Università degli Studi di Milano-Bicocca - Laurea Magistrale in Matematica

Esame di metodi matematici per l'analisi economica - controllo ottimo

27 Gennaio 2020

Cognome: \qquad nome: \qquad

1. (6 punti) Using the variational approach solve the problem

$$
\left\{\begin{array}{l}
\min _{u} T \\
\ddot{x}=u \\
x(0)=\dot{x}(0)=-1 \\
x(T)=\dot{x}(T)=0 \\
|u| \leq 1
\end{array}\right.
$$

2. (6 punti) Using the Dynamic Programming solve the problem

$$
\left\{\begin{array}{l}
\min _{u} \int_{0}^{2}(x-u) \mathrm{d} t+x(2) \\
\dot{x}=1+u^{2} \\
x(0)=1
\end{array}\right.
$$

In order to solve BHJ equation, we suggest to find the solution in the family of functions

$$
\mathcal{F}=\left\{V(t, x)=A+B t+C t^{2}+D \ln (3-t)+E(3-t) x, \text { with } A, B, C, D, E \text { constants }\right\} .
$$

3. (6 punti) Let us consider the following optimal control problem

$$
\left\{\begin{array}{l}
J(\mathbf{u})=\int_{t_{0}}^{t_{1}} f(t, \mathbf{x}, \mathbf{u}) \mathrm{d} t \tag{1}\\
\dot{\mathbf{x}}=g(t, \mathbf{x}, \mathbf{u}) \\
\mathbf{x}\left(t_{0}\right)=\boldsymbol{\alpha} \\
\max _{\mathbf{u} \in \mathcal{C}} J(\mathbf{u}) \\
\mathcal{C}=\left\{\mathbf{u}:\left[t_{0}, t_{1}\right] \rightarrow U \subset \mathbb{R}^{k}, \mathbf{u} \text { admissible }\right\}
\end{array}\right.
$$

with $\boldsymbol{\alpha}, t_{0}$ and t_{1} fixed.
i. With the appropriate and minimal assumptions, give the necessary condition of Pontryagin for the problem (1);
ii. with the appropriate assumptions, give the sufficient condition of Mangasarian for the problem (1); it is also required the proof.
4. (6 punti) Let us consider the "moonlanding problem":

$$
\left\{\begin{array}{l}
\max _{u \in \mathcal{C}} m(T) \\
\dot{h}=v \\
\dot{v}=\frac{u}{m}-g \\
\dot{m}=-k u \\
h(0)=h_{0}, \quad h(T)=0 \\
v(0)=v_{0}, \quad v(T)=0 \\
m(0)=M+F \\
m(t) \geq 0, \quad h(t) \geq 0 \\
\mathcal{C}=\{u:[0, T] \rightarrow[0, \alpha], \text { admissible }\}
\end{array}\right.
$$

where $h_{0}, M, F, g,-v_{0}, k$ and α are positive and fixed constants, and the final time T is free.
i. Introduce the problem with all the details;
ii. prove that the optimal solution has at most one switching point.
5. (6 punti) Let us consider the following zero sum differential game

$$
\left\{\begin{align*}
& \text { Player I: } \max _{\mathbf{u}_{1}} J\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right), \quad \text { Player II: } \min _{\mathbf{u}_{2}} J\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \tag{2}\\
& J\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\int_{0}^{T} f\left(t, \mathbf{x}, \mathbf{u}_{1}, \mathbf{u}_{2}\right) \mathrm{d} t+\psi(\mathbf{x}(T)) \\
& \dot{\mathbf{x}}=g\left(t, \mathbf{x}, \mathbf{u}_{1}, \mathbf{u}_{2}\right) \\
& \mathbf{x}(0)=\boldsymbol{\alpha}
\end{align*}\right.
$$

where T is positive and fixed, U_{i} are the control sets for the players.
i. Introduce, with all the details, the definitions of lower value function V^{-}and upper value function V^{+}(in particular provide the definitions of control and nonanticipative strategy). When the problem (2) admits value function V ?
ii. Let us consider the game

$$
\left\{\begin{array}{cc}
\text { Player I: } \max _{u_{1}} J\left(u_{1}, u_{2}\right) & \text { Player II: } \min _{u_{2}} J\left(u_{1}, u_{2}\right) \tag{3}\\
\left|u_{1}\right| \leq 1 & \left|u_{2}\right| \leq 1 \\
J\left(u_{1}, u_{2}\right)=\int_{0}^{\infty} & \operatorname{sgn}(x)\left(1-e^{-|x|}\right) e^{-t} \mathrm{~d} t \\
\dot{x}=\left(u_{1}-u_{2}\right)^{2} & \\
x(0)=x_{0} &
\end{array}\right.
$$

Prove that it does not admit value function.
iii. Now consider the problem

$$
\left\{\begin{array}{c}
\text { Player I: } \max _{\mathbf{u}_{1}} J\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right), \quad \text { Player II: } \min _{\mathbf{u}_{2}} J\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \tag{4}\\
J\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\psi(T, \mathbf{x}(T)) \\
\dot{\mathbf{x}}=g\left(t, \mathbf{x}, \mathbf{u}_{1}, \mathbf{u}_{2}\right) \\
\mathbf{x}(0)=\boldsymbol{\alpha} \\
(T, \mathbf{x}(T)) \in \partial S
\end{array}\right.
$$

with T free and the closed target set $S \subset[0, \infty) \times \mathbb{R}^{n}$. Let us assume that the problem admits a value function in C^{1} and that the Isaacs condition is satisfied (if is the case, add further necessary assumptions). Give a geometric proof of the Isaacs equation for the problem (4).

