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8 Estimation

8.1 Sampling distributions
We saw in Chapter 3 how samples are drawn from much
larger populations. Data are collected about the sample
so that we can find out something about the population.
We use samples to estimate quantities such as disease
prevalence, mean blood pressure, mean exposure to a
carcinogen, etc. We also want to know by how much
these estimates might vary from sample to sample.
In Chapters 6 and 7 we saw how the theory of

probability enables us to link random samples with the
populations from which they are drawn. In this chapter
we shall see how probability theory enables us to use
samples to estimate quantities in populations, and to de-
termine the precision of these estimates. First we shall
consider what happens when we draw repeat samples
from the same population. Table 8.1 shows a set of 100
random digits which we can use as the population for
a sampling experiment. The distribution of the numbers
in this population is shown in Figure 8.1. The population
mean is 4.7 and the standard deviation is 2.9.
The sampling experiment is done using a suitable ran-

dom sampling method to draw repeated samples from
the population. In this case decimal dice were a conveni-
ent method. A sample of four observations was chosen:
6, 4, 6, and 1. The mean was calculated: 17/4 = 4.25. This

Table 8.1 Population of 100 random digits for a sampling experiment

9 1 0 7 5 6 9 5 8 8 1 0 5 7 6 5 0 2 1 2

1 8 8 8 5 2 4 8 3 1 6 5 5 7 4 1 7 3 3 3

2 8 1 8 5 8 4 0 1 9 2 1 6 9 4 4 7 6 1 7

1 9 7 9 7 2 7 7 0 8 1 6 3 8 0 5 7 4 8 6

7 0 2 8 8 7 2 5 4 1 8 6 8 3 5 8 2 7 2 4

was repeated to draw a second sample of four numbers:
7, 8, 1, 8. Their mean is 6.00. This sampling procedure
was done 20 times altogether, to give the samples and
their means shown in Table 8.2.
These sample means are not all the same. They

show random variation. If we were able to draw all
of the 3 921 225 possible samples of size 4 and calcu-
late their means, these means themselves would form a
distribution. Our 20 sample means are a sample from
this distribution. The distribution of all possible sample
means is called the sampling distribution of the mean.

0

5

10

15

20

Fr
eq

ue
nc

y

0 1 2 3 4 5 6 7 8 9

Digit

Figure 8.1 Distribution of the population of Table 8.1.
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102 Chapter 8 Estimation

Table 8.2 Random samples drawn in a sampling experiment

Sample 6 7 7 1 5 5 4 7 2 8
4 8 9 8 2 5 2 4 8 1
6 1 2 8 9 7 7 0 7 2
1 8 7 4 5 8 6 1 7 0

Mean 4.25 6.00 6.25 5.25 5.25 6.25 4.75 3.00 6.00 2.75

Sample 7 7 2 8 3 4 5 4 4 7
8 3 5 0 7 8 5 3 5 4
7 8 0 7 4 7 8 1 8 6
2 7 8 7 8 7 3 6 2 3

Mean 6.00 6.25 3.75 5.50 5.50 6.50 5.25 3.50 4.75 5.00

In general, the sampling distribution of any statistic is the
distribution of the values of the statistic which would
arise from all possible samples.

8.2 Standard error of a sample
mean

For the moment we shall consider the sampling distri-
bution of the mean only. As our sample of 20 means is a
random sample from it, we can use this to estimate some
of the parameters of the distribution. The 20 means have
their own mean and standard deviation. The mean is 5.1
and the standard deviation is 1.1. Now the mean of the
whole population is 4.7, which is close to the mean of
the samples. But the standard deviation of the popula-
tion is 2.9, which is considerably greater than that of the
sample means. If we plot a histogram for the sample of
means (Figure 8.2), we see that the centre of the sam-
pling distribution and the parent population distribution
are the same, but the scatter of the sampling distribution
is much less.
Another sampling experiment, on a larger scale, will

illustrate this further. This time our parent distribution
will be the Normal distribution with mean 0 and stand-
ard deviation 1. Figure 8.3 shows the distribution of a
random sample of 1000 observations from this distri-
bution. Figure 8.3 also shows the distribution of means
from 1000 random samples of size 4 from this popula-
tion, the same sample size as in Figure 8.2. Figure 8.3
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Figure 8.2 Distribution of the sample of the means of
Table 8.2.

also shows the distributions of 1000 means of samples of
size 9 and of size 16. In all four distributions the means
are close to zero, the mean of the parent distribution.
But the standard deviations are not the same. They are,
in fact, approximately 1 (parent distribution); 1/2 (means
of 4), 1/3 (means of 9), and 1/4 (means of 16). In fact,
if the observations are independent of one another, the
sampling distribution of the mean has standard devi-
ation σ /

√
n or

√
σ 2/n, where σ is the standard deviation

of the parent distribution and n is the sample size (Ap-
pendix 8A). The mean of the sampling distribution is
equal to the mean of the parent distribution. The ac-
tual, as opposed to simulated, distribution of the mean of
four observations from a Normal distribution is shown in
Figure 8.4.
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8.2 Standard error of a sample mean 103
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Figure 8.3 Samples of means from a
Standard Normal variable.
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Figure 8.4 Sampling distribution of the mean of four
observations from a Standard Normal distribution.

The sample mean is an estimate of the population
mean. The standard deviation of its sampling distribution
is called the standard error of the estimate. It provides
a measure of how far from the true value the estimate is
likely to be. In most estimation, the estimate is likely to
be within one standard error of the true mean and un-
likely to be more than two standard errors from it. We
shall look at this more precisely in Section 8.3.
In almost all practical situations we do not know the

true value of the population variance σ 2 but only its es-
timate s2 (Section 4.7). We can use this to estimate the
standard error by s/

√
n. This estimate is also referred to

as the standard error of the mean. It is usually clear from
the context whether the standard error is the true value
or that estimated from the data.
When the sample size n is large, the sampling dis-

tribution of the sample mean, x̄, tends to a Normal
distribution (Section 7.3). Also, we can assume that s2 is a
good estimate of σ 2. So for large n, x̄ is, in effect, an ob-
servation from a Normal distribution with mean μ and
standard deviation estimated by s/

√
n. So with probabil-

ity 0.95 or for 95% of possible samples, x̄ is within 1.96
standard errors of μ. With small samples we cannot as-
sume either a Normal distribution or, more importantly,
that s2 is a good estimate of σ 2. We shall discuss this in
Chapter 10.
For an example, consider the 57 FEV1 measurements

of Table 4.4. We have x̄ = 4.062 litres, s2 = 0.449 174,
s = 0.67 litres. Then the standard error of x̄ is

√
s2/n =√

0.449 174/57 =
√
0.007 880 = 0.089. The best estimate

of the mean FEV1 in the population is then 4.06 litres
with standard error 0.089 litres.
The mean and standard error are often written as

4.062 ± 0.089. This is rather misleading, as the true
value may be up to two standard errors from the mean
with a reasonable probability. This practice is not recom-
mended.
There is often confusion between the terms ‘standard

error’ and ‘standard deviation’. This is understandable, as
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104 Chapter 8 Estimation

the standard error is a standard deviation (of the sam-
pling distribution) and the terms are often interchanged
in this context. The convention is this: we use the term
‘standard error’ when we measure the precision of es-
timates, and the term ‘standard deviation’ when we are
concerned with the variability of samples, populations, or
distributions. If we want to say how good our estimate of
the mean FEV1 measurement is, we quote the standard
error of the mean. If we want to say how widely scat-
tered the FEV1measurements are, we quote the standard
deviation, s.

8.3 Confidence intervals
The estimate of mean FEV1 is a single value and so is
called a point estimate. There is no reason to suppose
that the population mean will be exactly equal to the
point estimate, the sample mean. It is likely to be close
to it, however, and the amount by which it is likely to
differ from the estimate can be found from the standard
error. What we do is find limits which are likely to include
the populationmean, and say that we estimate the popu-
lation mean to lie somewhere in the interval (the set of
all possible values) between these limits. This is called an
interval estimate.
For instance, if we regard the 57 FEV measurements as

being a large sample we can assume that the sampling
distribution of the mean is Normal, and that the stand-
ard error is a good estimate of its standard deviation (see
Section 10.6 for a discussion of how large is large). We
therefore expect about 95% of such means to be within
1.96 standard errors of the population mean, μ. Hence,
for about 95% of all possible samples, the population
mean must be greater than the sample mean minus 1.96
standard errors and less than the sample mean plus 1.96
standard errors. If we calculated x̄ – 1.96se and x̄ + 1.96se
for all possible samples, 95% of such intervals would con-
tain the population mean. In this case these limits are
4.062 – 1.96× 0.089 to 4.062 + 1.96× 0.089 which gives
3.89 to 4.24, or 3.9 to 4.2 litres, rounding to two signifi-
cant figures. 3.9 and 4.2 are called the 95% confidence
limits for the estimate, and the set of values between
3.9 and 4.2 is called the 95% confidence interval.
The confidence limits are the values at the ends of the
confidence interval.
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Figure 8.5 Mean and 95% confidence interval for 20
random samples of 100 observations from the Standard
Normal distribution.

Strictly speaking, it is incorrect to say that there is a
probability of 0.95 that the population mean lies be-
tween 3.9 and 4.2, though it is often put that way (even
by me, though I try to avoid this). The population mean
is a number, not a random variable, and has no prob-
ability. (This is the Frequency School view of probability,
see Chapter 22 for a different, Bayesian view.) It is the
probability that limits calculated from a random sample
will include the population value which is 95%. Figure 8.5
shows confidence intervals for the mean for 20 random
samples of 100 observations from the Standard Nor-
mal distribution. The population mean is, of course, 0.0,
shown by the horizontal line. Some sample means are
close to 0.0, some further away, some above, and some
below. The population mean is contained by 19 of the 20
confidence intervals. In general, for 95% of confidence
intervals it will be true to say that the population value
lies within the interval. We just don’t know which 95%.
This is sometimes expressed by saying that we are 95%
confident that the mean lies between these limits.
In the FEV1 example, the sampling distribution of the

mean is Normal and its standard deviation is well esti-
mated because the sample is large. This is not always true
and although it is usually possible to calculate confidence
intervals for an estimate, they are not all quite as simple
as that for the mean estimated from a large sample. We
shall look at the mean estimated from a small sample in
Section 10.2.
There is no necessity for the confidence interval to

have a probability of 95%. For example, we can also
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8.5 The difference between two means 105

calculate 99% confidence limits. The upper 0.5% point
of the Standard Normal distribution is 2.58 (Table 7.2),
so the probability of a Standard Normal deviate being
above 2.58 or below –2.58 is 1% and the probability
of being within these limits is 99%. The 99% confidence
limits for the mean FEV1 are therefore, 4.062 – 2.58 ×
0.089 and 4.062 + 2.58 × 0.089, i.e. 3.8 and 4.3 litres.
These give a wider interval than the 95% limits, as we
would expect as we are more confident that the popu-
lation mean will be included. The probability we choose
for a confidence interval is a compromise between the
desire to include the estimated population value and
the desire to avoid parts of scale where there is a low
probability that the mean will be found. For most pur-
poses, 95% confidence intervals have been found to be
satisfactory.
Standard error is not the only way in which we can

calculate confidence intervals, although at present it is
the one used for most problems. Others are described
in Section 8.9, Section 8.10, and Section 8.11. There are
others, which I shall omit because they are rarely used.

8.4 Standard error
and confidence interval
for a proportion

The standard error of a proportion estimate can be cal-
culated in the same way. Suppose the proportion of
individuals who have a particular condition in a given
population is p, and we take a random sample of
size n, the number observed with the condition be-
ing r. Then the estimated proportion is r/n. We have
seen (Section 6.4) that r comes from a Binomial distri-
bution with mean np and variance np(1 – p). Provided
n is large, this distribution is approximately Normal. So
r/n, the estimated proportion, is from a Normal distri-
bution with mean given by np/n = p, and variance
given by

VAR
( r
n

)
=

1

n2
VAR(r)

=
1

n2
np(1 – p)

=
p(1 – p)

n

as n is constant, and the standard error is√
p(1 – p)

n

We can estimate this by replacing p by r/n. As for the
samplemean, this standard error is only valid if the obser-
vations are independent of one another. For example, in
a random sample of first year secondary schoolchildren
in Derbyshire (Banks et al. 1978), 118 out of 2 837 boys
said that they usually coughed first thing in the morning.
This gave a prevalence estimate of 118/2 837 = 0.041 6,
with standard error

√
0.041 6 × (1 – 0.041 6)/2 837 =

0.003 7. The sample is large so we can assume that
the estimate is from a Normal distribution and that the
standard error is well estimated. The 95% confidence
interval for the prevalence is thus 0.041 6–1.96×0.003 7
to 0.041 6+1.96×0.003 7 = 0.034 to 0.049. Even with this
fairly large sample, the estimate is not very precise. This
confidence interval, using the standard error, is called the
Wald interval.
The standard error of the proportion is only of use if

the sample is large enough for the Normal approxima-
tion to apply. A rough guide to this is that np and n(1 – p)
should both exceed 5. This is usually the case when we
are concerned with straightforward estimation. If we try
to use the method for smaller samples, we may get ab-
surd results. For example, in a study of the prevalence of
HIV in ex-prisoners (Turnbull et al. 1992), of 29 women
who did not inject drugs, one was HIV positive. The au-
thors reported this to be 3.4%, with a 95% confidence
interval –3.1% to 9.9%. The lower limit of –3.1%, obtained
from the observed proportion minus 1.96 standard er-
rors, is impossible. As Newcombe (1992) pointed out, the
correct 95% confidence interval can be obtained from
the exact probabilities of the Binomial distribution and is
0.1% to 17.8% (Section 8.9).

8.5 The difference between
twomeans

In many studies we are more interested in the difference
between two population parameters than in their abso-
lute value. These could be means, proportions, the slopes
of lines, and many other statistics. When samples are
large we can assume that sample means and proportions
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106 Chapter 8 Estimation

are observations from a Normal distribution, and that
the calculated standard errors are good estimates of the
standard deviations of these Normal distributions. We
can use this to find confidence intervals.
For example, suppose we wish to compare the means,

x̄1 and x̄2, of two independent large samples, sizes n1
and n2. The expected difference between the sample
means is equal to the difference between the population
means, i.e. E(x̄1 – x̄2) = μ1 – μ2. What is the standard
error of the difference? The variance of the difference
between two independent random variables is the sum
of their variances (Section 6.6). Hence, the standard er-
ror of the difference between two independent estimates
is the square root of the sum of the squares of their
standard errors. The standard error of a mean is

√
s2/n,

so the standard error of the difference between two
independent means is √

s21
n1

+
s22
n2

For an example, in a study of respiratory symptoms
in schoolchildren (Bland et al. 1974), we wanted to
know whether children reported by their parents to have
respiratory symptoms had worse lung function than chil-
dren who were not reported to have symptoms. Ninety-
two children were reported to have cough during the
day or at night, and their mean PEFR was 294.8 litre/min
with standard deviation 57.1 litre/min, and 1643 chil-
dren were not reported to have this symptom, their mean
PEFR being 313.6 litre/min with standard deviation 55.2
litre/min. We thus have two large samples, and can apply
the Normal distribution. We have

n1 = 92, x̄1 = 294.8, s1 = 57.1,

n2 = 1643, x̄2 = 313.6, s2 = 55.2

The difference between the two group means is x̄1 –
x̄2 = 294.8 – 313.6 = –18.8. The standard error of the
difference is

√
se21 + se

2
2 =

√
s21
n1

+
s22
n2

=

√
57.12

92
+
55.22

1643

= 6.11

We shall treat the sample as being large, so the differ-
ence between the means can be assumed to come from
a Normal distribution and the estimated standard error
to be a good estimate of the standard deviation of this
distribution. (For small samples see Section 10.3 and Sec-
tion 10.6) The 95% confidence limits for the difference
are thus –18.8 – 1.96 × 6.11 and –18.8 + 1.96 × 6.11,
i.e. –6.8 and –30.8 l/min. The confidence interval does
not include zero, so we have good evidence that, in
this population, children reported to have day or night
cough have lower mean PEFR than others. The differ-
ence is estimated to be between 7 and 31 litre/min
lower in children with the symptom, so it may be quite
small.
When we have paired data, such as a cross-over trial

(Section 2.7) or a matched case–control study (Sec-
tion 3.8), the two-sample method does not work. In-
stead, we calculate the differences between the paired
observations for each subject, then find the mean dif-
ference, its standard error, and confidence interval as in
Section 8.3.

8.6 Comparison of two
proportions

We can apply the method of Section 8.5 to two propor-
tions. The standard error of a proportion p is

√
p(1 – p)/n.

For two independent proportions, p1 and p2, the stand-
ard error of the difference between them is√

p1(1 – p1)
n1

+
p2(1 – p2)

n2

Provided the conditions of Normal approximation are
met (see Section 8.4), we can find a confidence interval
for the difference in the usual way.
For example, consider Table 8.3. The researchers

wanted to know to what extent children with bronchitis
in infancy get more respiratory symptoms in later life
than others. We can estimate the difference between
the proportions reported to cough during the day or
at night among children with and children without a
history of bronchitis before age 5 years. We have esti-
mates of two proportions, p1 = 26/273 = 0.095 24 and
p2 = 44/1 046 = 0.042 07. The difference between them
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8.6 Comparison of two proportions 107

Table 8.3 Cough during the day or at night at age 14 and
bronchitis before age 5 (data from Holland et al. 1978)

Cough at 14 Bronchitis at 5

Yes No Total

Yes 26 44 70

No 247 1 002 1 249

Total 273 1 046 1 319

is p1 – p2 = 0.095 24 – 0.042 07 = 0.053 17. The standard
error of the difference is√

p1(1 – p1)
n1

+
p2(1 – p2)

n2

=

√√√√√√√
0.095 24 × (1 – 0.095 24)

273

+
0.042 07 × (1 – 0.042 07)

1 046

=
√
0.000 315 639 + 0.000 038 528

=
√
0.000 354 167

= 0.018 8

The 95% confidence interval for the difference is
0.053 17 – 1.96 × 0.018 8 to 0.053 17 + 1.96 × 0.018 8 =
0.016 to 0.090. Although the difference is not very pre-
cisely estimated, the confidence interval does not include
zero and gives us clear evidence that children with bron-
chitis reported in infancy are more likely than others to
be reported to have respiratory symptoms in later life.
The data on lung function in Section 8.5 gives us some
reason to suppose that this is not entirely a result of
response bias (Section 3.9). As in Section 8.4, the con-
fidence interval must be estimated differently for small
samples.
This difference in proportions may not be very easy

to interpret. The ratio of two proportions is often more
useful. Another method, the odds ratio, is described in
Section 13.7. The ratio of the proportion with cough at
age 14 for bronchitis before 5 to the proportion with
cough at age 14 for those without bronchitis before
5 is p1/p2 = 0.09524/0.04207 = 2.26. Children with
bronchitis before 5 are more than twice as likely to cough

during the day or at night at age 14 than children with no
such history.
The standard error for this ratio is complex, and as it is

a ratio rather than a difference it does not approximate
well to a Normal distribution. If we take the logarithm
of the ratio, however, we get the difference between two
logarithms, because log(p1/p2) = log(p1)–log(p2) (Appen-
dix 5A). We can find the standard error for the log ratio
quite easily. We use the result that, for any random vari-
able X with mean μ and variance σ 2, the approximate
variance of log(X) is given by VAR (loge(X)) = σ 2/μ2 (see
Kendall and Stuart 1969). Hence, the variance of log(p) is

VAR (log(p)) =
p(1 – p)/n

p2
=
1 – p
np

For the difference between the two logarithms we get

VAR(loge(p1/p2)) = VAR(loge(p1))

+VAR(loge(p2))

=
1 – p1
n1p1

+
1 – p2
n2p2

The standard error is the square root of this. (This for-
mula is often written in terms of frequencies, but I think
this version is clearer.) For the example the log ratio is
loge(2.263 85) = 0.817 07 and the standard error is√

1 – p1
n1p1

+
1 – p2
n2p2

=

√
1 – 0.095 24

273 × 0.095 24
+

1 – 0.042 07
1 046 × 0.042 07

=

√
0.904 76

26
+
0.957 93

44

=
√
0.056 57

= 0.237 84

The 95% confidence interval for the log ratio is there-
fore 0.817 07 – 1.96 × 0.237 84 to 0.817 07 + 1.96 ×
0.237 84 = 0.350 89 to 1.283 24. The 95% confidence
interval for the ratio of proportions itself is the antilog
of this: e0.35089 to e1.28324 = 1.42 to 3.61. Thus we estimate
that the proportion of children reported to cough during
the day or at night among those with a history of bron-
chitis is between 1.4 and 3.6 times the proportion among
those without a history of bronchitis.
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108 Chapter 8 Estimation

The proportion of individuals in a population who de-
velop a disease or symptom is equal to the probability
that any given individual will develop the disease, called
the risk of an individual developing a disease. Thus in
Table 8.3 the risk that a child with bronchitis before age
5 will cough at age 14 is 26/273 = 0.09524, and the risk
for a child without bronchitis before age 5 is 44/1046 =
0.04207. To compare risks for people with and without a
particular risk factor, we look at the ratio of the risk with
the factor to the risk without the factor, the relative risk.
The relative risk of cough at age 14 for bronchitis before 5
is thus 2.26. To estimate the relative risk directly, we need
a cohort study (Section 3.7) as in Table 8.3. We estimate
relative risk for a case–control study in a different way
(Section 13.7).
In the unusual situation when the samples are paired,

either matched or two observations on the same subject,
we use a different method (Section 13.9).

8.7 Number needed to treat
When a clinical trial has a dichotomous outcome meas-
ure, such as survival or death, there are several ways in
which we can express the difference between the two
treatments. These include the difference between pro-
portions of successes, ratio of proportions (risk ratio or
relative risk), and the odds ratio. The number needed
to treat (NNT) is the number of patients we would need
to treat with the new treatment to achieve one more
success than we would on the old treatment (Laupacis
et al. 1988). It is the reciprocal of the difference be-
tween the proportion of success on the new treatment
and the proportion on the old treatment. For example, in
the MRC streptomycin trial (Table 2.10) the survival rates
after 6 months were 93% in the streptomycin group and
73% in the control group. The difference in proportions
surviving was thus 0.93 – 0.73 = 0.20 and the number
needed to treat to prevent one death over 6 months was
1/0.20 = 5. The smaller the NNT, the more effective the
treatment will be.
The smallest possible value for NNT is 1.0, when the

proportions successful are 1.0 and 0.0. This would mean
that the new treatment was always effective and the old
treatment was never effective. The NNT cannot be zero.

If the treatment has no effect at all, the NNT will be infin-
ite, because the difference in the proportion of successes
will be zero. If the treatment is harmful, so that suc-
cess rate is less than on the control treatment, the NNT
will be negative. The number is then called the num-
ber needed to harm (NNH). The NNT idea caught
on very quickly and has been widely used and devel-
oped, for example as the number needed to screen
(Rembold 1998).
The NNT is an estimate and should have a confi-

dence interval. This is apparently quite straightforward.
We find the confidence interval for the difference in the
proportions, then the reciprocals of these limits are the
confidence limits for the NNT. For the MRC strepto-
mycin trial the 95% confidence interval for the difference
is 0.0578 to 0.3352, reciprocals 17.3 and 3.0. Thus the
95% confidence interval for the NNT is 3 to 17.
This is deceptively simple. As Altman (1998) pointed

out, there are problems when the difference is not signifi-
cant. The confidence interval for the difference between
proportions includes zero, so infinity is a possible value
for NNT, and negative values are also possible, i.e. the
treatment may harm. The confidence interval must allow
for this.
For example, Henzi et al. (2000) calculated NNT

for several studies, including that of Lopez-Olaondo
et al. (1996). This study compared dexamethasone
against placebo to prevent postoperative nausea and
vomiting. They observed nausea in 5/25 patients on
dexamethasone and 10/25 on placebo. Thus the differ-
ence in proportions without nausea (success) is 0.80 –
0.60 = 0.20, 95% confidence interval –0.0479 to 0.4479
(Section 8.6). The number needed to treat is the recip-
rocal of this difference, 1/0.20 = 5.0. The reciprocals
of the confidence limits are 1/(–0.0479) = –20.9 and
1/0.4479 = 2.2. But the confidence interval for the NNT is
not –20.9 to 2.2. Zero, which this includes, is not a pos-
sible value for the NNT. As there may be no treatment
difference at all, zero difference between proportions,
the NNT may be infinite. In fact, the confidence inter-
val for NNT is not the values between –20.9 and 2.2, but
the values outside this interval, i.e. 2.2 to infinity (num-
ber needed to achieve an extra success, NNT) and minus
infinity to –20.9 (number needed to achieve an extra
failure, NNH). Thus the NNT is estimated to be anything
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Figure 8.6 Confidence intervals for
difference in proportion of successes and
for number needed to treat for the data of

MRC (1948) and Lopez-Olaondo
et al. (1996).

greater than 2.2, and the NNH to be anything greater
than 20.9. The confidence interval is in two parts, –∞ to
–20.9 and 2.2 to ∞. (‘∞’ is the symbol for infinity.) Henzi
et al. (2000) quote this confidence interval as 2.2 to –21,
which they say the reader should interpret as including
infinity. Altman (1998) recommends ‘NNTH= 21.9 to ∞
to NNTB 2.2’, where NNTH means ‘number needed to
harm’ and NNTB means ‘number needed to benefit’. I
prefer ‘–∞ to –20.9, 2.2 to ∞’. Here –∞ and ∞ each tell
us that we do not have enough information to guide us
as to which treatment should be used. The confidence
intervals for the MRC and the Lopez-Olaondo trials are
shown graphically in Figure 8.6.
Two-part confidence intervals are not exactly intuitive

and I think that the problems of interpretation of NNT in
trials which do not provide unequivocal evidence limit
its value to being a supplementary description of trial
results.

8.8 Standard error of a sample
standard deviation

We can find a standard error and confidence inter-
val for almost any estimate we make from a sample,
but sometimes this depends on the distribution of the
observations themselves. The sample standard deviation,
s, is one such statistic. Provided the observations are
independent and come from a Normal distribution,
(n – 1)s2/σ 2 is from a Chi-squared distribution with n – 1

degrees of freedom (Appendix 7A). The square root of
this Chi-squared distribution is approximately Normal
with variance 1/2 if n is large enough, so

√
(n – 1)s2/σ 2

has an approximately Normal distribution with variance
1/2. Hence s has an approximately Normal distribution
with variance σ 2/2(n – 1). The standard error of s is thus√

σ 2/2(n – 1), estimated by s/
√
2(n – 1). This is only true

when the observations themselves are from a Normal
distribution.

8.9 Confidence interval
for a proportion when
numbers are small

In Section 8.4 I mentioned that the standard error
method for a proportion does not work when the sam-
ple is small. Instead, the confidence interval can be found
using the exact probabilities of the Binomial distribution,
the Clopper Pearson method. The method works like
this. Given n, we find the value pL for the parameter
p of the Binomial distribution which gives a probabil-
ity 0.025 of getting an observed number of successes,
r, as big as or bigger than the value observed. We do
this by calculating the probabilities from the formula in
Section 6.4, iterating round different possible values of
p until we get the right one. We also find the value pU
for the parameter p of the Binomial distribution which
gives a probability 0.025 of getting an observed number
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Figure 8.7 Distributions showing the
calculation of the exact confidence
interval for three successes out of ten trials.

of successes as small as or smaller than the value ob-
served. The exact 95% confidence interval is pL to pU. For
example, suppose we observe three successes out of 10
trials. The Binomial distribution with n = 10 which has
the total probability for three or more successes equal to
0.025 has parameter p = 0.067. The distribution which
has the total probability for three or fewer successes
equal to 0.025 has p = 0.652. Hence the 95% confidence
interval for the proportion in the population is 0.067 to
0.652. Figure 8.7 shows the two distributions. No large
sample approximation is required and we can use this
for any size of sample.
Unless the observed proportion is zero or one, these

values are never included in the exact confidence inter-
val. The population proportion of successes cannot be
zero if we have observed a success in the sample. It
cannot be one if we have observed a failure.
Although this interval is called ‘exact’, it can produce

intervals which are too wide, in that more than 95% of
possible samples give intervals which include the popu-
lation proportion. Other methods have been developed,
such as the Wilson interval, which give a proportion of
intervals including the population proportion which is
closer to 95% (see Brown et al. 2001, 2002).

8.10 Confidence interval
for a median and other
quantiles

In Section 4.5 we estimated medians and other quantiles
directly from the frequency distribution. We can esti-
mate confidence intervals for these using the Binomial

distribution. This is a large sample method. The 95%
confidence interval for the q quantile can be found by
an application of the Binomial distribution (Section 6.4,
Section 6.6) (see Conover 1980). The number of observa-
tions less than the q quantile will be an observation from
a Binomial distribution with parameters n and q, and
hence has mean nq and standard deviation

√
nq (1 – q).

We calculate j and k such that:

j = nq – 1.96
√
nq (1 – q)

k = nq + 1.96
√
nq (1 – q)

We round j and k up to the next integer. Then the 95%
confidence interval is between the jth and the kth ob-
servations in the ordered data. For the 57 FEV measure-
ments of Table 4.4, the median was 4.1 litres (Section 4.5).
For the 95% confidence interval for the median, n = 57
and q = 0.5, and

j = 57 × 0.5 – 1.96
√
57 × 0.5 × (1 – 0.5) = 21.10

k = 57 × 0.5 + 1.96
√
57 × 0.5 × (1 – 0.5) = 35.90

The 95% confidence interval is thus from the 22nd to the
36th observation, 3.75 to 4.30 litres from Table 4.4. Com-
pare this to the 95% confidence interval for the mean,
3.9 to 4.2 litres, which is completely included in the
interval for the median. This method of estimating per-
centiles is relatively imprecise. Another example is given
in Section 20.7.
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8.11 Bootstrap or resampling
methods

Bootstrap or resampling methods (Efron and Tibshir-
ani 1993) are an alternative way to find standard errors
and confidence intervals. They takes their name, I think,
from the expression ‘raised up by your own bootstraps’.
We use the sample itself, without any external structure
of probability distributions. The idea is that the sample is
a random sample of the population it represents, what-
ever that is, and that is the population about which we
can draw conclusions. So if we draw an observation at
random from our sample, it is also a random observa-
tion from the original population. All members of that
population had an equal chance of being chosen. Now
we record this observation, we put it back, and we draw
another observation at random from our sample. It might
be the same as the first one, but that doesn’t matter. We
record that, put it back, and draw another, and so on until
we have a new sample of the same size as the first. It will
contain some of the original observations, some of them
repeated. That doesn’t matter, the proportion of repeti-
tions of each possible value is expected to be the same
as its density in the original population. This procedure is
called resampling.
For an example, consider Table 8.3. This comes from

a sample of 1 319 children, for each of whom we have
whether they had bronchitis before age 5 and cough
during the day or at night reported at age 14. Using
resampling, we can draw another sample of 1 319 obser-
vations. The corresponding table is shown in Table 8.4.
For Table 8.3 we found the difference in the proportions
with cough, the risk difference, to be 0.053 17 with

Table 8.4 Cough during the day or at night at age 14 by
bronchitis before age 5, after resampling the data of Table 8.3
(data from Holland et al. 1978)

Cough at 14 Bronchitis at 5

Yes No Total

Yes 34 42 76

No 263 980 1 243

Total 297 1 022 1 319

standard error 0.018 82 and 95% confidence interval cal-
culated from these 0.016 to 0.090. For Table 8.4, the risk
difference is 0.073 38 with standard error = 0.019 49 and
95% confidence interval 0.035 to 0.112.
Now instead of resampling once, we can do it many

times. I chose 1 000 resamplings. Each one produced a
different estimate of the risk difference. These 1 000 esti-
mates have a distribution, shown in Figure 8.8. The mean
and standard deviation of this distribution are 0.053 17
and 0.019 38. This standard deviation provides an alter-
native estimate of the standard error of the difference
between the risks, which does not make use of any theory
about the Binomial distribution. These are the bootstrap
estimates. We can use them to find a confidence inter-
val, on the assumption that the resampling distribution is
Normal, which appears to be a reasonable approxima-
tion from Figure 8.8. The 95% CI will be 0.053 17–1.96×
0.019 38 to 0.053 17 + 1.96 × 0.019 38 = 0.015 to 0.091.
This is very similar to the 0.016 to 0.090 found using the
variance formula of the Binomial distribution.
We can also use the resampling distribution directly.

The 95% CI will be from the 2.5th centile to the 97.5th
centile. The 2.5th centile will be between the 25th and
26th of the 1 000 observations, which are 0.015 85 and
0.016 30, and the average of these is 0.016 08. The 97.5th
centile will be between observations 975 and 976, which
are 0.093 23 and 0.093 78, giving us 0.093 51. Hence
the bootstrap confidence interval is 0.016 to 0.094.
The corresponding point estimate is the median of this
distribution, 0.053.
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Figure 8.8 Histogram of 1 000 resampling estimates of the
risk difference from Table 8.3 (data from Holland et al. 1978).
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The two bootstrap estimates are very similar to one
another and to the original and there seems little point
in doing such a complicated procedure. Sometimes the
bootstrap approach can be very useful, when the data
do not meet the requirements of any straightforward
conventional approach. We can get a bootstrap esti-
mate for anything we can calculate from any sample.
Bootstrap methods are particularly favoured by health
economists, who often have cost data which have a
few very extreme values, which conventional approaches
might not accommodate well. This section gives the gen-
eral idea of the bootstrap; there are many developments
and variations. Methods which sample the possibilities
in this way are (rather endearingly) called Monte Carlo
methods.

8.12 What is the correct
confidence interval?

A confidence interval only estimates errors caused by
sampling. They do not allow for any bias in the sample
and give us an estimate for the population of which our
data can be considered a random sample. As discussed
in Section 3.5, it is often not clear what this population
is, and we rely far more on the estimation of differences
than absolute values. This is particularly true in clinical tri-
als. We start with patients in one locality, exclude some,
allow refusals, and the patients cannot be regarded as a
random sample of patients in general. However, we then
randomize into two groups which are then two samples
from the same population, and only the treatment differs
between them. Thus the difference is the thing we want
the confidence interval for, not for either group separ-
ately. Yet researchers often ignore the direct comparison
in favour of estimation using each group separately.
For example, Salvesen et al. (1992) reported follow-up

of two randomized controlled trials of routine ultrason-
ography screening during pregnancy. At ages 8 to 9
years, children of women who had taken part in these
trials were followed up. A subgroup of children under-
went specific tests for dyslexia. The test results classified
21 of the 309 screened children (7%, 95% confidence
interval 3–10%) and 26 of the 294 controls (9%, 95%

confidence interval 4–12%) as dyslexic. Much more use-
ful would be a confidence interval for the difference
between prevalences (–6.3 to 2.2 percentage points) or
their ratio (0.44 to 1.34), because we could then com-
pare the groups directly. See Bland and Altman (2011)
for a fuller discussion.

8.13 Multiple choice questions:
Confidence intervals

(Each branch is either true or false.)

8.1 The standard error of the mean of a sample:

(a) measures the variability of the observations;

(b) is the accuracy with which each observation is

measured;

(c) is a measure of how far a mean from a sample of this

size is likely to be from the population mean;

(d) is proportional to the number of observations;

(e) is greater than the estimated standard deviation of the

population.

8.2 95% confidence limits for the mean estimated from a set

of observations:

(a) are limits between which, in the long run, 95% of

observations fall;

(b) are a way of measuring the precision of the estimate

of the mean;

(c) are limits within which the sample mean falls with

probability 0.95;

(d) are limits calculated so as to include the population

mean for 95% of possible samples;

(e) are a way of measuring the variability of a set of

observations.

8.3 If the size of a random sample were increased, we would

expect:

(a) the mean to decrease;

(b) the standard error of the mean to decrease;

(c) the standard deviation to decrease;

(d) the sample variance to increase;

(e) the degrees of freedom for the estimated variance to

increase.
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8.4 The prevalence of a condition in a population is 0.1. If

the prevalence were estimated repeatedly from samples of

size 100, these estimates would form a distribution which:

(a) is a sampling distribution;

(b) is approximately Normal;

(c) has mean = 0.1;

(d) has variance = 9;

(e) is Binomial.

8.5 It is necessary to estimate the mean FEV1 by drawing a

sample from a large population. The accuracy of the

estimate will depend on:

(a) the mean FEV1 in the population;

(b) the number in the population;

(c) the number in the sample;

(d) the way the sample is selected;

(e) the variance of FEV1 in the population.

8.6 In a study of 88 births to women with a history of

thrombocytopenia (Samuels et al. 1990), the same

condition was recorded in 20% of babies (95% confidence

interval 13% to 30%, exact method):

(a) Another sample of the same size will show a rate of

thrombocytopenia between 13% and 30%;

(b) 95% of such women have a probability of between

13% and 30% of having a baby with

thrombocytopenia;

(c) It is estimated that between 13% and 30% of births to

such women in the area would show

thrombocytopenia;

(d) If the sample were increased to 880 births, the 95%

confidence interval would be narrower;

(e) It would be impossible to get these data if the rate for

all women was 10%.

8.14 Exercise: Confidence intervals
in two acupuncture studies

Two short papers concerning adverse events associated with

acupuncture appeared together in the British Medical Journal.

They were very similar in the question they address and the

methods used. Both papers referred to ‘significant’ events. The

word is not used in its statistical sense.

White et al. (2001) recruited acupuncture practitioners

through journals circulated to members of the British Medical

Acupuncture Society and the Acupuncture Association of

Chartered Physiotherapists. They asked acupuncturists to take

part in a prospective survey, recording for each consultation

adverse events, defined as ‘any ill-effect, no matter how small,

that is unintended and non-therapeutic, even if not un-

expected’. Some events were considered to be ‘significant’,

meaning ‘unusual, novel, dangerous, significantly inconveni-

ent, or requiring further information’.

White et al. reported that as the data were skewed, with

extreme values present, confidence intervals were calculated

using a bootstrapping procedure with 10 000 replications.

Data were collected from 78 acupuncturists, 31 822 (me-

dian 318, range 5 to 1911) consultations were included.

Altogether, 43 ‘significant’ events were reported, giving a rate

of 14 per 10 000 (95% confidence interval 8 per 10 000 to

20 per 10 000). None of these events was a serious adverse

event, a category which includes death, hospital admission or

prolongation of existing hospital stay, persistent or significant

disability or incapacity, or otherwise life-threatening. Hence

the rate of serious events was estimated as 0 per 10 000 (95%

confidence interval 0 per 10 000 to 1.2 per 10 000).

MacPherson et al. (2001) carried out a prospective audit of

treatments undertaken during a 4-week period. They invited

all 1 848 professional acupuncturists who were members of

the British Acupuncture Council and were practising in the UK

to record details of adverse events andmild transient reactions

after treatment.

A total of 574 (31%) practitioners participated, reporting

on 34 407 treatments. Practitioners were asked to give details

of any adverse events they considered to be ‘significant’, us-

ing the same definition as White et al. (2001). There were no

reports of serious adverse events, defined as described previ-

ously (95% confidence interval 0 to 1.1 per 10 000 treatments).

Practitioners reported 43 minor adverse events, a rate of 1.3

(0.9 to 1.7) per 1 000 treatments.

MacPherson et al. concluded that ‘In this prospective sur-

vey, no serious adverse events were reported after 34 407

acupuncture treatments. This is consistent, with 95% con-

fidence, with an underlying serious adverse event rate of

between 0 and 1.1 per 10 000 treatments.’ They continue:

‘Even given the potential bias of self reporting, this is important

evidence on public health and safety as professional acupunc-

turists deliver approximately two million treatments per year

in the United Kingdom. Comparison of this adverse event rate
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for acupuncture with those of drugs routinely prescribed in

primary care suggests that acupuncture is a relatively safe form

of treatment’.

8.1 Are there any problems with the sampling methods

used by White et al. and by MacPherson et al.? What alter-

native methods might have been used? Would they solve

the problem?

8.2 Are there any problems with the data collection meth-

ods used in these studies? What alternatives could be

used? Would they solve the problem?

8.3 White et al. reported the average age of their acu-

puncturists to be 47 (range 27 to 71) years. The median

number of consultations for a practitioner was 318,

range 5 to 1 911. What does this tell us about the

shapes of the distributions of age and number of

consultations?

8.4 Altogether, White et al. reported 43 ‘significant’ events,

giving a rate of 14 per 10 000 (95% confidence interval 8

per 10 000 to 20 per 10 000). What does this mean?

8.5 White et al. reported that none of the adverse events

was serious (95% confidence interval 0 to 1.2 per 10 000

consultations). MacPherson et al. also reported that there

were no records of serious adverse events (0 to 1.1 per

10 000 treatments). Can we conclude that there is no risk

of serious events?

8.6 MacPherson et al. concluded that their data were con-

sistent with an underlying serious adverse event rate

of between 0 and 1.1 per 10 000 treatments. Is this a

reasonable interpretation?

8.7 White et al. say ‘14 per 10 000 of these minor events

were reported as significant. These event rates are per

consultation, and they do not give the risk per individ-

ual patient’. Why do they not give the risk per individual

patient?

8.8 MacPherson et al. said that further research measuring

patients’ experience of adverse events is merited. What

would this tell us that these papers do not?

Appendix 8A: Standard error
of a mean
When we calculate the mean of a sample of size n inde-
pendent observations, we add n independent variables,
each with variance σ 2. The variance of the sum is the sum
of the variances (Section 6.6), σ 2 + σ 2 + · · · + σ 2 = nσ 2.
We divide this new variable by a constant, n, to get the
mean. This has the effect of dividing its variance by the
square of the constant, n2. The variance on the mean is
thus nσ 2/n2 = σ 2/n. The standard error is the square root
of this,

√
σ 2/n or σ /

√
n.
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