1− e−|x|

)
e−t + min

|v2|≤1
max
|v1|≤1

λ(v1 − v2)2

H−DP (t, x, λ) = max
|v1|≤1

min
|v2|≤1

(
sgn(x)

(
1− e−|x|

)
e−t + λ(v1 − v2)2

)
= sgn(x)

(
1− e−|x|

)
e−t + max

|v1|≤1
min
|v2|≤1

λ(v1 − v2)2

First, let us fix λ and v2 ∈ [1,−1]: we have

max
|v1|≤1

λ(v1 − v2)2 =

{
0 if λ ≤ 0
λ(1 + |v2|)2 if λ > 0

and hence

min
|v2|≤1

max
|v1|≤1

λ(v1 − v2)2 =
{

0 if λ ≤ 0
λ if λ > 0

(4.25)

Now, let us fix λ and v1 ∈ [1,−1]: we have

min
|v2|≤1

λ(v1 − v2)2 =

{
λ(1 + |v2|)2 if λ ≤ 0
0 if λ > 0

and hence

max
|v1|≤1

min
|v2|≤1

λ(v1 − v2)2 =
{
λ if λ ≤ 0
0 if λ > 0

(4.26)

Inequalities (4.25) and (4.26) give that
H−DP (t, x, λ) < H+

DP (t, x, λ), ∀λ 6= 0

The previous example suggests the following definition:

Definition 4.6. We say that the minimax condition, or Isaacs’ condition, is satisfied if

H−DP (t,x,λ) = H+
DP (t,x,λ)

for every (t,x,λ). In this case we define by HDP : [0, T ] × R2n → R the Hamiltonian of Dynamic
Programming by

HDP (t,x,λ) = H−DP (t,x,λ) = H+
DP (t,x,λ). (4.27)
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4.2.3 Upper and lower Isaacs’ equations

At this point we are interested to study the two functions of V + and V −. Let us start with their regularity.

Theorem 4.3. Let us consider the problem (4.1) with the assumptions 1. and 2. Then V − is bounded and
uniformly Lipschitz continuous, i.e.

|V −(τ, ξ)− V −(τ ′, ξ′)| ≤ Ĉ
(
|τ − τ ′|+ ‖ξ − ξ′‖

)
,

for every τ, τ ′ ∈ [0, T ] and ξ, ξ′ ∈ Rn, for some constant Ĉ.
A similar results holds for V +.

Proof. (see Theorem 3.2 in [9]). Let us fix τ < τ ′ in [0, T ] and ξ, ξ′ ∈ Rn. It is immediate to see that

|V −(τ, ξ)| ≤ C1T + C2.

Now let us fix ε > 0. There exists Φ̂2 ∈ S2(τ) such that

V −(τ, ξ) ≥ sup
u1∈U1(τ)

{∫ T

τ

f(t,x,u1, Φ̂2[u1]) dt+ ψ(x(T ))

}
− ε. (4.28)

Fix u1fix ∈ U1. For every u1 ∈ U1(τ ′), let us define û ∈ U1(τ) by

û(t) =

{
u1fix, for t ∈ [τ, τ ′)
u1(t), for t ∈ [τ ′, T ]

(4.29)

Let us define Φ̃2 ∈ S2(τ ′) such that

Φ̃2[u1](t) = Φ̂2[û1](t), ∀u1 ∈ U1(τ ′), t ∈ [τ ′, T ]

Clearly

V −(τ ′, ξ′) ≤ sup
u1∈U1(τ ′)

{∫ T

τ ′
f(t,x,u1, Φ̃2[u1]) dt+ ψ(x(T ))

}
.

Now there exists ũ1 ∈ U1(τ ′) such that

V −(τ ′, ξ′) ≤
∫ T

τ ′
f(t,x, ũ1, Φ̃2[ũ1]) dt+ ψ(x(T )) + ε. (4.30)

And (4.28) gives

V −(τ, ξ) ≥
∫ T

τ

f(t,x, û1, Φ̂2[û1]) dt+ ψ(x(T ))− ε, (4.31)

where û1 is defined by ũ1 via relation (4.29). Note that the trajectories x that appear in (4.30) and in (4.31) are different
function; in particular, denoting by x̃ and x̂ such trajectories in (4.30) and in (4.31) respectively, they solve{

˙̃x(t) = g(t, x̃(t), ũ1(t), Φ̃2[ũ1](t)) a.e. in [τ ′, T ]
x̃(τ ′) = ξ′

and {
˙̂x(t) = g(t, x̂(t), û1(t), Φ̂2[û1](t)) a.e. in [τ, T ]
x̂(τ) = ξ

Clear we have, by the bounded assumption 2. on g,

‖ξ − x̂(τ ′)‖ =

∥∥∥∥∥
∫ τ ′

τ

g(t, x̂, û1, Φ̂2[û1]) dt

∥∥∥∥∥ ≤ C1(τ ′ − τ). (4.32)

The Lipschitz assumption 2. on g and since ũ1 = û1 and Φ̃2[ũ1] = Φ̂2[û1] on [τ ′, T ], we have that, for every t ∈ [τ ′, T ],

d

dt
‖x̂(t)− x̃(t)‖ =

(
x̂(t)− x̃(t), d

dt
x̂(t)− d

dt
x̃(t)

)
‖x̂(t)− x̃(t)‖

≤
∥∥∥∥ d

dt
x̂(t)− d

dt
x̃(t)

∥∥∥∥
=

∥∥∥g(t, x̂(t), û1(t), Φ̂2[û1](t))− g(t, x̃(t), ũ1(t), Φ̃2[ũ1](t))
∥∥∥

≤ C1 ‖x̂(t)− x̃(t)‖
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The Gronwall’s inequality (see the appendix in [8]) implies, for every t ∈ [τ ′, T ],

‖x̂(t)− x̃(t)‖ ≤
∥∥x̂(τ ′)− x̃(τ ′)

∥∥ exp

(∫ t

τ ′
C1 ds

)
≤ C

∥∥x̂(τ ′)− ξ′
∥∥ . (4.33)

Now, for every t ∈ [τ ′, T ], (4.32) and (4.33) give us

‖x̃(t)− x̂(t)‖ ≤ C
(∥∥x̂(τ ′)− ξ

∥∥+
∣∣ξ − ξ′

∣∣) ≤ C̃ (‖ξ′ − ξ‖+ (τ ′ − τ)
)

(4.34)

By (4.30) and (4.31), assumption 2. and 3. we obtain

V −(τ ′, ξ′)− V −(τ, ξ) ≤
∫ T

τ ′

(
f(t, x̃, ũ1, Φ̃2[ũ1])− f(t, x̂, û1, Φ̂2[û1])

)
dt+

−
∫ τ ′

τ

f(t, x̂, û1, Φ̂2[û1]) dt+ ψ(x̃(T ))− ψ(x̂(T )) + 2ε

≤ C1

∫ T

τ ′
‖x̃(t)− x̂(t)‖ dt+ C1(τ ′ − τ) + C2‖x̃(T )− x̂(T )‖+ 2ε

≤ Ĉ
(
‖ξ′ − ξ‖+ (τ ′ − τ)

)
+ 2ε. (4.35)

This concludes the first part of the proof.
Let ε again be fixed. Then there exists Φ̂2 ∈ S2(τ ′) such that

V −(τ ′, ξ′) ≥ sup
u1∈U1(τ ′)

{∫ T

τ ′
f(t,x,u1, Φ̂2[u1]) dt+ ψ(x(T ))

}
− ε. (4.36)

For every u1 ∈ U1(τ), let us define û ∈ U1(τ ′) by

û1(t) = u1(t), ∀t ∈ [τ ′, T ] (4.37)

Fix u2fix ∈ U2. Let us define Φ̃2 ∈ S2(τ) such that, for every u1 ∈ U1(τ)

Φ̃2[u1](t) =

{
u2fix, for t ∈ [τ, τ ′)

Φ̂2[û1](t), for t ∈ [τ ′, T ]

Clearly

V −(τ, ξ) ≤ sup
u1∈U1(τ)

{∫ T

τ

f(t,x,u1, Φ̃2[u1]) dt+ ψ(x(T ))

}
.

Now there exists ũ1 ∈ U1(τ) such that

V −(τ, ξ) ≤
∫ T

τ

f(t,x, ũ1, Φ̃2[ũ1]) dt+ ψ(x(T )) + ε. (4.38)

Now (4.36) gives

V −(τ ′, ξ′) ≥
∫ T

τ ′
f(t,x, û1, Φ̂2[û1]) dt+ ψ(x(T ))− ε. (4.39)

where û1 is defined by ũ1 via relation (4.37). Denoting by x̃ and x̂ the trajectories in (4.38) and in (4.39) respectively, they
solve {

˙̃x(t) = g(t, x̃(t), ũ1(t), Φ̃2[ũ1](t)) in [τ, T ]
x̃(τ) = ξ

and {
˙̂x(t) = g(t, x̂(t), û1(t), Φ̂2[û1](t)) in [τ ′, T ]
x̂(τ ′) = ξ′

By assumption 2. and using the same arguments of before we obtain inequality (4.34). By (4.38) and (4.39), assumption 2.
and 3. we obtain

V −(τ ′, ξ′)− V −(τ, ξ) ≤
∫ T

τ ′

(
f(t, x̃, ũ1, Φ̃2[ũ1])− f(t, x̂, û1, Φ̂2[û1])

)
dt+

−
∫ τ ′

τ

f(t, x̃, ũ1, Φ̃2[ũ1]) dt+ ψ(x̃(T ))− ψ(x̂(T )) + 2ε

≤ C1

∫ T

τ ′
‖x̃(t)− x̂(t)‖dt+ C1(τ ′ − τ) + C2‖x̃(T )− x̂(T )‖+ 2ε

≤ Ĉ
(
‖ξ′ − ξ‖+ (τ ′ − τ)

)
+ 2ε.

This inequality and (4.35) conclude the proof.

The previous result implies that the lower value function admits the gradient∇V −(t,x) = (∂V∂t (t,x),∇xV (t,x))
for almost everywhere (t,x) ∈ [0, T ]×Rn. Moreover, it gives the possibility to V − to be a viscosity solution,
as we will see in definition 4.7.
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Definition 4.7. Let H : [0, T ] × Rn × Rn → R be a continuous function and let V : [0, T ] × Rn → R be a
bounded and uniformly continuous function, with V (T,x) = ψ(x) for all x ∈ Rn.
We say that V is a viscosity subsolution of the Hamilton–Jacobi equation{

∂V

∂t
(t,x) +H(t,x,∇xV (t,x)) = 0 ∀(t,x) ∈ [0, T ]× Rn

V (T,x) = ψ(x) ∀x ∈ Rn
(4.40)

if whenever v is a test function in C∞((0, T ) × Rn) such that V − v has a local minimum in the point
(t0,x0) ∈ (0, T )× Rn we have

∂v

∂t
(t0,x0) +H(t0,x0,∇xv(t0,x0)) ≥ 0. (4.41)

We say that V is a viscosity supersolution of the equation (4.40) if v is a test function in C∞((0, T )×Rn)
such that V − v has a local maximum in the point (t0,x0) ∈ (0, T )× Rn we have

∂v

∂t
(t0,x0) +H(t0,x0,∇xv(t0,x0)) ≤ 0. (4.42)

A function that is both a viscosity subsolution and a viscosity supersolution is called viscosity solution.

The following Dynamic Programming optimality condition holds (see Theorem 3.1 in [9])

Theorem 4.4. Let us consider the problem (4.1) with assumptions assumption 1. and 2.. Then

V −(τ, ξ) = inf
Φ2∈S2(τ)

sup
u1∈U1(τ)

{∫ τ+σ

τ
f(t,x,u1,Φ2[u1]) dt+ V −(τ + σ,x(τ + σ))

}
for every τ, τ + σ ∈ [0, T ] and ξ ∈ Rn.

Proof. Let us define the function W by

W (τ, ξ) = inf
Φ2∈S2(τ)

sup
u1∈U1(τ)

{∫ τ+σ

τ

f(t,x,u1,Φ2[u1]) dt+ V −(τ + σ,x(τ + σ))

}
for every τ, ξ. Let us fix ε > 0.

Then there exists a Φ̃2 ∈ S2(τ) such that

W (τ, ξ) ≥ sup
u1∈U1(τ)

{∫ τ+σ

τ

f(t,x,u1, Φ̃2[u1]) dt+ V −(τ + σ,x(τ + σ))

}
− ε. (4.43)

Also, for every η ∈ Rn, by definition of V −

V −(τ + σ,η) = inf
Φ2∈S2(τ+σ)

sup
u1∈U1(τ+σ)

{∫ T

τ+σ

f(t,x,u1,Φ2[u1]) dt+ ψ(x(T ))

}
where x is the trajectory with initial data x(τ + σ) = η. Thus exists a Φ̃η

2 ∈ S2(τ + σ) such that

V −(τ + σ,η) ≥ sup
u1∈U1(τ+σ)

{∫ T

τ+σ

f(t,x,u1, Φ̃
η
2 [u1]) dt+ ψ(x(T ))

}
− ε. (4.44)

Now define Φ2 ∈ S2(τ) in this way: for each u1 ∈ U1(τ) set

Φ2[u1](t) =

{
Φ̃2[u1](t), for t ∈ [τ, τ + σ]

Φ̃
x(τ+σ)
2 [u1](t), for t ∈ (τ + σ, T ]

Consequently for any u1 ∈ U1(τ), by (4.43) and (4.44) we have

W (τ, ξ) ≥
∫ τ+σ

τ

f(t,x,u1, Φ̃2[u1]) dt+ V −(τ + σ,x(τ + σ))− ε

≥
∫ τ+σ

τ

f(t,x,u1, Φ̃2[u1]) dt+

∫ T

τ+σ

f(t,x,u1, Φ̃
x(τ+σ)
2 [u1]) dt+ ψ(x(T ))− 2ε

=

∫ T

τ

f(t,x,u1,Φ2[u1]) dt+ ψ(x(T ))− 2ε
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So that

V −(τ, ξ) ≤ sup
u1∈U1(τ)

{∫ T

τ

f(t,x,u1,Φ2[u1]) dt+ ψ(x(T ))

}
≤W (τ, ξ) + 2ε. (4.45)

Let us pass to the second part of the proof. Now, there exists Φ̂2 ∈ S2(τ) such that

V −(τ, ξ) ≥ sup
u1∈U1(τ)

{∫ T

τ

f(t,x,u1, Φ̂2[u1]) dt+ ψ(x(T ))

}
− ε. (4.46)

Then

W (τ, ξ) ≤ sup
u1∈U1(τ)

{∫ τ+σ

τ

f(t,x,u1, Φ̂2[u1]) dt+ V −(τ + σ,x(τ + σ))

}
and there exists û1 ∈ U1(τ) such that

W (τ, ξ) ≤
∫ τ+σ

τ

f(t,x, û1, Φ̂2[û1]) dt+ V −(τ + σ,x(τ + σ)) + ε. (4.47)

For every u1 ∈ U1(τ + σ) we define u]1 ∈ U1(τ) by

u]1(t) =

{
û1(t), for t ∈ [τ, τ + σ]
u1(t), for t ∈ (τ + σ, T ]

and we define Φ†2 ∈ S2(τ + σ) by

Φ†2[u1](t) = Φ̂2[u]1](t), ∀u1 ∈ U1(τ + σ), t ∈ [τ + σ, T ]

Hence

V −(τ + σ,x(τ + σ)) ≤ sup
u1∈U1(τ+σ)

{∫ T

τ+σ

f(t,x,u1,Φ
†
2[u1]) dt+ ψ(x(T ))

}
.

Clearly there exists u†1 ∈ U1(τ + σ) such that

V −(τ + σ,x(τ + σ)) ≤
∫ T

τ+σ

f(t,x,u†1,Φ
†
2[u†1]) dt+ ψ(x(T )) + ε. (4.48)

Now we define u′1 ∈ U1(τ) by

u′1(t) =

{
û1(t), for t ∈ [τ, τ + σ]
u†1(t), for t ∈ (τ + σ, T ]

Now by (4.47) and (4.48) we have

W (τ, ξ) ≤
∫ τ+σ

τ

f(t,x, û1, Φ̂2[û1]) dt+ V −(τ + σ,x(τ + σ)) + ε

≤
∫ τ+σ

τ

f(t,x, û1, Φ̂2[û1]) dt+

∫ T

τ+σ

f(t,x,u†1,Φ
†
2[u†1]) dt+ ψ(x(T )) + 2ε

=

∫ T

τ

f(t,x,u′1, Φ̂2[u′1]) dt+ ψ(x(T )) + 2ε

≤ sup
u1∈U1(τ)

{∫ T

τ

f(t,x,u1, Φ̂2[u1]) dt+ ψ(x(T ))

}
+ 2ε

≤ V −(τ, ξ) + 3ε.

This last inequality and (4.45) conclude the proof.

And now we are in the position to give the main property for the two values functions V − and V +:

Theorem 4.5. Let us consider the problem (4.1) with the assumptions 1.– 2.. Then

A. V − is a viscosity solution for{
∂V

∂t
(t,x) +H−DP (t,x,∇xV (t,x)) = 0 ∀(t,x) ∈ [0, T ]× Rn

V (T,x) = ψ(x) ∀x ∈ Rn
(4.49)

B. V − is the unique viscosity solution for (4.49);
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A’. V + is a viscosity solution for{
∂V

∂t
(t,x) +H+

DP (t,x,∇xV (t,x)) = 0 ∀(t,x) ∈ [0, T ]× Rn

V (T,x) = ψ(x) ∀x ∈ Rn
(4.50)

B’. V + is the unique viscosity solution for (4.50).

The system in (4.50) is called upper Isaacs’ equation, while (4.49) is called lower Isaacs’ equation.

The proof of A’. is very similar to the proof of A. The proofs of B. and B’. are similar but they require
a comparison principle for BHJ equation: such very interesting argument is very difficult and long, and it
requires another course.

Proof of A. It is obvious, by definition, that V −(T,x) = ψ(x), for every x ∈ Rn. So, let us fix (t0,x0) ∈ (0, T )× Rn.
First part of the proof: V − is a supersolution. Let v ∈ C1((0, T )× Rn) be a test function touching V − from below at (t0,x0),
i.e.

V −(t0,x0) = v(t0,x0) and V −(t,x) ≥ v(t,x) in a neighborhood of (t0,x0). (4.51)

We have to prove that
∂v

∂t
(t0,x0) +H−DP (t0,x0,∇v(t0,x0)) ≤ 0.

Let us assume that this is not true and that there exists θ > 0 such that

∂v

∂t
(t0,x0) +H−DP (t0,x0,∇v(t0,x0)) ≥ θ. (4.52)

Defining the function Γ in a compact neighborhood of (t0,x0) by

Γ(t,x,u1,u2) =
∂v

∂t
(t,x) + f(t,x,u1,u2) +∇v(t,x) · g(t,x,u1,u2)

(4.52) is equivalent to
max
u1∈U1

min
u2∈U2

Γ(t0,x0,u1,u2) ≥ θ

Hence there exists u∗1 ∈ U1 such that
min

u2∈U2

Γ(t0,x0,u
∗
1,u2) ≥ θ

Since Γ is uniformly continuous in its domain and by assumption 2. on g, there exists τ > 0 such that

min
u2∈U2

Γ(s, x̃(s),u∗1,u2) ≥ θ

2
, ∀s ∈ [t0, t0 + τ ] (4.53)

where ũ1 and ũ2 are generic controls in U1(t0) and in U2(t0) respectively, and x̃ solves{
˙̃x = g(t, x̃, ũ1, ũ2) in [t0, T ]
x̃(t0) = x0

(4.54)

Hence, choosing ũ1(·) = u∗1 and for any Φ2 ∈ S2(t0) we have that inequality (4.53) implies

Γ(s, x̃(s), ũ1(s),Φ2[ũ1](s)) ≥ θ

2
, ∀s ∈ [t0, t0 + τ ]

where now x̃ is the trajectory in (4.54) associated to the controls ũ1 = u∗1 and Φ2[ũ1]. If we integrate the last inequality, we
obtain that there exists ũ1 ∈ U1(t0) such that for every Φ2 ∈ S2(t0) we have∫ t0+τ

t0

Γ(s, x̃(s), ũ1(s),Φ2[ũ1](s))ds ≥ τθ

2

and hence

inf
Φ2∈S2(t0)

sup
u∈U1(t0)

∫ t0+τ

t0

(
∂v

∂t
(s,x) + f(s,x,u1,Φ2[u1]) +∇v(s,x) · g(s,x,u1,Φ2[u1])

)
ds ≥ τθ

2
(4.55)

where x solves {
ẋ = g(t,x,u1,Φ2[u1]) in [t0, T ]
x(t0) = x0

(4.56)

Now by Theorem 4.4 we know that

V −(t0,x0) = inf
Φ2∈S2(t0)

sup
u1∈U1(t0)

{∫ t0+τ

t0

f(s,x,u1,Φ2[u1]) ds+ V −(t0 + τ,x(t0 + τ))

}
(4.57)
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with x as before. For every such x, requirement (4.51) and the lipschitz assumption 2. on g imply that, for τ small enough

0 = V −(t0,x0)− v(t0,x0) ≤ V −(t0 + τ,x(t0 + τ))− v(t0 + τ,x(t0 + τ)) (4.58)

Since x is continuous and v is in C1, (4.56) implies

v(t0 + τ,x(t0 + τ))− v(t0,x0) =

∫ t0+τ

t0

dv(s,x(s))

ds
ds∫ t0+τ

t0

(
∂v

∂t
(s,x(s)) +∇v(s,x(s)) · g(s,x(s),u1(s),Φ2[u1](s))

)
ds (4.59)

Relations (4.57)–(4.59) give

0 ≥ inf
Φ2∈S2(t0)

sup
u1∈U1(t0)

{∫ t0+τ

t0

f(s,x,u1,Φ2[u]) ds+ v(t0 + τ,x(t0 + τ))− v(t0,x0)

}
= inf

Φ2∈S2(t0)
sup

u1∈U1(t0)

∫ t0+τ

t0

(
f(s,x,u1,Φ2[u1]) +

∂ψ

∂t
(s,x) +∇v(s,x) · g(s,x,u1,Φ2[u1])

)
ds

This inequality contradicts (4.55): hence (4.52) is false and this concludes the first part of the proof.

Second part of the proof: V − is a subsolution. Now, let v ∈ C1((0, T ) × Rn) be a test function touching V − from above at
(t0,x0), i.e.

V −(t0,x0) = v(t0,x0) and V −(t,x) ≤ v(t,x) in a neighborhood of (t0,x0). (4.60)

We have to prove that
∂v

∂t
(t0,x0) +H−DP (t0,x0,∇v(t0,x0)) ≥ 0.

Let us assume that this is not true and that there exists θ > 0 such that

∂v

∂t
(t0,x0) +H−DP (t0,x0,∇v(t0,x0)) ≥ −θ. (4.61)

This is equivalent to
max
u1∈U1

min
u2∈U2

Γ(t0,x0,u1,u2) ≤ −θ

Hence, for every u1 ∈ U1 there exists uu1
2 ∈ U2 such that

Γ(t0,x0,u1,u
u1
2 ) ≤ −θ

Since Γ is uniformly continuous we have

Γ(t0,x0, ũ1,u
u1
2 ) ≤ −3θ

4
(4.62)

for every u1 ∈ U1, ũ1 ∈ BRk1 (u1, r(u1)) ∩ U1 and for some r(u1) > 0. Since U1 is compact (see assumption 1.) there exist

finitely many distinct points {ui1}Ni=1 ⊂ U1, {uui
1

2 }Ni=1 ⊂ U2 and rays {r(ui1)}Ni=1 such that

U1 ⊂
N⋃
i=1

BRk1 (ui1, r(u
i
1))

and

Γ(t0,x0, ũ1,u
ui
1

2 ) ≤ −3θ

4
, ∀ũ1 ∈ BR2(ui1, r(u

i
1)) ∩ U1

Let us define φ : U1 → U2 by φ(u1) = u
u
j
1

2 with j = j(u1) such that

u1 ∈ BRk1 (uj1, r(u
j
1)) \

j−1⋃
i=1

BRk1 (ui1, r(u
i
1)).

Hence (4.62) implies

Γ(t0,x0,u1, φ(u1)) ≤ −3θ

4

for every u1 ∈ U1. Since Γ is uniformly continuous there exists τ > 0 such that we have

Γ(s, x̃(s),u1, φ(u1)) ≤ −θ
2
, ∀s ∈ [t0, t0 + τ ] (4.63)

for every u1 ∈ U1 and for every ũ1 ∈ U1(t0), ũ2 ∈ U2(t0) where x̃ is the associated trajectory as in (4.54). Now let us define

Φ̃2 ∈ S2(t0) such that

Φ̃2[ũ1](s) = φ(ũ1(s)), ∀ũ1 ∈ U1(t0), s ∈ [t0, T ]



50 Chapter 4

Using (4.63)

Γ(s, x̃(s), ũ1(s), Φ̃2[ũ1](s)) ≤ −θ
2
, ∀s ∈ [t0, t0 + τ ]

for every ũ1 ∈ U1(t0) and where x̃ is as in (4.54) with u2 = Φ2[u1]. If we integrate the last inequality, we obtain that there

exists Φ̃2 ∈ S2(t0) such that for every ũ1 ∈ U(t0) we have∫ t0+τ

t0

Γ(s, x̃(s), ũ1(s), Φ̃2[ũ1](s))ds ≤ −τθ
2

and hence

inf
Φ2∈S2(t0)

sup
u1∈U1(t0)

∫ t0+τ

t0

(
∂v

∂t
(s,x) + f(s,x,u1,Φ2[u1]) +∇v(s,x) · g(s,x,u1,Φ2[u1])

)
ds ≤ −τθ

2
(4.64)

where x is as in (4.56). For every such x, requirement (4.60) and the lipschitz assumption 2. on g imply that, for τ small
enough

0 = V −(t0,x0)− v(t0,x0) ≥ V −(t0 + τ,x(t0 + τ))− v(t0 + τ,x(t0 + τ)) (4.65)

Relations (4.57), (4.59) and (4.65) give

0 ≤ inf
Φ2∈S2(t0)

sup
u1∈U1(t0)

{∫ t0+τ

t0

f(s,x,u1,Φ2[u1]) ds+ v(t0 + τ,x(t0 + τ))− v(t0,x0)

}
= inf

Φ2∈S2(t0)
sup

u1∈U1(t0)

∫ t0+τ

t0

(
f(s,x,u1,Φ2[u1]) +

∂v

∂t
(s,x) +∇v(s,x) · g(s,x,u1,Φ2[u1])

)
ds

This inequality contradicts (4.64): hence (4.61) is false and this concludes the proof.

4.2.4 Isaacs’ condition, Isaacs’ equation and value function

If the Isaacs’ condition is satisfied, clearly the systems (4.50) and (4.49) coincide, and we obtain{
∂V

∂t
(t,x) +HDP (t,x,∇xV (t,x)) = 0 for (t,x) ∈ [0, T ]× Rn

V (T,x) = ψ(x) for x ∈ Rn
(4.66)

The previous system (4.66) is called Isaacs’ equation.
The fundamental theorem on the value function is the following

Theorem 4.6. Let us consider the problem (4.1) with the assumptions 1. and 2. Let us suppose that the
Isaacs’ condition (4.27) holds. Then

a. the problem (4.1) has value function V , i.e. (4.18) is always an equality;

b. V is the unique viscosity solution of (4.66);

Proof. The proof of a. and b. of this theorem is an easy consequence of Theorem 4.5 with the Isaacs’s
condition.

As we said at the beginning of this section, we have given the results of this section for open-loop
strategies but they are also true for more general problems and feedback strategies. The main result is in
the previous theorem: if the Isaacs’ condition (4.27) holds, then the problem has value function and satisfies
the Isaacs’ equation (4.66).

4.3 Regular solutions of Isaacs’ equation for general problems

In the previous section we discussed the details of the upper and lower value functions, their regularity
and relations with respect to the upper e lower Isaacs’ equation and with a particular type of open-loop
strategies. In this section we are interested to study the case where the Isaacs’ condition holds, the feedback
strategies are considered and the value function exists and it is regular.
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Definition 4.8. Let us consider the problem (4.1). The lower value function V − : [0, T ] × Rn →
[−∞,+∞] is defined by

V −(τ, ξ) = inf
ν2

sup
ν1

∫ T

τ
f(t,x,u1,u2) dt+ ψ(x(T )), (4.67)

where (u1,u2) ∈ AFB, with ui(t) = νi(t,x(t)) for i = 1, 2, is admissible with trajectory x unique solution of{
ẋ(t) = g(t,x(t),ν1(t,x(t)),ν2(t,x(t))) in [τ, T ]
x(τ) = ξ

Similarly, the upper value function V + : [0, T ]× Rn → [−∞,+∞] is defined by

V +(τ, ξ) = sup
ν1

inf
ν2

∫ T

τ
f(t,x,u1,u2) dt+ ψ(x(T )). (4.68)

Note that V − and V + admits the values ±∞ since now we have no particular assumptions on our problem
(4.1).

As in the open-loop strategies case and for the same reasons (see (4.18)), for every (τ, ξ) we have
V −(τ, ξ) ≤ V +(τ, ξ). We say, as in Definition 4.4, that the problem (4.1) admits value function V if

V (τ, ξ) = V −(τ, ξ) = V +(τ, ξ).

In the spirit of Theorem A.6, we have the following sufficient condition for the problem (4.1): the idea
of the proof follows the idea used in the optimal control problem with the Dynamic Programming approach
(see for example Corollary 6.6 and Theorem 8.1 in [2]):

Theorem 4.7. Let us consider the problem (4.1) with f, g and ψ continuous. Let us suppose that the
Isaacs’ condition (4.27) is satisfied. Let V : [0, T ]×Rn → R be a C1 solution of the Isaacs’ equation (4.66).

Let (u∗1,u
∗
2) ∈ AFB, where u∗i (t) = ν∗i (t,x

∗(t)), and x∗ is the corresponding trajectory with x∗(0) = α, be
such that

−∂V
∂t

(t,x) = f(t,x,ν∗1(t,x),ν∗2(t,x)) +∇xV (t,x) · g(t,x,ν∗1(t,x),ν∗2(t,x))

= min
v2∈U2

max
v1∈U1

(
f(t,x,v1,v2) +∇xV (t,x) · g(t,x,v1,v2)

)
(4.69)

= max
v1∈U1

min
v2∈U2

(
f(t,x,v1,v2) +∇xV (t,x) · g(t,x,v1,v2)

)
Then (u∗1,u

∗
2) is a Nash equilibrium for the game (4.1) in the class of feedback strategy. In particular

V −(0,α) = V +(0,α) = J(u∗1,u
∗
2). (4.70)

Moreover, if for every initial data (τ, ξ) ∈ [0, T ]×Rn there exists the corresponding trajectory x, solution of{
ẋ(t) = g(t,x(t),ν∗1(t,x(t)),ν∗2(t,x(t))) in [τ, T ]
x(τ) = ξ

then V is the value function for (4.1).

We remark that (4.69) implies that (ν∗1(t,x),ν∗2(t,x)) realizes the max-min, for every (t,x) ∈ [0, T ] × Rn.
In particular, along the optimal trajectory of the problem (4.1) we have

−∂V
∂t

(t,x∗(t)) = f(t,x∗(t),u∗1(t),u∗2(t)) +∇xV (t,x∗(t)) · g(t,x∗(t),u∗1(t),u∗2(t)),

for every t ∈ [0, T ].
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Proof of Theorem 4.7. Let (u∗1,u
∗
2) ∈ AFB, where u∗i (t) = ν∗i (t,x

∗(t)), with the corresponding trajectory
x∗ with x∗(0) = α. For every fixed t,

∂V

∂t
(t,x∗(t)) = − max

u1∈U1

min
u2∈U2

(
f(t,x∗(t),u1,u2) +∇xV (t,x∗(t)) · g(t,x∗(t),u1,u2)

)
= −f(t,x∗(t),ν∗1(t,x∗(t)),ν∗2(t,x∗(t)))−∇xV (t,x∗(t)) · g(t,x∗(t),ν∗1(t,x∗(t)),ν∗2(t,x∗(t)))

= −f(t,x∗(t),u∗1(t),u∗2(t))−∇xV (t,x∗(t)) · ẋ∗(t) (4.71)

Since V is differentiable, the fundamental theorem of integral calculus implies

V (T,x∗(T ))− V (0,x∗(0)) =

∫ T

0

dV (t,x∗(t))

dt
dt

=

∫ T

0

∂V

∂t
(t,x∗(t)) +∇xV (t,x∗(t)) · ẋ∗(t) dt

(by (4.71)) = −
∫ T

0
f(t,x∗(t),u∗1(t),u∗2(t)) dt. (4.72)

Let (u1,u
∗
2) ∈ AFB, where u1(t) = ν1(t,x(t)) and u∗2(t) = ν∗2(t,x(t)), with the corresponding trajectory

x with x(0) = α. For every fixed t,

∂V

∂t
(t,x(t)) = − max

u1∈U1

min
u2∈U2

(
f(t,x(t),u1,u2) +∇xV (t,x(t)) · g(t,x(t),u1,u2)

)
= − max

u1∈U1

(
f(t,x(t),u1,ν

∗
2(t,x(t))) +∇xV (t,x(t)) · g(t,x(t),u1,ν

∗
2(t,x(t)))

)
≤ −f(t,x(t),ν1(t,x(t)),ν∗2(t,x(t)))−∇xV (t,x(t)) · g(t,x(t),ν1(t,x(t)),ν∗2(t,x(t)))

= −f(t,x(t),u1(t),u∗2(t))−∇xV (t,x(t)) · ẋ(t) (4.73)

Again we have

V (T,x(T ))− V (0,x(0)) =

∫ T

0

dV (t,x(t))

dt
dt

=

∫ T

0

∂V

∂t
(t,x(t)) +∇xV (t,x(t)) · ẋ(t) dt

(by (4.73)) ≤ −
∫ T

0
f(t,x(t),u1(t),u∗2(t)) dt. (4.74)

We remark that x∗(0) = x(0) = α; if we subtract the two expressions in (4.72) and in (4.74), then we obtain

V (T,x∗(T ))− V (T,x(T )) ≥ −
∫ T

0
f(t,x∗,u∗1,u

∗
2) dt+

∫ T

0
f(t,x,u1,u

∗
2) dt.

Using the final condition in the Isaacs’ equation (4.66), the previous inequality becomes

J(u∗1,u
∗
2) =

∫ T

0
f(t,x∗,u∗1,u

∗
2) dt+ ψ(x∗(T )) ≥

∫ T

0
f(t,x,u1,u

∗
2) dt+ ψ(x(T )) = J(u1,u

∗
2),

for every (u1,u
∗
2) ∈ AFB. A similar argument proves that

J(u∗1,u
∗
2) ≤ J(u∗1,u2),

for every (u∗1,u2) ∈ AFB. Hence we have that (u∗1,u
∗
2) is a Nash equilibrium in the family of feedback

strategies.
Now, it is obvious that,

sup
u1

J(u1,u2) ≥ J(u∗1,u2),
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for every u2; hence
inf
u2

sup
u1

J(u1,u2) ≥ inf
u2

J(u∗1,u2).

Now, the previous inequality, the definition of lower value function V − in (4.67) and the fact that (u∗1,u
∗
2)

is a Nash equilibrium imply

V −(0,α) = inf
u2

sup
u1

J(u1,u2) ≥ inf
u2

J(u∗1,u2) = J(u∗1,u
∗
2).

A similar argument gives V +(0,α) ≤ J(u∗1,u
∗
2). Relation (4.18) gives (4.70).

Finally, if we replace the initial data x(0) = α in the game with the new initial data x(τ) = ξ, then the
same proof gives that the game has value function V .

In the assumption of Theorem 4.7 we have that

V (0,α) = J(u∗1,u
∗
2) (4.75)

Lewin devotes the section 3.2 of his book [14] to the definitions of the optimal strategies and the value
function of a differential game using, as a matter of fact, equality (4.75) to define the value function.

Clearly, in the assumptions of Theorem 4.1 and Theorem 4.7, we know that

∇xV (t,x∗(t)) = λ∗(t), (4.76)

for every t ∈ [0, T ].

A geometric proof of Isaacs’ equation as necessary condition

We are interested to give a very different proof of the Isaacs’ equation (4.66), based on geometric ideas. In
particular, let us consider a different version of the problem (4.1) with f = 0 and T free: more precisely let
us consider 

Player I: max
u1

J(u1,u2), Player II: min
u2

J(u1,u2)

J(u1,u2) = ψ(Tx,x(Tx))
ẋ = g(t,x,u1,u2)
x(0) = α
(Tx,x(Tx)) ∈ T

(4.77)

where the control sets Ui are closed, T ⊂ [0,∞) × Rn is a closed target set and Tx is the exit time of x
defined as in (1.6), i.e.

Tx = inf{t ≥ 0 : (t,x(t)) ∈ T }.

Let us recall that G is the game set, i.e. if (τ, ξ) ∈ G then there exists a trajectory x which transfers the
initial point (τ, ξ) in a point (Tx,x(Tx)) ∈ T , and that T ⊂ G.

It is clear that the definition of the value functions V − and V + is a simple modification of Definition
4.8.3

3To be precise

Definition 4.9. Let us consider the problem (4.77). The lower value function V − : [0,∞)× Rn → [−∞,+∞] is defined by

V −(τ, ξ) = inf
ν2

sup
ν1

ψ(Tx,x(Tx)),

where (u1,u2) ∈ AFB, with ui(t) = νi(t,x(t)) for i = 1, 2, is admissible with trajectory x unique solution of{
ẋ(t) = g(t,x(t),ν1(t,x(t)),ν2(t,x(t))) in [τ, Tx]
x(τ) = ξ

where Tx = inf{t ≥ τ : x(t) ∈ T } is the exit time. Similarly, the upper value function V + : [0,∞) × Rn → [−∞,+∞] is
defined by

V +(τ, ξ) = sup
ν1

inf
ν2

ψ(Tx,x(Tx)).
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Theorem 4.8. Let us consider the problem (4.77) with g and ψ continuous, with a closed target set T and
game set G. Let (0,α) ∈ G \ T . Let us suppose that

i. the Isaacs’ condition holds; in this case we have

HDP (t,x,λ) = max
u1∈U1

min
u2∈U2

λ · g(t,x,u1,u2) = min
u2∈U2

max
u1∈U1

λ · g(t,x,u1,u2); (4.78)

ii. the problem has value function V , with V ∈ C1(G \ T ) and ∇V (t,x) = (∂V∂t (t,x),∇xV (t,x)) 6= 0 for
all (t,x) ∈ G \ T .

Let us consider a Nash equilibrium (u∗1,u
∗
2) for the problem (4.77) in the class of feedback strategy, i.e.

u∗i (t) = ν∗i (t,x
∗(t)), where x∗ is the corresponding trajectory with x∗(0) = α and exit time Tx∗ = T ∗. Then

V satisfies the Isaacs’s equation (4.66) along the optimal path; more precisely,{
∂V

∂t
(t,x∗(t)) +HDP (t,x∗(t),∇xV (t,x∗(t))) = 0 a.e. t ∈ [0, T ∗)

V (T ∗,x∗(T ∗)) = ψ(T ∗,x∗(T ∗))
(4.79)

Proof. Let us consider a Nash equilibrium (u∗1,u
∗
2) ∈ AFB and its optimal trajectory x∗ with exit time T ∗

for the problem (4.77): clearly we have

x∗(0) = α, (T ∗,x∗(T ∗)) ∈ ∂T .

The final condition in (4.79) is obvious. Moreover, for every τ ∈ [0, T ∗] fixed, if we consider the new problem
(4.77) with the new initial data

x(τ) = x∗(τ),

the new optimal trajectory coincides, by the Bellman’s principle, with x∗ (the idea of the proof coincides
with the classical situation of an optimal control problem). Hence, for every τ ∈ [0, T ∗],

V (τ,x∗(τ)) = ψ(T ∗,x∗(T ∗)) = c,

where c is a constant. Clearly we obtain

dV (t,x∗(t))

dt
=
∂V

∂t
(t,x∗(t)) +∇xV (t,x∗(t)) · ẋ∗(t) = 0, a.e. t ∈ [0, T ∗). (4.80)

Let us consider the curve γ : [0, T ∗]→ G, defined by

γ(t) = (t,x∗(t)),

i.e. the optimal path: clearly V (γ(t)) = c for every t ∈ [0, T ∗].
Since ∇V (t,x) 6= 0, the Dini’s Theorem guarantees that locally
the curve γ divides the set G \ T in two different regions where
V (t,x) > c and V (t,x) < c.
Now fix t ∈ [0, T ∗) and consider the point P = (t,x∗(t)). In
such point P , the function V has the maximum growth in the
direction of the vector

∇V (t,x∗(t)) =

(
∂V

∂t
(t,x∗(t)), ∇xV (t,x∗(t))

)
.

Since the Player I wants to maximizes, he wishes to move P in such direction; but he has some “constraints”
for the movements of the point P , i.e. on the trajectory, given by the dynamics and the choice of the Player
II. Hence, if the Player II choices u∗2(t) = ν∗2(t,x∗(t)), then Player I considers its strategy such that

u∗1(t) = ν∗1(t,x∗(t)) ∈ arg max
u1∈U1

[(
∂V

∂t
(t,x∗(t)), ∇xV (t,x∗(t))

)
·w
]

(4.81)
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where w is a vector which depends on t, x∗(t), u1 and u∗2(t). Since x∗ is the optimal trajectory, we know
that the “best” direction w in the problem (4.81) is w = dP

dt = (1, ẋ∗(t)) (in the points t where ẋ∗(t) exists);
using the dynamics we obtain

u∗1(t) ∈ arg max
u1∈U1

(
∂V

∂t
(t,x∗(t)) +∇xV (t,x∗(t)) · g(t,x∗(t),u1,u

∗
2(t))

)
= arg max

u1∈U1

(
∇xV (t,x∗(t)) · g(t,x∗(t),u1,u

∗
2(t))

)
, (4.82)

for a.e. t ∈ [0, T ∗). Since the Player II wants to minimize, with similar arguments we obtain

u∗2(t) = ν∗2(t,x∗(t)) ∈ arg min
u2∈U2

(
∇xV (t,x∗(t)) · g(t,x∗(t),u∗1(t),u2)

)
(4.83)

Now, by (4.80) and the dynamics, we have

0 =
∂V

∂t
(t,x∗(t)) +∇xV (t,x∗(t)) · ẋ∗(t)

=
∂V

∂t
(t,x∗(t)) +∇xV (t,x∗(t)) · g(t,x∗(t),u∗1(t),u∗2(t)) (4.84)

(by (4.82)) =
∂V

∂t
(t,x∗(t)) + max

u1∈U1

(
∇xV (t,x∗(t)) · g(t,x∗(t),u1,u

∗
2(t))

)
(4.85)

(by (4.83)) =
∂V

∂t
(t,x∗(t)) + min

u2∈U2

(
∇xV (t,x∗(t)) · g(t,x∗(t),u∗1(t),u2)

)
, (4.86)

for a.e. t ∈ [0, T ∗). Let us conclude the proof using the Isaacs’ condition; for every fixed t, let us introduce
the function h̃t : U1 × U2 → R by

h̃t(u1,u2) = ∇xV (t,x∗(t)) · g(t,x∗(t),u1,u2). (4.87)

The equalities (4.84)–(4.86) give that

h̃t(u
∗
1(t),u∗2(t)) = max

u1∈U1

h̃t(u1,u
∗
2(t)) = min

u2∈U2

h̃t(u
∗
1(t),u2). (4.88)

If we show that

h̃t(u
∗
1(t),u∗2(t)) = max

u1∈U1

min
u2∈U2

h̃t(u1,u2) = min
u2∈U2

max
u1∈U1

h̃t(u1,u2) (4.89)

we obtain 0 =
∂V

∂t
(t,x∗(t)) +HDP (t,x∗(t),∇xV (t,x∗(t))) and the proof is finished (note that in (4.89) the

second equality is true by the Isaacs’ condition). In order to do that, let us notice that

h̃t(u
∗
1(t),u∗2(t)) =(4.88) max

u1∈U1

h̃t(u1,u
∗
2(t))

≥ min
u2∈U2

max
u1∈U1

h̃t(u1,u2)

=(4.78) max
u1∈U1

min
u2∈U2

h̃t(u1,u2)

≥ min
u2∈U2

h̃t(u
∗
1(t),u2)

=(4.88) h̃t(u
∗
1(t),u∗2(t)),

Hence, all the previous inequalities are equalities and the first equality in (4.89) holds.
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4.3.1 Examples

Example 4.3.1. (see [2]) Let us consider the two-person zero-sum game

Player I: max
u1

J(u1, u2), Player II: min
u2

J(u1, u2)

J(u1, u2) =
1

2

∫ 2

0

(u2
2 − u2

1) dt+
1

2
x(2)2

ẋ =
√

2u2 − u1

x(0) = x0

First, it is easy to show that the Isaacs’ condition holds:

H−DP (t, x, λ) = max
u1∈R

(
−1

2
u2

1 − λu1

)
+ min
u2∈R

(
1

2
u2

2 +
√

2λu2

)
= H+

DP (t, x, λ). (4.90)

Hence we can define the Hamiltonian of Dynamic Programming HDP : in order to do that, note that

u∗1 = −λ∗, u∗2 = −
√

2λ∗ (4.91)

realize the max and min in (4.90) respectively and hence HDP (t, x, λ) = − 1
2
λ2. Hence there exists the value function V that

solves the Isaacs’ equation 
∂V

∂t
(t, x)− 1

2

(
∂V

∂x
(t, x)

)2

= 0 for (t, x) ∈ [0, 2]× R

V (2, x) =
1

2
x2 for x ∈ R

(4.92)

Since we are considering an Affine–Quadratic problem, we looking for a value function of the type (2.18), i.e. V (t, x) =
1
2
Z(t)x2 +W (t)x+ Y (t) : replacing such V in (4.92) we obtain

Żx2 + 2Ẇx+ 2Ẏ − (Zx+W )2 = 0, ∀(t, x) ∈ [0, 2]× R
⇒ Ż = Z2 (4.93)

Ẇ = ZW (4.94)

2Ẏ = W 2 (4.95)

V (2, x) =
1

2
Z(2)x2 +W (2)x+ Y (2) =

1

2
x2, ∀x ∈ R

⇒ Z(2) = 1, W (2) = Y (2) = 0 (4.96)

Easy computations give: by (4.93) and (4.96) Z(t) =
1

3− t ; by (4.94) and (4.96), W (t) = 0; finally, by (4.95) and (4.96),

Y (t) = 0. Hence we obtain the value function

V (t, x) =
1

2(3− t)x
2.

Now, relation (4.76) gives λ∗(t) = 1
3−tx

∗(t), where x∗ is the optimal trajectory; (4.91) gives

u∗1(t) = − 1

3− tx
∗(t), u∗2(t) = −

√
2

3− tx
∗(t). (4.97)

Hence we are in the position to find a feedback strategy. Using this expression for the control (u1, u2), the dynamics gives

ẋ∗ = − x∗

3− t ;

together with the initial condition x(0) = x0, we obtain x∗ = x0
3−t

3
. This implies that (u∗1, u

∗
2) in (4.97) is a feedback Nash

equilibrium.

4

4.4 Pursuit-evasion games

Let
T = R+ × T0 ⊂ R+ × Rn

be a target set, with T0 closed. Let as denote by G ⊂ R+×Rn the game set, i.e. the set where the trajectories
lie, (t,x(t)) ∈ G.

We investigate a situation in which the first player tries to maintain the state of the system as long as
possible outside to a target set T while the second player aims reaching T as soon as possible. For this
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reasons, in all this section, the first player, who chooses u1, is called Pursuer, which we shall abbreviate by
P ; the second player, who chooses u2, is called Evader, which we shall abbreviate by E.
We consider an autonomous problem, i.e. a situation where f, g and ψ do not depend directly on t, and
we are looking for Nash equilibrium in the family of feedback strategies. For every (u1,u2) ∈ AFB, where
ui(t) = νi(t,x(t)), with the corresponding x via

ẋ = g(x,ν1(t,x),ν2(t,x)), x(0) = α

such that (0,α) ∈ G \ T , the exit time in (1.6) is

Tx = inf{t ≥ 0 : x(t) ∈ T0}; (4.98)

if the initial data on the trajectory x is x(τ) = ξ, with (τ, ξ) ∈ G \ T ,
then the definition of its exit time is Tx = inf{t ≥ τ : x(t) ∈ T0}.

We are interested in the game



Pursuer : min
u1

J(u1,u2), Evader : max
u2

J(u1,u2)

u1(∈ U1, u2 ∈ U2

J(u1,u2) =

∫ Tx

0
f(x,u1,u2) dt+ ψ(x(Tx))

ẋ = g(x,u1,u2)
x(0) = α, (0,α) ∈ G \ T
x(Tx) ∈ T0

(4.99)

where the control sets Ui are closed and Tx is the exit time of the trajectory x. Note that in the Pursuit-
Evasion games the first Player (P) would like to have a min, while (E) wishes to have a max; this notation is
in honor of Isaacs and it is exactly as in his book [11] (see page 201). Clearly, all the results of the previous
sections hold with easy modifications.

Here we have that H−DP and H+
DP do not depend on t. For this type of problems we have the following

properties:

Proposition 4.1. Let us consider the game (4.99) with f, g and ψ continuous, and with T0 closed. Then

i. the lower V − value function does not depend explicitly on t in the game set G, i.e.

V −(t,x) = V −(x), ∀(t,x) ∈ G; (4.100)

ii. the game set G for the game (4.99) is

G = R+ × G0 ⊂ R+ × Rn;

iii. if the lower value function V − is in C1(int(G0 \ T0)), then the lower Isaacs’ equation (4.49) becomes{
H−DP (x,∇V −(x)) = 0 ∀x ∈ int(G0 \ T0)
V −(x) = ψ(x) ∀x ∈ T0

Similar results in i. and iii. hold for V +.

Proof. Let (τ, ξ) ∈ T ; clearly V −(τ, ξ) = ψ(ξ). Now, let (τ, ξ) ∈ G \ T : by definition4,

V −(τ, ξ) = inf
ν1

sup
ν2

∫ Tx

τ
f(x,u1,u2) dt+ ψ(x(Tx))

4We recall that the First Player minimizes and the second Player maximizes, hence in the definition of V + and V − we have
to change 1 with 2 and viceversa.
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where in the previous line (u1,u2) ∈ AFB, with ui(t) = νi(t,x(t)), and the corresponding x solution of of
the ODE {

ẋ = g(x,ν1(t,x),ν2(t,x)) in [τ, Tx]
x(τ) = ξ

For every such (u1,u2) ∈ AFB, let us consider ν̃i(s,x) = νi(τ + s,x) for every x ∈ Rn and s ≥ 0. Since g
does not depends on t, the unique solution x̃ of the ODE{

ẋ = g(x, ν̃1(t,x), ν̃2(t,x))
x(0) = ξ

is x̃(s) = x(τ + s). Hence we consider (ũ1, ũ2) ∈ AFB, with ũi(t) = ν̃i(t, x̃(t)). Since T = R+ × T0, it is
easy to see that

Tx̃ = Tx − τ.
Clearly we obtain ∫ Tx̃

0
f(x̃, ũ1, ũ2) dt+ ψ(x̃(Tx̃)) =

∫ Tx

τ
f(x,u1,u2) dt+ ψ(x(Tx)),

for every (u1,u2) ∈ AFB as before. This implies V −(τ, ξ) = V −(0, ξ), for every τ > 0 and ξ such that
(τ, ξ) ∈ G. This proves i. and the arguments of this proof imply easily ii.

The assumption V − ∈ C1(int(G0 \ T0)) and relation (4.100) give ∂V −

∂t (t,x) = 0. Now, since the problem
is autonomous, H−DP does not depend explicitly by t and we obtain, by the lower Isaacs’ equation (4.49),

∂V −

∂t
(t,x) +H−DP (t,x,∇xV

−(t,x)) = H−DP (x,∇V −(x)) = 0.

The final condition V −(τ, ξ) = ψ(ξ), for every (τ, ξ) ∈ T , follows by i..

The next result is an easy consequence of the previous proposition.

Remark 4.4. Let us consider the game (4.99) with f, g and ψ continuous, and with T0 closed. If the
Isaacs’ condition is satisfied, i.e.

HDP (x,λ) = min
v1∈U1

max
v2∈U2

(
f(x,v1,v2) + λ · g(x,v1,v2)

)
= max

v2∈U2

min
v1∈U1

(
f(x,v1,v2) + λ · g(x,v1,v2)

)
. (4.101)

and the value function V is in C1(int(G0 \T0)), then V does not depend explicitly on t. Moreover the Isaacs’
equation (4.66) becomes {

HDP (x,∇V (x)) = 0 ∀x ∈ int(G0 \ T0)
V (x) = ψ(x) ∀x ∈ T0

(4.102)

Theorem 4.7 for our pursuit-evasion game has a new statement:

Theorem 4.9. Let us consider the game (4.99) with f, g and ψ continuous, and with T0 closed. Let us
suppose that the Isaacs’ condition is satisfied. Let us suppose that there exists a function V : G0 → R in
C1(G0 \ T0) such that solves the Isaacs’ equation (4.102).
Let (u∗1,u

∗
2) ∈ AFB, where u∗i (t) = ν∗i (x

∗(t)), with the corresponding trajectory x∗ with x∗(0) = α and exit
time Tx∗, be such that (ν∗1(x),ν∗2(x)) realizes, for every x, the max-min in the Isaacs equation, i.e.

0 = f(x,ν∗1(x),ν∗2(x)) +∇V (x) · g(x,ν∗1(x),ν∗2(x)) = HDP (x,∇V (x)), (4.103)

for every x ∈ int(G0 \ T0). Then (u∗1,u
∗
2) is a Nash equilibrium.

We note that in our pursuit-evasion games (4.99), the feedback strategies (u1,u2) ∈ AFB are such that
ui(t) = νi(x(t)) with νi which depends only on x, i.e. we looking for stationary feedback strategies. Finally,
along the optimal trajectory (4.103) becomes

0 = f(x∗(t),ν∗1(x∗(t)),ν∗2(x∗(t))) +∇V (x∗(t)) · g(x∗(t),ν∗1(x∗(t)),ν∗2(x∗(t))), (4.104)

for every t ∈ [0, Tx∗).
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4.4.1 The lady in the lake

The following games is in [2]. A lady (E=Evader) is swimming in a circular lake (of radius R) with a
velocity −→vL(t) such that vL(t) = vL is constant and vL < 1; she can change the direction in which she swims
instantaneously. Hence the lady controls the direction of its velocity, i.e. she controls the angular velocity
uL with respect to the radius CE, without any restriction.

A man (P=Pursuer) is not a swimmer and he wishes to intercept the lady when she reaches the shore;
he is in the beach of the lake and can run along the perimeter with velocity −→uM (t) which is tangent to the
circumference. He also can change his direction instantaneously; hence the man controls the signed modulo
uM , i.e. |uM (t)| ≤ 1, where uM > 0 (uM < 0) implies that the man runs clockwise (counter-clockwise)
around the lake.

We assume that the lady and the man never get tired. E doesn’t stay in
the lake forever and she wishes to come out without being caught by the
man; in the land, E can run faster than P. E ’s goal is to maximize the
pay-off, which is the angular distance θ viewed from the center C of the
lake, at the time E reaches to the store. P obviously wants minimize
such pay-off.
In order to describe the system, we introduce the angular distance θ =
θ(t), i.e. the angle between P and E with respect to the center C in
a clockwise sense: we consider −π ≤ θ(t) ≤ π and the identification
π ' −π. The E ’s distance with respect to the center of the lake is
r = r(t). The dynamics of the game (we left to the reader the details) is

θ̇ =
vL sinuL

r
− uM

R
(4.105)

ṙ = vL cosuL (4.106)

The pay-off function is |θ(T )|, where T = T(θ,r) is the exit time of the trajectory (θ, r), as in (4.98), by

T = inf{t ≥ 0 : (θ(t), r(t)) ∈ T0},

where T is the target set of the game, T = R+ × T0 with T0 =
[−π, π]× [R,∞) (and π ' −π). We are in a pursuit-evasion game
as in (4.99). Proposition 4.1 implies that the game set G for our
problem is G = R+ × G0: let us note that for every (r0, θ0) with
r0 ≥ 0 and θ0 ∈ [−π, π] the pair (uM , uL) = (0, 0) in the dynamics
implies the trajectory r(t) = r0 +tvL and θ(t) = θ0 for every t ≥ 0:
it is clear that for some t the trajectory reaches in the target set:
hence

G0 = [−π, π]× [0,∞),

with π ' −π.

Hence we have the pursuit-evasion game

Man (P): min
uM
|θ(T )| Lady (E): max

uL
|θ(T )|

|uM | ≤ 1

θ̇ =
vL sinuL

r
− uM

R
ṙ = vL cosuL
r(0) = 0
r(T ) = R
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with T free. Let us looking for a Nash equilibrium (u∗M , u
∗
L) for this game in the family of (stationary)

feedback strategies, where

u∗M (t) = ν∗M (θ∗(t), r∗(t)), u∗L(t) = ν∗L(θ∗(t), r∗(t)) (4.107)

with the associated trajectory (θ∗, r∗) and the exit time T ∗ given by T ∗ = inf{t ≥ 0 : (θ∗(t), r∗(t)) ∈ T0}.
In order to do that, we apply Theorem 4.9. The Hamiltonian H = H(θ, r, uM , uL, λ1, λ2) is

H = λ1

(
vL sinuL

r
− uM

R

)
+ λ2vL cosuL.

For the upper and lower Hamiltonians of Dynamic Programming we have

H+
DP (θ, r, λ1, λ2) = min

|uM |≤1
max
uL

H(θ, r, uM , uL, λ1, λ2)

= min
|uM |≤1

{
−λ1

R
uM

}
+ max

uL

{
vL sinuL

r
λ1 + λ2vL cosuL

}
= max

uL
min
|uM |≤1

H(θ, r, uM , uL, λ1, λ2)

= H−DP (θ, r, λ1, λ2)

Hence the Isaacs’ condition is satisfied and, by Proposition 4.1, we are in the position to looking for a value
function V that does not depend on t, i.e. V = V (θ, r); let us notice that the existence and the regularity
of such V is not guaranteed since the dynamics is not bounded and Lipschitz w.r.t. r (see Theorem 4.6).
The Isaacs’ equation (4.102) is min

|uM |≤1
max
uL

[(
vL sinuL

r
− uM

R

)
∂V

∂θ
(θ, r) + vL cosuL

∂V

∂r
(θ, r)

]
= 0 for (θ, r) ∈ [−π, π]× (0, R)

V (θ,R) = |θ| for θ ∈ [−π, π]

where the order of the min and the max is irrelevant. If (u∗M , u
∗
L) is our Nash equilibrium as in (4.107) with

associated trajectory (θ∗, r∗), let us set

V ∗θ (t) =
∂V

∂θ
(θ∗(t), r∗(t)), V ∗r (t) =

∂V

∂r
(θ∗(t), r∗(t)).

Let us reorganize the Isaacs’ equation taking into account that (ν∗M , ν
∗
L) realizes the min and the max; in

particular along the optimal trajectory (θ∗, r∗), as in (4.104), we have

0 = min
|uM |≤1

(
−uM
R
V ∗θ (t)

)
+ vL max

uL

(
sinuL
r∗(t)

V ∗θ (t) + cosuLV
∗
r (t)

)
(4.108)

= −
u∗M (t)

R
V ∗θ (t) + vL

(
sin(u∗L(t))

r∗(t)
V ∗θ (t) + cos(u∗L(t))V ∗r (t)

)
for every t ∈ [0, T ∗].
We can apply the variational approach for the open–loop representation of the feedback Nash equilibrium
(u∗M , u

∗
L) (see Theorem 4.2). Taking into account that (see (4.76)) λ∗1 = V ∗θ and λ∗2 = V ∗r along the optimal

trajectory t 7→ (θ∗(t), r∗(t)) and for the time t such that V is sufficiently regular in the point (θ∗(t), r∗(t)),
the adjoint equation gives

λ̇∗1 = −∂H
∂θ

= 0 ⇒ V ∗θ (t) = k (4.109)

λ̇∗2 = −∂H
∂r

⇒ d

dt
V ∗r (t) = V ∗θ (t)

vL sin(u∗L(t))

(r∗(t))2
= k

vL sin(u∗L(t))

(r∗(t))2
(4.110)

where k is a constant.
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First, let us suppose that for some time t on the optimal trajectory we have

V ∗θ (t) 6= 0 : (4.111)

(4.108) implies that the optimal control u∗M is given by

u∗M (t) = sgn(V ∗θ (t)). (4.112)

Consequently, (4.108) becomes

max
uL

{
sinuL

V ∗θ (t)

r∗(t)
+ cosuLV

∗
r (t)

}
=
|V ∗θ (t)|
vLR

(4.113)

This implies that the vector (cos(u∗L(t)), sin(u∗L(t))) has the same direction of the vector
(
V ∗r (t),

V ∗θ (t)

r∗(t)

)
, i.e.

(cos(u∗L(t)), sin(u∗L(t))) =
vLR

|V ∗θ (t)|

(
V ∗r (t),

V ∗θ (t)

r∗(t)

)
; (4.114)

hence (4.113) gives ∥∥∥∥(V ∗r (t),
V ∗θ (t)

r∗(t)

)∥∥∥∥ =
|V ∗θ (t)|
vLR

.

An explicit calculation of the norm in the previous line gives

(V ∗θ (t))2

(r∗(t))2
≤ (V ∗r (t))2 +

(V ∗θ (t))2

(r∗(t))2
=

(V ∗θ (t))2

v2
LR

2
;

this last relation is true only in the case r∗(t) ≥ vLR.
• Let’s study the situation r∗(t) < vLR. In this case, the previous calculations imply V ∗θ (t) = 0, i.e.

k = 0: hence, by (4.110), we obtain V ∗r (t) = k1 constant and (4.108) becomes
max
uL
{k1 cosuL} = 0.

Such relation gives k1 = 0 = V ∗r (t). Hence on the optimal
trajectory (θ∗(t), r∗(t)) inside the circumference of radius
vLR we have, in the points where ∇V exists,

∇V (θ∗(t), r∗(t)) = (V ∗θ (t), V ∗r (t)) = (0, 0) :

moreover, every choice of uM ∈ [−1, 1] and uL ∈ R realize
the min and the max in (4.108) respectively.
However, let us show that inside the circumference of radius
vLR, for every strategy-decision ν∗M of the Man, the Lady

has a strategy-decision ν∗L such that |θ∗(t)| = π, i.e she can always move herself into a position diametrically
opposite from P. In fact, in this situation the Lady can achieve a large angular velocity wL (with respect to
the center C) than the angular velocity wM of the Man; we note that for the optimal trajectory we have

wL =
vL sinu∗L

r∗
, wM =

u∗M
R

(4.115)

and clearly

max
uL
|wL| =

vL
r∗
, max

uM
|wM | =

1

R
:

hence in r∗(t) < vLR the Lady can achieve a large angular velocity wL than the angular velocity wM of the
Man.
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Clearly inside the circumference of radius vLR, for every strategy-decision ν∗M of the Man, the Lady can
consider a strategy-decision ν∗L in order to stay in a situation where θ∗(t) = ±π; hence θ̇∗ = 0 and wL = wM .
These last relations and (4.115) give the Nash equilibrium and its trajectory

(u∗M (t), u∗L(t)) =

(
u∗M (t), arcsin

u∗M (t)r∗(t)

RvL

)
(4.116)

(|θ∗(t)|, r∗(t)) =

(
π,RvL

sinu∗L(t)

u∗M (t)

)
. (4.117)

At this point is clear that for every initial data-position (θ0, r0), with r0 < RvL, the Lady can choose first
the strategy uL(t) = −π in order to move herself to the center of the lake, and after the strategy (4.116)
to move herself into a position diametrically opposite from the Man, reaching the points (±π,RvL). This
proves that the value function V is constant in r < RvL.

An example of the situation r(t) < vLR: Let us suppose that the Man starts at the North pole of the

circumference and runs in the clockwise sense with maximal velocity, i.e. u∗M = 1. Let us denote by M(t) the position

of the Man at the time t, we have (see the blue curve in the picture)

M(t) = R

(
sin

t

R
, cos

t

R

)
.

Note that |Ṁ | = 1 and clearly M describes an arc of circumference in a
clockwise sense of amplitude π/2. Let us denote by L(t) the position of the
Lady at time t: (4.117) gives

r∗ = RvL sinu∗L ⇒ ṙ∗ = RvLu̇
∗
L cosu∗L.

Since the dynamics is ṙ∗ = vL cosu∗L we obtain Ru̇∗L = 1, i.e. u∗L(t) =

t/R+ a with a constant. The initial condition r∗(0) = 0 with (4.117) give

a = 0. Hence we have the strategy for the Lady

u∗L =
t

R
.

By using (4.117), we obtain (see the red curve in the picture)

L(t) = −RvL sin
t

R

(
sin

t

R
, cos

t

R

)
.

It is easy to verify that the modulo of the velocity of the Lady is exactly vL and that L describes an half circumference

of center (−rVL/2, 0) and radius rVL/2 in a clockwise sense.

•• Let us study the situation r∗(t) ≥ vLR. Since the lady doesn’t stay in the lake forever, let us
define T0 as

T0 = max{t ≥ 0; r∗(t) = vLR}.

The previous argument imply that

|θ∗(T0)| = π, r∗(T0) = RvL. (4.118)

Taking into account that, by the final condition on the value function V (θ,R) = |θ|, we have

V ∗θ (T ∗) =
∂V

∂θ
(θ∗(T ∗), r∗(T ∗)) = sgn(θ∗(T ∗)) :

if V is sufficiently regular on the optimal path, the previous relation and equation (4.109) give

V ∗θ (t) = V ∗θ (T ∗) = sgn(θ∗(T ∗)), t ∈ [T0, T
∗].
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* First, let us consider the case sgn(θ∗(T ∗)) 6= 0: in this case the Lady sure will be not caught by
the Man.
Since V ∗θ (t) 6= 0, relations (4.112) and (4.114) give the Nash equilibrium

(u∗M (t), u∗L(t)) =

(
sgn(θ∗(T ∗)), arcsin

vLRsgn(θ∗(T ∗))

r∗(t)

)
, t ∈ [T0, T

∗]. (4.119)

The dynamics (4.105) and the Nash equilibrium (u∗M , u
∗
L) in (4.119) give

θ̇∗ =
vL sinu∗L

r∗
−
u∗M
R

= sgn(θ∗(T ∗))
v2
LR

2 − (r∗)2

R(r∗)2
. (4.120)

Now, taking into account the dynamics (4.106) and u∗L in (4.119), we have

ṙ∗ = vL cosu∗L = vL

√
1− sin2 u∗L =

vL
r∗

√
(r∗)2 − v2

LR
2; (4.121)

note that in the previous relation we consider only the case cosu∗L > 0 since the Lady cannot stay in the
lake forever (see the dynamics). Hence (4.120) becomes

θ̇∗ = −sgn(θ∗(T ∗))

R

√
(r∗)2 − v2

LR
2

r∗

√
(r∗)2 − v2

LR
2

r∗

= −sgn(θ∗(T ∗))

vLR

√
(r∗)2 − v2

LR
2

r∗
ṙ∗.

Taking into account (4.118), let us put θ∗(T0) = πsgn(θ∗(T ∗)). Hence the last equality and (4.118) imply∫ θ∗(T ∗)

θ∗(T0)
dθ =

∫ r∗(T ∗)

r∗(T0)
−sgn(θ∗(T ∗))

vLR

√
r2 − v2

LR
2

r
dr

⇒ (θ∗(T ∗)− θ∗(T0))sgn(θ∗(T ∗)) = − 1

vLR

∫ R

vLR

√
r2 − v2

LR
2

r
dr

⇒ |θ∗(T ∗)| − π = −
∫ 1

vL

√
1− s2

s2
ds (with s =

vLR

r
)

= −
[(
−1

s

)√
1− s2

]1

vL

+

∫ 1

vL

1√
1− s2

ds (by part)

= − 1

vL

√
1− v2

L +
(
− arccos s

]1

vL

= − 1

vL

√
1− v2

L + arccos vL.

We obtain

|θ∗(T ∗)| = π − 1

vL

√
1− v2

L + arccos vL. (4.122)

A plot of the function, for x ∈ (0, 1],

x 7→ y(x) = π − 1

x

√
1− x2 + arccosx,

comes from lim
x→0+

y(x) = −∞, y(1) = π and y′ =
√

1−x2

x2 ≥ 0. Hence

there exists a value v∗L ∈ (0, 1) such that for vL ∈ (v∗L, 1) relation (4.122)
holds: for such vL, the Lady sure will not be caught by the Man.
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** In the case sgn(θ∗(T ∗)) = 0, the Lady sure will be caught by the Man.
• • • Let us construct the trajectory related to the Nash equilibrium in r∗(t) ≥ vLR.
THE CASE vL > v∗L. Let us suppose that θ∗(T0) = π : hence θ∗(t) > 0 in [T0, T

∗]. Equation (4.119)
gives

(u∗M (t), sinu∗L(t)) =

(
1,
vLR

r∗(t)

)
, t ∈ [T0, T

∗].

Using (4.121) we obtain
r∗ dr∗√

(r∗)2 − v2
LR

2
= vL dt

which implies
r∗(t) = vL

√
R2 + (t− T0)2, t ∈ [T0, T

∗]. (4.123)

The final condition r∗(T ∗) = R allow us to find T ∗:

T ∗ = T0 +
R

vL

√
1− v2

L.

Using (4.120) and (4.123) we obtain

θ̇∗(t) =
v2
LR

2 − (r∗)2

R(r∗)2
= − (t− T0)2

R(R2 + (t− T0)2)
= − 1

R
+

1
R

1 + ( t−T0
R )2

, t ∈ [T0, T
∗].

Solving such ODE and by using the initial condition θ∗(T0) = π allow us to find

θ∗(t) = π − t− T0

R
+ arctan

(
t− T0

R

)
, t ∈ [T0, T

∗]. (4.124)

Clearly t 7→ (θ∗(t), r∗(t)), using (4.123) and (4.124), describes the trajectory. In order to obtain a precise

idea of such curve, solving w.r.t. the time t in (4.123) we obtain t = T0 + R

√
(r∗)2

R2v2
L
− 1; hence setting such

t in (4.124) we obtain5

θ∗(r∗) = π −

√(
r∗

RvL

)2

− 1 + arccos

(
RvL
r∗

)
.

Easy calculations give

dθ∗

dr∗
(r∗) = −

√
(r∗)2 −R2v2

L

r∗RvL
, ⇒ dθ∗

dr∗
(RvL) = 0,

d2θ∗

d(r∗)2
(r∗) = − RvL√

(r∗)2 −R2v2
L

< 0.

Similar calculations hold for θ∗(T0) = −π (note that
u∗M (t) = −1).

THE CASE vL < v∗L. Let us suppose that θ∗(T0) = π : hence θ∗(t) > 0 in [T0, T1) where T1 < T ∗ is such
that θ∗(T1) = 0. The same calculations of the previous case give

r∗(t) = vL
√
R2 + (t− T0)2,

θ∗(t) = π − t− T0

R
+ arctan

(
t− T0

R

)
,

5Let us notice that arctan

(√
1−A2

A

)
= arccosA.
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for all t ∈ [T0, T1]. The second relation allow us to find T1

by using θ∗(T1) = 0. Again, but only in the first part of the
trajectory, we have

θ∗(r∗) = π −

√(
r∗

RvL

)2

− 1 + arccos

(
RvL
r∗

)
.

In [T1, T
∗], for every choice of the Lady (i.e. u∗L(t) =

ν∗L(θ∗(t), r∗(t))), the Man has the possibility to choice a
strategy (i.e. u∗L(t) = ν∗M (θ∗(t), r∗(t))) such that θ∗(t) = 0.
Since the Lady cannot stay for ever in the lake, she will ar-
rive at some time T ∗ in the land. Similar calculations hold
for θ∗(T0) = −π (note that u∗M (t) = −1).

4.5 Pursuit-evasion game of kind

We consider a situation similar to section 4.4, but now the functional J takes only a finite number of values:
these type of pursuit-evasion games are called games of kind. The theory of these type of games is very
wide and here we would like to give some ideas, in some particular situations (see for example [14] for more
details).

Let us consider the problem in (4.99). Here we consider a closed target set T = R+ × T0 ⊂ G, with
int(T0) 6= ∅, such that ∂T0 is a (n− 1)-dimensional surface in C1, i.e.

∂T0 = {x ∈ G0 ⊂ Rn : h(x) = 0},

where h : G0 → R is a function in C1. For every x ∈ ∂T0, let us denote by n(x) ∈ Rn the outward normal
of T0 at x; clearly n(x) ‖∇h(x).
In this game, the Evader (E) tries to prevent the state–trajectory from reaching into the interior of T0,
whereas the Pursuer (P ) seeks the opposite. We assign numerical values to the outcomes J in (4.99) for the
trajectory x associated to the strategy (u1,u2) ∈ AFB, where ui(t) = νi(x(t)):

• −1 for termination of the game or capture, i.e. the trajectory x arrives in int(T0);

• +1 for no termination of the game or escape, i.e. the trajectory x never arrives in int(T0).

Hence we are interested in the game

Pursuer : min
u1

J(u1,u2), Evader : max
u2

J(u1,u2)

u1 ∈ U1 u2 ∈ U2

J(u1,u2) =

{
−1 if ∃ t ≥ 0 s.t. x(t) ∈ int(T0)
+1 otherwise

ẋ = g(x,u1,u2)
x(0) = α

(4.125)

with g continuous function and (0,α) ∈ G fixed. For our game the Hamiltonian is

H(x,u1,u2,λ) = λ · g(x,u1,u2). (4.126)

Let us suppose for this problem that the Isaacs’ condition is satisfied.
It is clear that the definition of the value functions V − and V + is a simple modification of Definition

4.8.6 It is clear that in this problem the regularity assumption in 1. does not hold and, despite the Isaacs’
assumption holds, it is not possible to guarantee that there exists the value function V . However we can
define V − and V + and, exactly as in i.–ii. of Proposition 4.1 we have

6To be precise, recalling that the First Player minimizes and the second Player maximizes and hence in the definition of V +

and V − we have to change 1 with 2 and viceversa:
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Remark 4.5. For the game (4.125) we have that:

i. the lower value functions V − and the upper value function V + do not depend on t;

ii. the game set is G = R+ × G0.

Since the “solution” of the game does not depend on the time, the most interesting question is to study
which initial points of G0 lead to a termination of the game and which are not. In order to do that, let us
classify the points of the set G0:

States of capture, states of escape in G0 \ int(T0).

Definition 4.11. Let us consider the game (4.125). Let x0 ∈ G0 \ int(T0). We say that

• x0 is a state of termination (or to capture) if the first Player (P ) has a strategy–control u1, i.e. a
decision rule ν1 = ν1(x), such that for every acts–strategy u2 of the second Player (E), i.e. for every
decision rule ν2 = ν2(x), the trajectory7 can be steered to the interior of the target set: we denote by
Cap the set of all the states of capture;

• x0 is a state of no–termination (or to escape) if (E) has a strategy-control such that for every acts–
strategy of (P ) the trajectory can be steered outside to int(T0) forever: we denote by Esc the set of all
the states of escape.

Let us prove the following:

Remark 4.6. If is x ∈ Cap, then V −(x) = V +(x) = −1. If is x ∈ Esc, then V −(x) = V +(x) = +1.

Proof. Let ξ be a state of capture. Then there exists a control ũ1 for the first Player such that for every
u2 such that (ũ1,u2) ∈ AFB, with trajectory x which starts from ξ, we have J(ũ1,u2) = −1. This implies
that

J(ũ1,u2) = −1, ∀(ũ1,u2) ∈ AFB.

Hence, by (4.18) and by definition,

−1 ≤ V −(ξ) ≤ V +(ξ) = sup
ν2

inf
ν1

J(u1,u2) ≤ sup
ν2

J(ũ1,ν2) = −1

Now, let ξ be a state of escape. Then there exists a control ũ2 such that for every u1 such that
(u1, ũ2) ∈ AFB, with trajectory x which starts from ξ, we have J(u1, ũ2) = +1. This implies that

J(u1, ũ2) = 1, ∀(u1, ũ2) ∈ AFB.

Definition 4.10. Let us consider the problem (4.125). The lower value function V − : [0,∞) × Rn → [−∞,+∞] is defined
by

V −(τ, ξ) = inf
ν1

sup
ν2

J(u1,u2),

where (u1,u2) ∈ AFB, with ui(t) = νi(x(t)) for i = 1, 2, is admissible with trajectory x unique solution of{
ẋ(t) = g(t,x(t),ν1(x(t)),ν2(x(t))) in [τ, Tx]
x(τ) = ξ

where Tx = inf{t ≥ τ : x(t) ∈ int(T0)} is the exit time. Similarly, the upper value function V + : [0,∞) × Rn → [−∞,+∞]
is defined by

V +(τ, ξ) = sup
ν2

inf
ν1

J(u1,u2).

7The trajectory, in this situation, is the solution x of the ODE{
ẋ(t) = g(x(t),ν1(x(t)),ν2(x(t)))
x(0) = x0

and hence u1(t) = ν1(x(t)), u2(t) = ν2(x(t)).
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Hence, by (4.18) and by definition,

1 ≥ V +(ξ) ≥ V −(ξ) = inf
ν1

sup
ν2

J(ν1,u1) ≥ inf
ν1

J(ν1, ũ2) = 1.

Now we are in the position to define, with an abuse of language, a sort of value function

V : Cap ∪ Esc → {−1,+1}.

The most interesting situation, of course, is the one in which G0 contains both capture and escape states.
It is clear that the value function V is discontinuous and the theory of the previous sections is not useful.

Usable part in ∂T0.

At this point a natural question is to investigate which points of the boundary of the target set are candidate
to be a state of termination for the game. We have the following:

Definition 4.12. Let us consider the game (4.125) and let us assume that the Isaacs’ condition is satisfied.
We define the usable part, that we will denote by UP, as

UP =

{
x ∈ ∂T0 : min

u1∈U1

max
u2∈U2

n(x) · g(x,u1,u2) = max
u2∈U2

min
u1∈U1

n(x) · g(x,u1,u2) ≤ 0

}
. (4.127)

The points of the usable part are candidate to be termination for the game. If strict inequality holds in
(4.127) for some x, then it is a state of termination, i.e. x ∈ Cap, and it penetrates in T0; to be clear, if for
some controls (u1,u2) and for some time t, the trajectory x associated to such controls arrives at time t in
a point of this type, then ẋ(t) = g(x(t),u1(t),u2(t)) gives the direction of the trajectory in the point x(t);
since n(x(t)) · ẋ(t) < 0, then the trajectory enters in int(T0).
The points x for which equality holds in (4.127) may be only touching points.

The barrier and its construction.

We now are in the position to introduce the most important “object” that allows us to study our problem:
the barrier. It is the set that separates the state of capture to the state of escape:

Definition 4.13. We define the barrier Bar the set in G0 \ int(T0) by

Bar = ∂Cap ∩ ∂Esc.

The boundary of the usable part, that we will denote by BUP, is the set

BUP = UP ∩ Bar.

It is clear that the barrier can be a very irregular set. Let us introduce the following two assumptions:
Assumption. Let us assume that Bar is non empty and

• (smoothness) the barrier is a C2 surface, i.e. Bar = {x : b(x) = 0}, with b ∈ C2 such that

p(x) = ∇b(x) (4.128)

is the outward normal of Cap in the point x; moreover we assume that

x ∈ Bar =⇒ x 6∈ Cap ∪ Esc;

• (naturality) the curve from which the barrier starts is BUP, i.e. the boundary of the usable part.
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A natural barrier: for every point x0 in BUP, we have p(x0) = n(x0) (as we will see in (4.140)).

If we are able to construct the barrier, then we would also have found Cap and Esc and, as a result, we solve
the game.

A first result in the direction to construct Bar requires this definition:

Definition 4.14. Let us consider the game (4.125) and let us assume that the Isaacs’ condition is satisfied.
Let A ⊂ G0 be a regular surface, i.e. with

A = {x ∈ G0 ⊂ Rn : a(x) = 0},

where a : G0 → R is a function in C1, and such that a(x) ∈ Rn is the normal in the point x to A (clearly
a(x) ‖∇a(x)). We say that A is a semipermeable surface if

min
u1∈U1

max
u2∈U2

a(x) · g(x,u1,u2) = max
u2∈U2

min
u1∈U1

a(x) · g(x,u1,u2) = 0.

The property of the barrier is the following:

Proposition 4.2. Let us assume that, for the game (4.125), the Isaacs’ condition is satisfied, g is a
continuous function with continuous derivative with respect to x, and the barrier Bar is non empty and
smooth. Then the barrier is a semipermeable surface, i.e. for every x ∈ Bar we have

min
u1∈U1

max
u2∈U2

p(x) · g(x,u1,u2) = max
u2∈U2

min
u1∈U1

p(x) · g(x,u1,u2) = 0. (4.129)

Proof. Let us consider x0 ∈ Bar; let β be the value of the previous max−min (equal to the min−max) in
such point x0: we have to prove that β = 0.
Let us assume that β < 0, i.e.

max
u2∈U2

min
u1∈U1

p(x0) · g(x0,u1,u2) = β :

this implies that for every point u2 ∈ U2 there exists a point uu2
1 ∈ U1 such that

p(x0) · g(x0,u
u2
1 ,u2) ≤ β. (4.130)

Now, for every point x ∈ Cap, let us denote by ûx
1 the strategy of (P ) such that for every acts of (E) the

trajectory can be steered from x into int(T0).
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In the point x0 ∈ Bar. If for every point u2 ∈ U2 there exists a point uu2
1 ∈ U1 such that (4.130) holds, for

every choice-strategy of the second Player (E) then the first Player (P) have a control-strategy to “force”
the trajectory x̃ from Bar into Cap following (locally) the direction ˙̃x(0) = g(x̃0(0),uu2

1 ,u2).

For every strategy u2 of the second Player (E), i.e. a decision rule ν2 = ν2(x) : Rn → U2, let us
consider the strategy uu2

1 for the first Player (P ) defined by the decision rule νu2
1 = νu2

1 (x) : Rn → U1 with

νu2
1 (x) = u

ν2(x0)
1 , for every x (where u

ν2(x0)
1 is as in (4.130)). Let ε = ε(u2) > 0 be such that there exists

the unique solution x̃ of the ODE{
˙̃x(t) = g(x̃(t),νu2

1 (x̃(t)),ν2(x̃(t))) in [0, ε)
x̃(0) = x0

Let us notice that g in continuous with continuous derivative with respect to x (we are not interested to
discuss the details in order to guarantee that such local solution x̃ there exists). Relation (4.130) implies
x̃(ε) ∈ Cap, for every strategy u2 of the second Player (E). Now the first Player (P ) consider the strategy

û
x̃(ε)
1 which transfers the point x̃(ε) into int(T0): this implies that x0 ∈ Cap, which contradicts the smoothness

assumption on the barrier. Hence β cannot be negative. A similar proof shows that β cannot be positive.

The fact that Bar gives the property that without (P )’s cooperation, (E) cannot make the state cross
Bar passing from a region where V = −1 to a region where V = 1; and viceversa, without (E)’s cooperation,
(P ) cannot make the state cross Bar passing from a region where V = +1 to a region where V = −1.
However we have to remark that the semipermeability condition in (4.129) does not exclude a “tangential”
penetration.

Let us emphasize that relation (4.129) does not imply that, for every fixed x ∈ Bar, there exists a pair
(u∗1,u

∗
2) ∈ U1 × U2, with u∗1 and u∗2 that depend on x, such that realizes the min-max in (4.129). The

following notion is a further requirement on the barrier:

Definition 4.15. Let us consider the game (4.125) and let us assume that the Isaacs’ condition is satisfied.
We say that a function (ν∗1,ν

∗
2) : Bar → U1 × U2 is a barrier control for Bar if for every x ∈ Bar we have

that

p(x) · g(x,ν∗1(x),u2) ≤ 0, ∀u2 ∈ U2, (4.131)

p(x) · g(x,u1,ν
∗
2(x)) ≥ 0, ∀u1 ∈ U1. (4.132)

Let us notice that the barrier control, in general, is not unique. The following remark shows the role of the
barrier control8

Remark 4.7. (ν∗1,ν
∗
2) is a barrier control for Bar if and only if, for every x ∈ Bar, the pair (ν∗1(x),ν∗2(x))

realizes the min-max in (4.129), i.e.

p(x) · g(x,ν∗1(x),ν∗2(x)) = min
u1∈U1

max
u2∈U2

p(x) · g(x,u1,u2) = max
u2∈U2

min
u1∈U1

p(x) · g(x,u1,u2) = 0. (4.133)

Proof. Let (ν∗1,ν
∗
2) be a barrier control for Bar and fix x ∈ Bar. Clearly (4.131) implies

p(x) · g(x,ν∗1(x),ν∗2(x)) ≤ 0

while (4.132) implies

p(x) · g(x,ν∗1(x),ν∗2(x)) ≥ 0.

Hence p(x) · g(x,ν∗1(x),ν∗2(x)) = 0 and, using (4.129), we have that (ν∗1(x),ν∗2(x)) realizes the min-max in
(4.129).

8Let us notice that, due to Remark 4.7, it is possible to use (4.133) to give a different, but equivalent, definition of barrier
control: in fact, in the literature appears that, a function (ν∗1,ν

∗
2) : Bar → U1 × U2 is a barrier control for Bar if for every

x ∈ Bar we have that (4.133) holds.
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Now let us suppose that, for x ∈ Bar fixed, the pair (ν∗1(x),ν∗2(x)) realizes the min-max in (4.129).
Moreover, let us suppose that (4.131) is false, i.e. there exists u2 ∈ U2 such that

p(x) · g(x,ν∗1(x),u2) > 0.

Since ν∗1(x) realizes the min, we obtain

0 < p(x) · g(x,ν∗1(x),u2)

≤ max
u2∈U2

p(x) · g(x,ν∗1(x),u2)

= min
u1∈U1

max
u2∈U2

p(x) · g(x,u1,u2)

which contradicts (4.129). This gives that (4.131) is true. A similar proof gives (4.132).

Let (ν∗1,ν
∗
2) be a barrier control for Bar (sufficiently regular), let us consider a point x0 ∈ Bar and the

curve x : [0, t0]→ Rn, for some t0 > 0, defined by{
ẋ(t) = g(x(t),ν∗1(x(t)),ν∗2(x(t))) in [0, t0]
x(0) = x0

(4.134)

Let us give the idea. If at some time t we have x(t) ∈ Bar, then we move such curve x = x(t) in a direction
ẋ(t): since (ν∗1,ν

∗
2) is a barrier control and using the previous ODE we have

0 = p(x(t)) · g(x(t),ν∗1(x(t)),ν∗2(x(t))) = p(x(t)) · ẋ(t),

i.e. the curve x lies on the semipermeable surface Bar and does not leave it. Let us show how it is possible
to use this idea in order to construct the barrier: such construction is “formal”, i.e. we are not interested
to give the precise assumptions that the following arguments require.
Let x be a point in Bar. By (4.133) we have

p(x) · g(x,ν∗1(x),ν∗2(x)) = 0. (4.135)

Set p(x) = (p1(x), . . . , pn(x)), u1 = (u1,1, . . . , u1,k1) ∈ U1 ⊂ Rk1 and u2 = (u2,1, . . . , u2,k2) ∈ U2 ⊂ Rk2 . If
we consider the derivative w.r.t. xj of (4.135), we obtain

0 =
n∑
i=1

∂pi
∂xj

(x)gi(x,ν
∗
1(x),ν∗2(x)) +

n∑
i=1

pi(x)
∂gi
∂xj

(x,ν∗1(x),ν∗2(x)) +

+

n∑
i=1

[
pi(x)

k1∑
k=1

∂gi
∂u1,k

(x,ν∗1(x),ν∗2(x))
∂ν∗1,k
∂xj

(x)
]

+

+
n∑
i=1

[
pi(x)

k2∑
k=1

∂gi
∂u2,k

(x,ν∗1(x),ν∗2(x))
∂ν∗2,k
∂xj

(x)
]

(4.136)

Since Bar is a C2 surface, by Schwarz and (4.128) we have

∂pi
∂xj

(x) =
∂2b

∂xj∂xi
(x) =

∂2b

∂xi∂xj
(x) =

∂pj
∂xi

(x). (4.137)

Let us notice that the third addend in (4.136) is

n∑
i=1

[
pi(x)

k1∑
k=1

∂gi
∂u1,k

(x,ν∗1(x),ν∗2(x))
∂ν∗1,k
∂xj

(x)
]

=

k1∑
k=1

[ n∑
i=1

pi(x)
∂gi
∂u1,k

(x,ν∗1(x),ν∗2(x))
]∂ν∗1,k
∂xj

(x)

=

k1∑
k=1

∂

∂u1,k

(
p(x) · g(x,ν∗1(x),ν∗2(x))

)∂ν∗1,k
∂xj

(x);
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since ν∗1(x) realizes the min in (4.129), i.e. the min for the function u1 7→ ϕ(u1) := p(x) · g(x,u1,ν
∗
2(x))

(recall that x is fixed), then ∇ϕ(ν∗1(x)) = 0 and we have that

∂

∂u1,k

(
p(x) · g(x,ν∗1(x),ν∗2(x))

)
= 0, ∀k = 1, . . . , k1.

Hence the third addend in (4.136) is zero; a similar argument proves that the fourth addend in (4.136) is
zero. Equation (4.136) becomes, using (4.137),

n∑
i=1

∂pj
∂xi

(x)gi(x,ν
∗
1(x),ν∗2(x)) +

n∑
i=1

pi(x)
∂gi
∂xj

(x,ν∗1(x),ν∗2(x)) = 0. (4.138)

Now, let us move x along the barrier Bar, i.e. x = x(t) ∈ Bar as in (4.134). Relation (4.138) becomes, using
the ODE in (4.134),

0 =

n∑
i=1

∂pj
∂xi

(x(t))gi(x(t),ν∗1(x(t)),ν∗2(x(t))) +

n∑
i=1

pi(x(t))
∂gi
∂xj

(x(t),ν∗1(x(t)),ν∗2(x(t)))

= ṗj(x(t)) +
∂H

∂xj
(x(t),ν∗1(x(t)),ν∗2(x(t)),p(x(t)))

since for our game the Hamiltonian is as in (4.126). Hence we have that the curve x = x(t) ∈ Bar satisfies

ṗ(x(t)) = −∇xH(x(t),ν∗1(x(t)),ν∗2(x(t)),p(x(t))). (4.139)

Now let us consider in (4.134) x0 ∈ BUP: the assumption that Bar is natural, gives that the curve x = x(t)
“starts” in x0, i.e. x(0) = x0. Recalling that BUP = UP ∩ Bar, we have that x0 ∈ Bar gives, see (4.129),

min
u1∈U1

max
u2∈U2

p(x0) · g(x0,u1,u2) = max
u2∈U2

min
u1∈U1

p(x0) · g(x0,u1,u2) = 0,

while x0 ∈ UP gives, by definition,

min
u1∈U1

max
u2∈U2

n(x0) · g(x0,u1,u2) = max
u2∈U2

min
u1∈U1

n(x0) · g(x0,u1,u2) ≤ 0.

If the previous inequality is strictly, x0 is a state of termination; this contradicts x0 ∈ Bar. The regularity
of ∂T0 and Bar gives the condition

p(x0) = n(x0). (4.140)

Note that this relation implies that ∂T0 and Bar have the same tangent in x0.

Collecting the previous arguments in (4.134), (4.139) and (4.140), in order to construct the barrier we
have the following;

Proposition 4.3. Let us consider the game (4.125) and let us assume that the Isaacs’ condition is satisfied.
The barrier Bar is described by the function x = x(t) which solves the system

ṗ(x) = −∇xH(x,ν∗1(x),ν∗2(x),p(x))
ẋ = g(x,ν∗1(x),ν∗2(x))
p(x) · g(x,ν∗1(x),ν∗2(x)) = 0
p(x(0)) = n(x(0))
x(0) = x0 ∈ BUP

(4.141)

where (ν∗1,ν
∗
2) is a control barrier, p(x) ∈ Rn is the outward normal of Cap in the point x ∈ Bar as in

(4.128). Clearly b(x(t)) = 0.
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4.5.1 Interception of a straight flying evader

When can an interceptor be successful against a faster attacking craft which travels a fixed straight course?
This model is in the book of Isaacs (see section 8.6 in [11]).

Here P moves in the plane with a motion and unit speed, while E is
bound to a line moves with speed w (w > 0 fixed), and merely can
select for his strategy one of the two possible directions of travel.
Capture occurs when |PE| < l, where l > 0 fixed. In view of P’s
unquestioned ability to capture when w < 1, this case is trivial
(please, solve it !). Our interest is in the conditions which make
possible the success of a slower pursuer with w > 1.
Let us pass to the details. The Pursuer P is free to move itself in the
half-plane y ≥ 0: the velocity is −→v (t) with modulo v = 1, the angle
of the velocity w.r.t. the y-axis (in the negative direction) is ψ. The
Evader E, constrained on the x-axis, can only controls the direction
ϕ ∈ {±1} of the velocity is −→w (t), with modulo w > 1 fixed.

The dynamics is {
ẋ = ωϕ− sinψ
ẏ = − cosψ

and the target set T = [0,∞)× T0 is such that

T0 = {(x, y) ∈ R2 : y ≥ 0,
√
x2 + y2 ≤ l}.

The boundary of T0 is smooth and

∂T0 =
{

x = l(sinα, cosα) : α ∈
[
−π

2
,
π

2

]}
;

the outward normal of T0 in x ∈ ∂T0 is n(x) = (sinα, cosα). The game hence is

Pursuer : min
ψ
J(ψ,ϕ), Evader : max

ϕ∈{−1,+1}
J(ψ,ϕ)

J(ψ,ϕ) =

{
−1 if ∃ t ≥ 0 s.t. ‖(x(t), y(t))‖2 < l
+1 otherwise

ẋ = ωϕ− sinψ
ẏ = − cosψ
(x(0), y(0)) = (x0, y0), y0 ≥ 0

We are in a pursuit-evasion game as in (4.125).
The game set is G = [0,∞) × G0. In order to describe G0, let us fix (x0, y0) ∈ R × R+: it is easy to see

that, first, choosing in the dynamics ψ = 0, for every ϕ, we move (x0, y0) to the point (x1, 0), for some x1;
secondly, choosing ψ = ±π/2 and ϕ = ±1 depending on sgn(x1), the dynamics moves the point (x1, 0) to
the origin (0, 0) ∈ int(T0). Hence

G0 = {(x, y) ∈ R2 : y ≥ 0}.

The Hamiltonian is
H(x, y, ψ, ϕ, λ1, λ2) = λ1(ωϕ− sinψ)− λ2 cosψ

and it is easy to verify that the Isaacs’ condition is satisfied. Let us looking for the usable part UP, i.e.

UP = {x = l(sinα, cosα) ∈ ∂T0 : min
ψ

max
ϕ∈{−1,+1}

n(x) · g(x, ψ, ϕ) ≤ 0};

hence we have to find α ∈ [− π
2 ,

π
2 ] such that, since w is positive,

min
ψ

(− sinα sinψ − cosα cosψ) + w max
ϕ∈{−1,+1}

ϕ sinα ≤ 0.
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This is equivalent to −1 + w| sinα| ≤ 0. Hence, recalling that w > 1,

UP =

{
x = l(sinα, cosα) : | sinα| ≤ 1

w

}
.

The boundary of the usable part is

BUP =

{
x = l(sinα, cosα) : | sinα| = 1

w

}
=
{
x+

0 := l(sinα+, cosα+), x−0 := l(sinα−, cosα−)
}
,

where −π/2 < α− < 0 < α+ < π/2 such that | sinα±| = 1
w .

Let us construct the barrier Bar, i.e. the curve x(t) = (x(t), y(t)) which is solution of the system (4.141),
i.e. 

ṗ1(x, y) = −∂H
∂x

(x, y, ψ∗(x, y), ϕ∗(x, y), p1(x, y), p2(x, y)) = 0

ṗ2(x, y) = −∂H
∂y

(x, y, ψ∗(x, y), ϕ∗(x, y), p1(x, y), p2(x, y)) = 0

ẋ = ωϕ∗(x, y)− sinψ∗(x, y)
ẏ = − cosψ∗(x, y)
p1(x, y)(ωϕ∗(x, y)− sinψ∗(x, y))− p2(x, y) cosψ∗(x, y) = 0
p(x(0), y(0)) = n(x(0), y(0))
(x(0), y(0)) ∈ BUP

(4.142)

recalling that p(x) = (p1(x, y), p2(x, y)) is the outward normal of Cap in x = (x, y) ∈ Bar and denoting by
(ν∗1(x),ν∗2(x)) = (ψ∗(x, y), ϕ∗(x, y)) the control barrier who realizes the following min−max

min
ψ

max
ϕ∈{−1,+1}

p(x, y) · g(x, y, ψ, ϕ) = min
ψ

(−p1(x, y) sinψ − p2(x, y) cosψ) + ω max
ϕ∈{−1,+1}

p1(x, y)ϕ,

i.e.
(cosψ∗(x, y), sinψ∗(x, y)) = (p2(x, y), p1(x, y)), ϕ∗(x, y) = sgn(p1(x, y)). (4.143)

Let us consider x+
0 ∈ BUP. The first two equations of the system (4.142) give that p(x, y) is a constant;

hence the barrier is part of lines. Since Bar starts from the point x+
0 and it is tangent to ∂T0 in such point

(see the sixth condition in the (4.142)), we have that the equation of the barrier is

x(t) = (x(t), y(t)) = tk(− cosα+, sinα+) + l(sinα+, cosα+); (4.144)

for some non zero constant k. Now, by noticing that Bar “separates” the escape states Esc to the capture
states Cap and that UP \ BUP is inside Cap, in (4.144) we have only to consider the case9 tk > 0.

The outward normal of Cap along Bar in the point x(t) = (x(t), y(t)) in (4.144) is10

p(x(t)) = (p1(x(t), y(t)), p2(x(t), y(t))) = (sinα+, cosα+); (4.145)

hence (see (4.128)) b(x, y) = x sinα+ + y cosα+ − l = 0. In (4.143) we obtain

ψ∗(x, y) = α+, ϕ∗(x, y) = 1. (4.146)

Let us verify that the third, the fourth and the fifth equations
in (4.142) are satisfied: using (4.144)–(4.145) we obtain that
the mentioned relations in (4.142)

−k cosα+ = ω − sinα+

k sinα+ = − cosα+

sinα+(ω − sinα+)− cosα+ cosα+ = 0

are true, choosing k = −cotanα+: hence t ≤ 0.
A similar argument holds for x−0 and allow us to construct the
other part of the barrier.

9Here t is only a parameter which describes the barrier and it is not a “time”.
10Note that, by (4.144), ẋ(t) = k(− cosα+, sinα+) and by (4.145) we have ẋ(t) ⊥ p(x(t)).
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Now let us determinate the initial position P (0) and E(0)
of Pursuer and the Evader respectively, in which occurs the
capture. Clearly, w.r.t. the coordinate (x(t), y(t)) in the dy-
namics we have

E(0) = P (0) + (x(0),−y(0)).

Hence the Pursuer captures the Evader if

E(0) ∈ P (0) +
{

(x, y) ∈ R2 : (x,−y) ∈ int (T0 ∪ Cap)
}
.



Appendix A

Optimal control tools

Let us consider the problem 

J(u) =

∫ t1

t0

f(t,x,u) dt+ ψ(x(t1))

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u),

C = {u : [t0, t1]→ U ⊆ Rk, u admissible}

(A.1)

where t0 and t1 are fixed.

A.1 Variational approach

We define the Hamiltonian function H : [t0, t1]× Rn × Rk × Rn → R for the problem (A.1) by

H(t,x,u,λ) = f(t,x,u) + λ · g(t,x,u).

The following result is fundamental:

Theorem A.1 (Pontryagin). Let us consider the problem (A.1) with f ∈ C1([t0, t1] × Rn+k) and g ∈
C1([t0, t1]× Rn+k).

Let u∗ be an optimal control and x∗ be the associated trajectory.

Then there exists a continuous multiplier λ∗ : [t0, t1]→ Rn such that

i) (Pontryagin Maximum Principle) for all τ ∈ [t0, t1] we have

u∗(τ) ∈ arg max
v∈U

H(τ,x∗(τ),v, λ∗0,λ
∗(τ));

ii) (adjoint equation) in [t0, t1] we have λ̇∗ = −∇xH(t,x∗,u∗,λ∗);

iii) (transversality condition) λ∗(t1) = ∇xψ(x(t1));

A first sufficient condition is the following

Theorem A.2 (Mangasarian). Let us consider the maximum problem (A.1) with f ∈ C1 and g ∈ C1.
Let the control set U be convex. Let u∗ be a normal extremal control, x∗ the associated trajectory and
λ∗ = (λ∗1, . . . , λ

∗
n) the associated multiplier (as in theorem A.1).

Consider the Hamiltonian function H and let us suppose that

v) the function (x,u) 7→ H(t,x,u,λ∗(t)) is, for every t ∈ [t0, t1], concave.

75
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Then u∗ is optimal.

Another and useful sufficient condition is due to Arrow.

Theorem A.3 (Arrow). Let us consider the maximum problem (A.1) with f ∈ C1 and g ∈ C1. Let u∗ be a
normal extremal control, x∗ be the associated trajectory and λ∗ be the associated multiplier.
Let us suppose that exists the maximized Hamiltonian function H0 : [t0, t1]× Rn × Rn → R by

H0(t,x,λ) = max
u∈U

H(t,x,u,λ), (A.2)

where H(t,x,u,λ) = f(t,x,u) + λ · g(t,x,u) is the Hamiltonian. Let us suppose that, for every t ∈
[t0, t1]× Rn, the function

x 7→ H0(t,x,λ∗(t))

is concave. Then u∗ is optimal.

A.1.1 Infinite horizon problems

Let us consider the problem: 

max
u∈C

∫ ∞
t0

f(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
lim
t→∞

xi(t) = βi, for 1 ≤ i ≤ n′

lim
t→∞

xi(t) free for n′ < i ≤ n
C = {u : [t0,∞)→ U ⊆ Rk, u admissible}

(A.3)

where α and β = (β1, . . . , βn) are fixed in Rn. We give a sufficient condition in the spirit of the theorem of
Mangasarian:

Theorem A.4. Let us consider the infinite horizon maximum problem (A.3) with f ∈ C1 and g ∈ C1.
Let the control set U be convex. Let u∗ be a normal extremal control, x∗ the associated trajectory and
λ∗ = (λ∗1, . . . , λ

∗
n) the associated multiplier, i.e. the tern (x∗,u∗,λ∗) satisfies the PMP and the adjoint

equation.
Suppose that

v) the function (x,u) 7→ H(t,x,u,λ∗) is, for every t ∈ [t0,∞), concave,

vi) for all admissible trajectory x,
lim
t→∞

λ∗(t) · (x(t)− x∗(t)) ≥ 0. (A.4)

Then u∗ is optimal.

Remark A.1. Suppose that in the problem (A.3) we have only a condition of the type limt→∞ xi(t) = βi.
Suppose that there exists a constant c such that

|λ∗(t)| ≤ c, ∀t ≥ τ (A.5)

for some τ, then the transversality condition in (A.4) holds.

In many problems of economic interest, future values of income and of expenses are discounted: if r > 0
is the discount rate, we have the problem

J(u) =

∫ ∞
t0

e−rtf(t,x,u) dt

ẋ = g(t,x,u)
x(t0) = α
max
u∈C

J(u)

(A.6)
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Let us define the current Hamiltonian Hc as

Hc(t,x,u,λc) = f(t,x,u) + λc · g(t,x,u),

where λc is the current multiplier. Clearly we obtain

Hc = ertH (A.7)

λ∗c = ertλ∗.

A necessary condition for the problem (A.6) is

Remark A.2.

u∗ ∈ arg max
v∈U

Hc(t,x∗,v,λ∗c)

λ̇
∗
c = rλ∗c −∇xH

c(t,x∗,u∗,λ∗c)

In order to use a necessary condition of optimality as in Theorem A.4, we note that (A.7) implies that
the concavity of

(x,u) 7→ H(t,x,u,λ∗(t)), ∀t

is equivalent to the concavity
(x,u) 7→ Hc(t,x,u,λ∗c(t)), ∀t

A.2 Dynamic Programming

Let us consider the problem for the problem (A.1); we define the Hamiltonian of Dynamic Programming
HDP : [t0, t1]× R2n → (−∞,+∞] defined by

HDP (t,x,λ) = max
v∈U

(
f(t,x,v) + λ · g(t,x,v)

)
(A.8)

We have the following necessary condition

Theorem A.5. Let us consider the problem (A.1) and let us suppose that for every (τ, ξ) ∈ [t0, t1] × Rn
there exists the optimal control u∗τ,ξ for the problem with initial data x(τ) = ξ. Let V be the value function
for the problem (A.1) and let V be differentiable. Then, for every (t,x) ∈ [t0, t1]× Rn, we have{

∂V

∂t
(t,x) +HDP (t,x,∇xV (t,x)) = 0 for (t,x) ∈ [t0, t1]× Rn

V (t1,x) = ψ(x) for x ∈ Rn
(A.9)

We give a sufficient condition for a more general problem: let us consider the problem

J(u) =

∫ T

t0

f(t,x,u) dt+ ψ(T,x(T ))

ẋ = g(t,x,u)
x(t0) = α
(T,x(T )) ∈ S
max

u∈Ct0,α
J(u),

(A.10)

with a control set U ⊂ Rk, with the target set S ⊂ (t0,∞) × Rn. Let us consider the reachable set for the
target set S defined by

R(S) = {(τ, ξ) : Cτ,ξ 6= ∅},

i.e. as the set of the points (τ, ξ) from which it is possible to reach the terminal target set S with some
trajectory.
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Theorem A.6. Let us consider the problem (A.10) with S closed. Let W : [t0, t1]×Rn → R be a C1 solution
of the BHJ equation

∂W

∂t
(t,x) + max

v∈U

(
f(t,x,v) +∇xW (t,x) · g(t,x,v)

)
= 0,

for every (t,x) in the interior of the reachable set R(S). Suppose that the final condition

W (t,x) = ψ(t,x), ∀(t,x) ∈ S (A.11)

holds. Let (t0,α) be in the interior of R(S) and let u∗ : [t0, T
∗]→ U be a control in Ct0,α with corresponding

trajectory x∗ such that

∂W

∂t
(t,x∗(t)) + f(t,x∗(t),u∗(t)) +∇xW (t,x∗(t)) · g(t,x∗(t),u∗(t)) = 0,

for every ∈ [t0, T
∗]. Then u∗ is the optimal control with exit time T ∗.

• Multiplier as shadow price

Theorem A.7. Let x∗t0,α be the optimal trajectory, λ∗t0,α be the optimal multiplier and let V be the value
function for the problem A.1 with initial data x(t0) = α. If V is differentiable, then

∇xV (t,x∗t0,α(t)) = λ∗t0,α(t), (A.12)

for every t ∈ [t0, t1].
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