POS, NER AND NLP

Gabriella Pasi
gabriella.pasi@unimib.it

Text Representation

- We have presented in the previous lessons the preliminary phases for text processing and representation
- We have also seen that in several text mining tasks, terms and term weighting constitute the basis for text representation
- We have also seen that positional information of terms in a text can be obtained by extracting n-grams
- Now we will see how text representation can be enriched with simple NLP techniques.

NLP: Why?

- Texts are objects with inherent complex structure. A simple BoW model is not good enough for text understanding.
- Natural Language Processing provides models that go deeper to uncover the meaning.
- Part-of-speech tagging
- NER
- Syntactic analysis
- Semantic analysis
- Discourse structure

Text Representation: Phrases

- Phrases are
- More informative than single words
- e.g., documents containing "black sea" vs. two words "black" and "sea"
- Less ambiguous
- e.g., "big apple" vs. "apple"

Text Representation: Phrases

- Text processing issue: how are phrases recognized?
- Three possible approaches:
- Use word n-grams (we have seen this)
- Identify the syntactic role of words within phrases by using a part-of-speech (POS) tagger (we will see it "at high level" today)
- Store word positions of indexes in texts, and use proximity operators in queries (we will see this when we will introduce search engines)

POS and NER

We will present POS and Named Entity Recognition as sequence labeling problems or tagging problems: given a sequence of words in input the aim is to define a model that produces in output a sequence of labels (tags).
Either this model can be a rule-based model or it can be a supervised learning problem.

In particular, an important class of models for supervised learning problems is represented by generative models.

Supervised learning

In supervised learning problems we assume the availability of training examples $\left(x^{(1)}, y^{(1)}\right) \ldots\left(x^{(m)}, y^{(m)}\right)$, where each example is a pair consisting of an input $x^{(i)}$ paired with a label $\mathrm{y}^{(\mathrm{i})}$.
The task is to learn a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ that maps any input x to a label $f(x)$.
In tagging problems each $x^{(i)}$ is a sequence of words
$\mathrm{x}_{1}{ }^{(\mathrm{i})}, \mathrm{x}_{2}{ }^{(\mathrm{i})}, \mathrm{x}_{3}{ }^{(\mathrm{i})} \ldots . . . \mathrm{x}_{\mathrm{ni}}{ }^{(\mathrm{i})}$ and each $\mathrm{y}^{(\mathrm{i})}$ is a sequence of tags
$\mathrm{y}_{1}{ }^{(\mathrm{i})}, \mathrm{y}_{2}{ }^{(\mathrm{i})}, \mathrm{y}_{3}{ }^{(\mathrm{i})} \ldots . . . \mathrm{y}_{\mathrm{ni}}{ }^{(\mathrm{i})}$
(ni refers to the length of the i'th training example)

Conditional and generative models

One way to define the function $f(x)$ is through a conditional model. In this approach the model defines the conditional probability $\mathrm{p}(\mathrm{y} \mid \mathrm{x})$ for any (x, y) pair.

An alternative approach (often used in NLP) is to define a generative model. Rather than directly estimating the conditional distribution $p(y \mid x)$, generative models estimate the joint probability $p(x, y)$ over (x, y) pairs. The parameters of the model $p(x, y)$ are again estimated from the training examples $\left(x^{(i)}, y^{(i)}\right)$ for $i=1 \ldots n$.
Models that decompose a joint probability into into terms $p(y)$ and $p(x \mid y)$ are often called noisy-channel models.

Part of Speech Tagging (POS)

Part-of-Speech tagging (POS tagging)

- Once the preliminary text processing phases have been undertaken, POS tagging aims at marking up a word in a text (corpus) by a tag corresponding to a particular part of speech (POS tags can be of varying granularity)

$$
\begin{aligned}
& A+d o g+i s+\text { chasing }+a+b o y+\text { on }+ \text { the }+ \\
& \text { playground }
\end{aligned}
$$

$$
\frac{\mathrm{A}}{\text { Det }}+\frac{\mathrm{dog}}{\text { Noun }}+\mathrm{is}+\text { chasing }+\mathrm{a}+\mathrm{boy}+\frac{\text { on }}{\text { Verb }}+\frac{\text { the }+ \text { playground }}{\text { Det }} \underset{\text { Noun Prep }}{\text { Det Noun }}
$$

Word Classes

- Words that somehow 'behave’ alike:
- Appear in similar contexts
- Perform similar functions in sentences
- Undergo similar transformations
- ~ 9 traditional word classes of parts of speech for IndoEuropean languages
- Noun, verb, pronoun, adjective, preposition, adverb, article, conjunction, interjections
- Called: parts-of-speech, lexical categories, word classes, morphological classes, lexical tags, POS

Some Examples of POS tags

- N
- V
- ADJ
- ADV
- P
- PRO
- DET
- CONG conjunction and, or
of, by, to
pronoun I, me, mine
determiner the, a, that, those
chair, bandwidth, pacing
study, debate, read
purple, tall, ridiculous
unfortunately, slowly

Closed and open class words

Closed class words

- Relatively fixed membership
- Usually function words: short, frequent words with grammatical function
- determiners: a, an, the
- pronouns: she, he, I
- prepositions: on, under, over, near, by, ...

Open class words

- Usually content words: Nouns, Verbs, Adjectives, Adverbs
- Plus interjections: oh, ouch, uh-huh, yes, hello
- New nouns and verbs like iPhone or to fax

Closed and open class words

Open class ("content") words

| Nouns
 Proper
 Janet
 Italy Common
 cat, cats
 mango
 Closed class ("function") |
| :--- | :--- |

Determiners the some
Conjunctions and or

Adjectives old green tasty
Adverbs slowly yesterday

Numbers	Interjections Ow hello
122,312	\ldots more

POS Tagging

Map from sequence x_{1}, \ldots, x_{n} of words to y_{1}, \ldots, y_{n} of POS tags

Defining POS Tagging

- The process of assigning a part-of-speech or lexical class marker (tag) to each word in a corpus:

Applications for POS Tagging

- Parsing: e.g. Time flies like an arrow
- Is flies an N or V ?
- Word prediction in speech recognition
- Possessive pronouns (my, your, her) are likely to be followed by nouns
- Personal pronouns (I, you, he) are likely to be followed by verbs
- Machine Translation

Pos Tagging Example

Original text:

Document will describe marketing strategies carried out by U.S. companies for their agricultural chemicals, report predictions for market share of such chemicals, or report market statistics for agrochemicals, pesticide, herbicide, fungicide, insecticide, fertilizer, predicted sales, market share, stimulate demand, price cut, volume of sales.

Brill tagger:

Document/NN will/MD describe/VB marketing/NN strategies/NNS carried/VBD out/IN by/IN U.S./NNP companies/NNS for/IN their/PRP agricultural/JJ chemicals/NNS ,/, report/NN predictions/NNS for/IN market/NN share/NN of/IN such/JJ chemicals/NNS ,/, or/CC report/NN market/NN statistics/NNS for/IN agrochemicals/NNS ,/, pesticide/NN ,/, herbicide/NN ,/, fungicide/NN ,/, insecticide/NN ,/, fertilizer/NN ,/, predicted/VBN sales/NNS ,/, market/NN share/NN ,/, stimulate/VB demand/NN ,/, price/NN cut/NN ,/, volume/NN of/IN sales/NNS ./.

Eric Brill. 1992. A simple rule-based part of speech tagger. In Proceedings of the third conference on Applied natural language processing (ANLC '92). Association for Computational Linguistics, Stroudsburg, PA, USA, 152-155

Choosing a POS Tagset

- To do POS tagging, first need to choose a set of tags
- Could pick very coarse (small) tagsets
- N, V, Adj, Adv.
- More commonly used: Brown Corpus (general corpus, Francis \& Kucera ‘82), 1 Million words, 87 tags - more informative but more difficult to tag.
- Most commonly used: Penn Treebank - 45 tags: handannotated corpus of Wall Street Journal
https://www.sketchengine.eu/penn-treebank-tagset/

Penn Treebank Tagset

Tag	Description	Example	Tag	Description	Example
CC	Coordin. Conjunction	and, but, or	SYM	Symbol	
CD	Cardinal number	one, two, three	TO	"to"	to
DT	Determiner	a, the	UH	Interjection	ah, oops
EX	Existential 'there'	there	VB	Verb, base form	eat
FW	Foreign word	mea culpa	VBD	Verb, past tense	ate
IN	Preposition/sub-conj	of, in, by	VBG	Verb, gerund	eating
JJ	Adjective	yellow	VBN	Verb, past participle	eaten
JJR	Adj., comparative	bigger	VBP	Verb, non-3sg pres	eat
JJS	Adj., superlative	wildest	VBZ	Verb, 3sg pres	eats
LS	List item marker	1,2, One	WDT	Wh-determiner	which, that
MD	Modal	can, should	WP	Wh-pronoun	what, who
NN	Noun, sing. or mass	llama	WP\$	Possessive wh-	whose
NNS	Noun, plural	llamas	WRB	Wh-adverb	how, where
NNP	Proper noun, singular	IBM	\$	Dollar sign	\$
NNPS	Proper noun, plural	Carolinas	\#	Pound sign	\#
PDT	Predeterminer	all, both	"	Left quote	(' or ")
POS	Possessive ending	's	"	Right quote	(' or ")
PRP	Personal pronoun	I, you, he	(Left parenthesis	([, (, \{, <)
PRP\$	Possessive pronoun	your, one's)	Right parenthesis	(],), \}, >)
RB	Adverb	quickly, never		Comma	
RBR	Adverb, comparative	faster		Sentence-final punc	(. ! ?)
RBS	Adverb, superlative	fastest	:	Mid-sentence punc	(: ; .. --)
RP	Particle	up, off			

Tag Ambiguity

- Words often have more than one POS: e.g., back
- The back door = JJ
- On my back = NN
- Win the voters back = RB
- Promised to back the bill = VB (verb)
- The POS tagging problem is to determine the POS tag for a particular instance of a word

Tagging Whole Sentences with POS is Hard

- Ambiguous POS contexts
- E.g., Time flies like an arrow.
- Possible POS assignments
- Time/[V,N] flies/[V,N] like/[V,Prep] an/Det arrow/N
- Time/N flies/V like/Prep an/Det arrow/N
- Time/V flies/N like/Prep an/Det arrow/N
- Time/N flies/N like/V an/Det arrow/N
-

How Do We Disambiguate POS?

- Many words have only one POS tag (e.g. is, Mary, very, smallest)
- Others have a single most likely tag (e.g. a, dog)
- Tags also tend to co-occur regularly with other tags (e.g. Det, N)
- In addition to conditional probabilities of words $\mathrm{P}\left(\mathrm{w}_{\mathrm{n}} \mid \mathrm{w}_{\mathrm{n}-1}\right)$, we can look at POS likelihoods $\left(P\left(t_{n} \mid t_{n-1}\right)\right)$ to disambiguate sentences and to assess sentence likelihoods

Some Ways to do POS Tagging

- Rule-based tagging
- E.g. EnCG ENGTWOL tagger
- Supervised Machine Learning algorithms
- HMM (Hidden Markov Models)
- Conditional Random Fields/Maximum Entropy Random Models
- Neural sequence models (RNNs or Transformers)
- Large Language Models (like BERT), finetuned

I will not detail these methods.

Rule based tagging

- Start with a dictionary
- Assign all possible tags to words from the dictionary
- Write rules by hand to selectively remove tags
- Leaving the correct tag for each word.

How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous

- Hence 85% of word types are unambiguous
- Janet is always PROPN, hesitantly is always ADV

But those 15% tend to be very common.
So $\sim 60 \%$ of word tokens are ambiguous
E.g., back
earnings growth took a back/ADJ seat a small building in the back/NOUN a clear majority of senators back/VERB the bill enable the country to buy back/PART debt I was twenty-one back/ADV then

POS Tagging and sentences

- POS tagging too slow for large collections
- Simpler definition - phrase is any sequence of n words -n-grams.
- Recall:
- bigram: 2 words sequence, trigram: 3 words sequence, unigram: single word
- N-grams also used at character level for applications such as OCR
- N-grams typically formed from overlapping sequences of words
- i.e. move n-word "window" one word at a time in document

