## EXERCISE 1

Suppose that a certain form of respiratory allergy usually affects 1 in 20 individuals, while food intolerances concern $3.5 \%$ of cases.
Assuming that the two events are independent:

1) what is the probability of having both problems?
2) what is the probability of having at least one?
3) what is the probability of having only one?
4) Having a food intolerance, what is the probability of having a respiratory allergy?

A = respiratory allergy
I = food intolerances
$\mathrm{P}(\mathrm{A})=0,05$
$\mathrm{P}(\mathrm{I})=0,035$

1) $P(A \cap I)=0.05 * 0.035=0.00175$
2) $P(A \cup I)=0.05+0.035-0.00175=0.08325$
3) $\mathrm{P}[(\mathrm{A} \cap \bar{I}) \cup(\bar{A} \cap I)]=0.05 * 0.965+0.95 * 0.035=0.0815$
4) $\mathrm{P}(\mathrm{A} \mid \mathrm{I})=\mathrm{P}(\mathrm{A})=0.05$

## EXERCISE 2

From a study it is estimated that $80 \%$ of individuals are of normal weight, $15 \%$ overweight, and 5\% obese. In these 3 groups, the probability of developing a certain type of cardiovascular disease is respectively $1 \%, 3 \%$ and $6 \%$. Knowing that the population comprises a total of 10,000 individuals, calculate:
a) How many obese individuals should there be overall in this population;
b) What is the probability, randomly extracting an individual from the population, that he is a normal weight subject and falls ill with cardiovascular disease;
c) What is the probability that a randomly chosen individual in this population will develop one of these diseases - and, therefore, how many cases of the disease do we expect in the population.
d) What is the probability that an individual with cardiovascular disease is Normal Weight

C= cardiovascular disease
$\mathrm{N}=$ normal weight
$\mathrm{S}=$ overweight
$\mathrm{O}=$ obese
$P(N)=0.8 \quad P(C \mid N)=0.01$
$P(S)=0.15$
$P(O)=0.05$

$$
P(C \mid S)=0.03
$$

$$
P(C \mid O)=0.06
$$

1. $\mathrm{P}(\mathrm{O}) * 10000=500$
2. $P(N \cap C)=P(N) \cdot P(C \mid N)=0.8 \cdot 0.01=0.008$
3. $P(C)=P[(N \cap C) \cup(S \cap C) \cup(O \cap C)]=0.008+0.15 \cdot 0.03+$ $0.05 \cdot 0.06=0.008+0.0045+0.003=0.0155$

$$
10000 * 0.0155=155
$$

4. $\mathrm{P}(\mathrm{N} \mid \mathrm{C})=\frac{P(N \cap C)}{P(C)}=\frac{0.008}{0.0155}=0.5161$
