LANGUAGE MODELS

Gabriella Pasi pasi@disco.unimib.it

Based on material of Dan Jurafsky and Chris Manning

Language Models

- A *text* can be represented as a *language model* to represent its topics
 - words that tend to occur often when discussing a topic will have high probabilities in the corresponding language model
- A LM model assigns probabilities to sequences of words
 - p("Today is Wednesday")
 - p("Today Wednesday is")
- It can be regarded as a probabilistic mechanism for "generating" text, thus also called a "generative" model

Language models: why ?

- Machine Translation:
 - P(high winds tonite) > P(large winds tonite)
- Spell Correction
 - The office is about fifteen **minuets** from my house
 - P(about fifteen minutes from) > P(about fifteen minuets from)
- Speech Recognition
 - P(I saw a van) >> P(eyes awe of an)

Language models: why ?

- Text categorization
 - Given that we observe "baseball" three times and "game" once in a news article, how likely is it about "sports" v.s. "politics"?
- Information retrieval
 - Given that a document is centered on the topic of sport, how likely would a query "generated" by this document?
 - + Summarization, question-answering, etc., etc.!!

Language Models

• **Goal**: compute the probability of a sentence or sequence of words:

 $P(W) = P(W_1, W_2, W_3, W_4, W_5...W_n)$

• **Related task**: probability of an upcoming word:

 $P(w_5 | w_1, w_2, w_3, w_4)$

• So, a model that computes either of these:

P(W) or $P(w_n | w_1, w_2...w_{n-1})$ is called a **language model**.

You use Language Models every day!

Google

what is the			Ļ
what is the weather what is the meanin what is the dark we what is the dark we what is the xfl what is the doomse what is the weather what is the weather what is the keto die what is the speed o what is the bill of r	g of life eb day clock r today et an dream of light		
	Google Search	I'm Feeling Lucky	

Notation

- To represent the probability of a particular random variable X_i taking on the value "the", or P(X_i = "the"), we will use the simplified notation P(the).
- a sequence of *n* words is denoted either as $w_1 \dots w_n$ or as w_1^n
- the joint probability of each word in a sequence having a particular value: P(X = w₁, Y = w₂, Z = w₃,...,W = w_n) is denoted as P(w₁,w₂,...,w_n).

How to compute $P(w_n|w_1, w_2, \dots, w_{n-1})$?

- Let us start by computing $P(w_n|w_1, w_2...w_{n-1})$, the probability of a word w_n given a sequence of words.
- For example: *P*(*the*|*its water is so transparent that*)
- Relative frequency counts: given a very large corpus, count the number of times we see its water is so transparent that, and count the number of times it is followed by the.

P(the|its water is so transparent that) =

C(its water is so transparent that the)

C(*its water is so transparent that*)

Too many possible sentences!

How to compute P(W)?

- Similarly, if we aim to know the probability P(W) of a sentence W (i.e., the joint probability of an entire sequence of words like *its water is so transparent*), we could do it by asking "out of all possible sequences of five words, how many of them are *its water is so transparent*?"
- To do so, we would have to get the count of *its water is so* transparent and divide by the sum of the counts of all possible five word sequences.
- That seems rather a lot to estimate!!!

How to compute P(W) practically

- For example, how to compute this joint probability:
 - P(its, water, is, so, transparent, that)
- Intuition: let's rely on the Chain Rule of Probability

Reminder: The Chain Rule

Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

• More variables:

P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

The Chain Rule in General

 $P(x_1, x_2, x_3, ..., x_n) = P(x_1)P(x_2 | x_1)P(x_3 | x_1, x_2)...P(x_n | x_1, ..., x_{n-1})$

The Chain Rule applied to compute joint probability of words in sentence

$$P(w_1 w_2 \dots w_n) = \prod_i P(w_i | w_1 w_2 \dots w_{i-1})$$

P("its water is so transparent") = P(its) × P(water|its) × P(is|its water) × P(so|its water is) × P(transparent|its water is so)

So, we can compute a joint probability by multiplying a number of conditional probabilities but ... this seems not help! However..... we can approximate the "history"

Markov Assumption

 $P(\text{the } | \text{its water is so transparent that}) \approx P(\text{the } | \text{that})$

•Or maybe

 $P(\text{the } | \text{ its water is so transparent that}) \approx P(\text{the } | \text{transparent that})$

Markov Assumption

$$P(w_1 w_2 \dots w_n) \approx \prod_i P(w_i \mid w_{i-k} \dots w_{i-1})$$

 In other words, we approximate each component in the product

$$P(w_i \mid w_1 w_2 \dots w_{i-1}) \approx P(w_i \mid w_{i-k} \dots w_{i-1})$$

N-grams Language Models

- Unigram language model
 - probability distribution over the words in a language
 - generation of text consists of pulling words out of a "bucket" according to the probability distribution and replacing them
 - PROBABILITIES OF WORDS IN A SEQUENCE DO NOT DEPEND ON PREVIOUS WORDS
- N-gram language model
 - some applications use bigram and trigram language models where probabilities depend on previous words
 - BIGRAM LM: the probability of a word in a sequence depend on the word that preceeds it
 - TRIGRAM LM: the probability of a word in a sequence depend on the two worda that preceed it

N-grams Language Models

Example of a 4gram LM (prediction based on the previous three words)

 $\begin{array}{c} \begin{array}{c} \textbf{as the proctor started the clock, the} \\ \textbf{discard} \\ \hline \\ \textbf{condition on this} \\ P(\textbf{w} | \text{students opened their}) = \frac{\text{count}(\text{students opened their } \textbf{w})}{\text{count}(\text{students opened their})} \\ \hline \\ P(\textbf{w} | \textbf{students opened their}) = \frac{\text{count}(\text{students opened their } \textbf{w})}{\text{count}(\text{students opened their})} \\ \hline \\ \end{array}$

For example, suppose that in the corpus:

- "students opened their" occurred 1000 times
- "students opened their books" occurred 400 times
 - \rightarrow P(books | students opened their) = 0.4
- "students opened their exams" occurred 100 times
 - \rightarrow P(exams | students opened their) = 0.1

Sparsity Problems with n-gram Language Models

Note: Increasing *n* makes sparsity problems *worse*. Typically we can't have *n* bigger than 5.

Recap: Language Models

A language model is **well-formed** over alphabet
$$\sum_{s \in \Sigma^*} P(s) = 1$$
.

Generic Language Model

"Today is Tuesday"	0.01
"The Eigenvalue is positive"	0.001
"Today Wednesday is"	0.00001
•••	

Unigram Language Model

"Today"	0.1
"is"	0.3
"Tuesday"	0.2
"Wednesday"	0.2
•••	

Bigram Language Model

"Today"	0.1
"is" "Today"	0.4
"Tuesday" "is"	0.8

How to handle sequences?

- Chain Rule (requires long chains of cond. prob.): $P(t_1t_2t_3t_4) = P(t_1)P(t_2 | t_1)P(t_3 | t_1t_2)P(t_4 | t_1t_2t_3)$
- Bigram LM (pairwise cond. prob.): $P_{bi}(t_1t_2t_3t_4) = P(t_1)P(t_2 | t_1)P(t_3 | t_2)P(t_4 | t_3)$
- Unigram LM (no cond. prob.): $P_{uni}(t_1t_2t_3t_4) = P(t_1)P(t_2)P(t_3)P(t_4)$

Recap: language models

How do we build probabilities over sequence of terms?

 $P(t1, t2, t3, t4) = P(t1) \times P(t2|t1) \times P(t3|t1, t2) \times P(t4|t1, t2, t3)$

Unigram language model --simplest ; no conditioning context

 $P(t1, t2, t3, t4) = P(t1) \times P(t2) \times P(t3) \times P(t4)$

Bigram language model – condition on previous term

 $P(t1, t2, t3, t4) = P(t1) \times P(t2|t1) \times P(t3|t2) \times P(t4|t3)$

Trigram language model ...

Unigram model is the most common in IR

- Often sufficient to judge the topic of a document
- Data sparseness issues when using richer models
- Simple and efficient implementation

N-gram models

- We can extend to trigrams, 4-grams, 5-grams
- In general this is an insufficient model of language
 - because language has long-distance dependencies:

"The computer which I had just put into the machine room on the fifth floor crashed."

• But we can often get away with N-gram models

Text representation with unigram LM

. . .

. . .

different θ_d for different d

LM for topic 2: Health

food 0.25 nutrition 0.1 healthy 0.05 diet 0.02 . . . 0.00002 n-gram . . .

0.2

0.1

0.01

0.02

LMs for Retrieval

- 3 possibilities:
 - probability of generating the query text from a document language model
 - probability of generating the document text from a query language model
 - comparing the language models representing the query and document topics
- We will see this when will will present IR models

Basic LM for IR

Estimating bigram probabilities

• The Maximum Likelihood Estimate

$$P(w_i | w_{i-1}) = \frac{count(w_{i-1}, w_i)}{count(w_{i-1})}$$

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

An example

$$P(w_i | w_{i-1}) = \frac{c(w_{i-1}, w_i)}{c(w_{i-1})}$$

<s> I am Sam </s> <s> Sam I am </s> <s> I do not like green eggs and ham </s>

$$P(I | ~~) = \frac{2}{3} = .67 \qquad P(Sam | ~~) = \frac{1}{3} = .33 \qquad P(am | I) = \frac{2}{3} = .67~~~~$$
$$P(| Sam) = \frac{1}{2} = 0.5 \qquad P(Sam | am) = \frac{1}{2} = .5 \qquad P(do | I) = \frac{1}{3} = .33$$

Estimating Probabilities

Obvious estimate for unigram probabilities is

$$P(q_i|D) = \frac{f_{q_i,D}}{|D|}$$

- Maximum likelihood estimate
 - makes the observed value of $f_{q;D}$ most likely
- If query words are missing from document, score will be zero
 - Missing 1 out of 4 query words same as missing 3 out of 4

Smoothing

- Document texts are a *sample* from the language model
 - Missing words should not have zero probability of occurring
- Smoothing is a technique for estimating probabilities for missing (or unseen) words
 - lower (or *discount*) the probability estimates for words that are seen in the document text
 - assign that "left-over" probability to the estimates for the words that are not seen in the text

Neural Language Models

- To overcome some limitations of Statistical LM, neural LM have been definied:
 - Fixed window neural LM
 - RNN (recurrent NN) LM
 - BERT (Bidirectional Encoder Representations from Transformers)
 - BERT's variants

•

Evaluation: How good is our model?

- Does our language model "prefer" good sentences to bad ones?
 - Assign higher probability to "real" or "frequently observed" sentences than those sentences that "rarely observed" or "ungrammatical" ?
- We train parameters of our model on a training set.
- We test the model's performance on data we haven't seen.
 - A **test set** is an unseen dataset that is different from our training set, totally unused.
 - An evaluation metric tells us how well our model does on the test set.

(Extra Slide not in video) Training on the test set

- We can't allow test sentences into the training set
- We will assign it an artificially high probability when we set it in the test set
- "Training on the test set"
- Bad science!
- And violates the honor code

Extrinsic evaluation of N-gram models

- Best evaluation for comparing two language models A and B
 - Put each model in a specific NLP task
 - spelling corrector, speech recognizer, MT system
 - Run the task, get an accuracy for A and for B
 - How many misspelled words corrected properly
 - How many words translated correctly
 - Compare accuracy for A and B

Difficulty of extrinsic (in-vivo) evaluation of N-gram models

- Extrinsic evaluation
 - Time-consuming; can take days or weeks

• So

- Sometimes use intrinsic evaluation: perplexity
- Bad approximation
 - unless the test data looks just like the training data
 - So generally only useful in pilot experiments
- But is helpful to think about.

Perplexity

The best language model is one that best predicts unseen words in a test set

• Gives the highest P(sentence)

Perplexity is the inverse probability of the test set, normalized by the number of words in the test set:

$$PP(W) = P(w_1w_2...w_N)^{-\frac{1}{N}}$$

$$= \sqrt[N]{\frac{1}{P(w_1w_2...w_N)}}$$

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_1\dots w_{i-1})}}$$

For bigrams:

Chain rule:

$$PP(W) = \sqrt[N]{\prod_{i=1}^{N} \frac{1}{P(w_i|w_{i-1})}}$$

Minimizing perplexity is the same as maximizing probability

Lower perplexity = better model

Example Perplexity Values of different N-gram language models trained using 38 million words and tested using 1.5 million words from *The Wall Street Journal dataset*

N-gram Order	Unigra m	Bigram	Trigram
Perplexity	962	170	109