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Basic Text Processing
“Basic text processing is often the first step in any text 
mining application and consists of several layers of simple
processing such as tokenization, lemmatization, 
normalization, or more advanced ”

From: Gabe Ignatow and Rada Mihalcea. “An Introduction to 
Text Mining”.  Apple Books. 



Text and documents



Textual Documents: simplest case
• Free-format text
• EBCDIC coding, ASCII (8 bit), UNICODE (16 bit), etc.

à Language
• Text consisting of strings of characters from an alphabet, etc.

• E.g., genome sequences, formulas of chemical compounds, words in 
natural language

• Examples
• Articles from newspapers, magazines, messages, letters, medical

reports, Web pages, etc.



Document characteristics
• Document
• Text 

+
• Structure 

+
• Other media (images, sounds, …) 

+
• Metadata



What is a document?

semantics
style

metadata



Metadata
• Metadata associated with a document is data related to 

the document:
• Descriptive metadata (Dublin Core Metadata Set):

• Relating to the creation of the document
• E.g.,: title, authors, date, length (in pages, words, bytes, etc.), genre 

(book, article, memo, mail, etc.)
• Semantic metadata

• Relating to the subject dealt with in the document
• E.g.,: Library of Congress subject codes, controlled keywords extracted 

from an ontology



Metadata

• Taken from: http://www.w3.org/Metadata/Activity

• Metadata is information about information - labeling,
cataloging and descriptive information structured in such
a way that allows pages to be properly searched and
processed in particular by computer. In other words, what
is now very much needed on the Web is metadata.

• W3C’s (World Wide Web Consortium) Metadata Activity is
concerned with ways to model and encode metadata.

http://www.w3.org/Metadata/Activity


Formats for text documents
In classical IR systems, documents had to be represented in an 
"internal" format in order to be indexed and managed
• 1st OPERATION: source file à generation or input file

• Documents written with common word-processors:
• Word
• TeX, RTF, HTML, XML (Rich Text Format) (ASCII format)

• Formats for viewing and printing:
• PDF (Portable Document Format)
• MIME (Multipurpose Internet Mail Exchange) for e-mail, it supports 

various character encodings

• Compressed formats:
• ARJ, ZIP (Winzip, Gzip)



Basic Text Processing



How to represent a text
• How to represent a text?
• Make it computable

• Represent by a string?
• No semantic meaning

• Represent by a list of sentences?
• Sentence is just like a short document (recursive definition)



Words as the basic “features” of texts 

• Doc1: Text mining is to identify useful information.
• Doc2: Useful information is mined from text.
• Doc3: Apple is delicious.



Initial stages of text processing
• Tokenization

• Cut character sequence into word tokens
• Deal with “John’s”, a state-of-the-art solution

• Normalization
• Map text and query term to same form

• You want U.S.A. and USA to match
• Stemming

• We may wish different forms of a root to match
• authorize, authorization

• Stop words removal
• We may omit very common words (or not)

• the, a, to, of



Basic Text 
Processing •Words and Corpora



How many words in a sentence?
• "I do uh main- mainly business data processing"

• Fragments, filled pauses
• "Seuss’s cat in the hat is different from other
cats!" 
• Lemma: same stem, part of speech, rough word sense

• cat and cats = same lemma
• Wordform: the full inflected surface form

• cat and cats = different wordforms



How many words in a sentence?

they lay back on the San Francisco grass and looked at 
the stars and their

• Type: an element of the vocabulary.
• Token: an instance of that type in running text.
• How many?
• 15 tokens (or 14)
• 13 types (or 12) (or 11?)



How many words in a corpus?

N = number of tokens
V = vocabulary = set of types, |V| is size of vocabulary
Heaps Law = Herdan's Law =                                 where often .67 < β < 
.75
i.e., vocabulary size grows with > square root of the number of word 
tokens

Tokens = N Types = |V|
Switchboard phone
conversations

2.4 million 20 thousand

Shakespeare 884,000 31 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13+ million
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duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment
filled pause we consider these to be words? Again, it depends on the application. If we are

building a speech transcription system, we might want to eventually strip out the
disfluencies.

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma
the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform
languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token
punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.11 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.11 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and b are positive constants, and 0 < b < 1.

|V | = kNb (2.1)



Corpora
Words don't appear out of nowhere! 
A text is produced by 

• a specific writer(s), 
• at a specific time, 
• in a specific variety,
• of a specific language, 
• for a specific function.



Corpora vary along dimension like

• Language: 7097 languages in the world
• Variety, like African American Language varieties.

• AAE Twitter posts might include forms like "iont" (I don't)
• Code switching, e.g., Spanish/English, Hindi/English:

S/E: Por primera vez veo a @username actually being hateful! It was 
beautiful:) 

[For the first time I get to see @username actually being hateful! it was 
beautiful:) ] 

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”] 

• Genre: newswire, fiction, scientific articles, Wikipedia
• Author Demographics: writer's age, gender, ethnicity, SES 



WORD TOKENIZATION
BASIC TEXT PROCESSING



Text Normalization

• Every NLP task requires text 
normalization: 

1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences



Space-based tokenization

• A very simple way to tokenize
• For languages that use space characters between words

• Arabic, Cyrillic, Greek, Latin, etc., based writing systems
• Segment off a token between instances of spaces

• Unix tools for space-based tokenization
• The "tr" command
• Inspired by Ken Church's UNIX for Poets
• Given a text file, output the word tokens and their frequencies



Tokenization
• Input: “Friends, Romans and Countrymen”
• Output: Tokens
• Friends
• Romans
• and
• Countrymen

• A token is an instance of a sequence of characters
• Each such token is now a candidate to be a meaningful term 

(index), after further processing
• Described below

• But what are valid tokens to emit?



Issues in Tokenization

• Can't just blindly remove punctuation:
• m.p.h., Ph.D., AT&T, cap’n
• prices ($45.55)
• dates (01/02/06)
• URLs (http://www.stanford.edu)
• hashtags (#nlproc)
• email addresses (someone@cs.colorado.edu)

• Clitic: a word that doesn't stand on its own
• "are" in we're, French "je" in j'ai, "le" in l'honneur

• When should multiword expressions (MWE) be words?
• New York, rock ’n’ roll 



Tokenization

• Issues in tokenization:
• Finland’s capital ®

Finland AND s? Finlands? Finland’s?
• Hewlett-Packard ® Hewlett and Packard as two 

tokens?
• state-of-the-art: break up hyphenated sequence.  
• co-education
• lowercase, lower-case, lower case ?

• San Francisco: one token or two?  
• How do you decide it is one token?



Numbers
• 3/20/91 Mar. 12, 1991

20/3/91
• 55 B.C.
• B-52
• My PGP key is 324a3df234cb23e
• (800) 234-2333
• Often have embedded spaces
• Older IR systems may not index numbers

• But often very useful: think about things like looking up codes on the web



Tokenization: language issues
• French
• L'ensemble ® one token or two?

• L ? L’ ? Le ?
• Want l’ensemble to match with un ensemble

• Until at least 2003, it didn’t on Google

• German noun compounds are not segmented
• Lebensversicherungsgesellschaftsangestellter
• ‘life insurance company employee’
• German retrieval systems benefit greatly from a compound splitter 

module
• Can give a 15% performance boost for German 



Tokenization in NLTK
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Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,
" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.12 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize
function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes ], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi
character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:
(2.4) ⁄�€e;≥[

“Yao Ming reaches the finals”
As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):
(2.5) ⁄�

YaoMing
€e
reaches

;≥[
finals

or as 5 words (‘Peking University’ segmentation):
(2.6) ⁄

Yao
�
Ming

€e
reaches

;
overall

≥[
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly



Tokenization in languages without spaces 
Many languages (like Chinese, Japanese, Thai) don't use 
spaces to separate words!

How do we decide where the token boundaries should be?



Word tokenization in Chinese

Chinese words are composed of characters called "hanzi" 
(or sometimes just "zi")
Each one represents a meaning unit called a morpheme.
Each word has on average 2.4 of them.
But deciding what counts as a word is complex and not 
agreed upon.



How to do word tokenization in Chinese?

•姚明进入总决赛 “Yao Ming reaches the finals”

•3 words?
•姚明 进入 总决赛
•YaoMing reaches  finals 

•5 words?
•姚 明 进入 总 决赛
•Yao    Ming    reaches    overall    finals 

•7 characters? (don't use words at all):
•姚 明 进 入 总 决 赛
•Yao Ming enter enter overall decision game



Word tokenization / segmentation

So in Chinese it's common to just treat each character (zi) 
as a token.

• So the segmentation step is very simple
In other languages (like Thai and Japanese), more 
complex word segmentation is required.

• The standard algorithms are neural sequence models 
trained by supervised machine learning.



Tokenization: language issues

• Further complicated in Japanese, with multiple alphabets 
intermingled
• Dates/amounts in multiple formats

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!



Tokenization: language issues
• Arabic (or Hebrew) is basically written right to left, but with 

certain items like numbers written left to right
• Words are separated, but letter forms within a word form 

complex ligatures

• ←  →    ← →                         ← start
• ‘Algeria achieved its independence in 1962 after 132 years of 

French occupation.’
• With Unicode, the surface presentation is complex, but the 

stored form is  straightforward



Tokenization

• Break a stream of text into meaningful units
• Tokens: words, phrases, symbols

• Definition depends on language, corpus, or even context

• Input: It’s not straight-forward to perform so-
called “tokenization.”  

• Output(1): 'It’s', 'not', 'straight-forward', 'to', 
'perform', 'so-called', '“tokenization.”' 

• Output(2): 'It', '’', 's', 'not', 'straight', '-', 'forward, 
'to', 'perform', 'so', '-', 'called', ‘“', 'tokenization', '.', 
'”‘



Another option for text tokenization

Instead of 
• white-space segmentation
• single-character segmentation 

Use the data to tell us how to tokenize.
Subword tokenization (because tokens can be parts 
of words as well as whole words)



Subword tokenization

• Three common algorithms:
• Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
• Unigram language modeling tokenization (Kudo, 

2018)
• WordPiece (Schuster and Nakajima, 2012)

• All have 2 parts:
• A token learner that takes a raw training corpus and 

induces a vocabulary (a set of tokens). 
• A token segmenter that takes a raw test sentence and 

tokenizes it according to that vocabulary



Tokenization recap
• Solutions
• Regular expressions

• [\w]+: so-called -> ‘so’, ‘called’
• [\S]+: It’s -> ‘It’s’ instead of ‘It’, ‘’s’

• Statistical methods
• Explore rich features to decide where the boundary of a word is

• Apache OpenNLP (http://opennlp.apache.org/)
• Stanford NLP Parser (http://nlp.stanford.edu/software/lex-parser.shtml) 

• Online Demo
• Stanford (http://nlp.stanford.edu:8080/parser/index.jsp) 

CS@UVa CS6501: Text Mining 38

http://opennlp.apache.org/
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu:8080/parser/index.jsp


WORD NORMALIZATION



Word Normalization
• Putting words/tokens in a standard format

• U.S.A. or USA
• uhhuh or uh-huh
• Fed or fed
• am, is, be, are 



Normalization to terms
• We may need to “normalize” words :
• We want to match U.S.A. and USA

• Result is terms: a term is a (normalized) word type
• Most commonly, an implicit definition of equivalence classes of 

terms is obtained by, e.g., 
• deleting periods to form a term

• U.S.A., USA  è USA
• deleting hyphens to form a term

• anti-discriminatory, antidiscriminatory è antidiscriminatory



Normalization: other languages
• Accents: e.g., French résumé vs. resume.
• Umlauts: e.g., German: Tuebingen vs. Tübingen
• Should be equivalent

• This is important is search engines:
• How are users like to write their queries for these words?

• Even in languages that standardly have accents, users often 
may not type them
• Often best to normalize to a de-accented term

• Tuebingen, Tübingen, Tubingen è Tubingen



Normalization: other languages
• Normalization of things like date forms
• 7月30日 vs. 7/30
• Japanese use of kana vs. Chinese characters

• Tokenization and normalization may depend on the language 
and so is intertwined with language detection

• Crucial: in search engines there is the need to “normalize”
indexed text as well as query terms identically

Morgen will ich in MIT … 

Is this
German “mit”?



Case folding
• Applications like IR: reduce all letters to lower 
case
• Since users tend to use lower case
• Possible exception: upper case in mid-sentence?

• e.g., General Motors
• Fed vs. fed
• SAIL vs. sail

• For sentiment analysis, MT, Information extraction
• Case is helpful (US versus us is important)



Thesauri and soundex
• How we can handle synonyms and homonyms?
• E.g., by hand-constructed equivalence classes

• car = automobile color = colour
• We can rewrite to form equivalence-class terms

• When the document contains automobile, index it under car-automobile (and 
vice-versa)

• Or in search engines we can expand a query
• When the query contains automobile, look under car as well

• What about spelling mistakes?
• One approach is Soundex, which forms equivalence classes of words 

based on phonetic heuristics



LEMMATIZATION AND STEMMING



Lemmatization
• Reduce inflectional/variant forms to base form
• E.g.,
• am, are, is ® be

• car, cars, car's, cars' ® car

• the boy's cars are different colors ® the boy car be different 
color

• Lemmatization implies doing “proper” reduction to dictionary 
headword form



Lemmatization is done by Morphological 
Parsing
•Morphemes:

• The small meaningful units that make up words
• Stems: The core meaning-bearing units
• Affixes: Parts that adhere to stems, often with 

grammatical functions
•Morphological Parsers:
• Parse cats into two morphemes cat and s
• Parse Spanish amaren (‘if in the future they would love’) into 

morpheme amar ‘to love’, and the morphological features 3PL 
and future subjunctive. 



Stemming
• Reduce terms to stems
• “Stemming” suggests crude affix chopping
• language dependent
• e.g., automate(s), automatic, automation all reduced to automat.

for example compressed 
and compression are both 
accepted as equivalent to 
compress.

for exampl compress and
compress ar both accept
as equival to compress



Porter Stemmer
• Commonest algorithm for stemming English
• Based on a series of rewrite rules run in series
• A cascade (sequentially), in which output of each pass fed to next 

pass
• Some sample rules:
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be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem
pheme of the word, supplying the main meaning— and affixes—adding “additional”affix
meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or parses a Spanish word like amaren (‘if in the future
they would love’) into the morpheme amar ‘to love’, and the morphological features
3PL and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer
applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but
an accurate copy, complete in all things-names and heights
and soundings-with the single exception of the red crosses
and the written notes.

produces the following stemmed output:
Thi wa not the map we found in Billi Bone s chest but an
accur copi complet in all thing name and height and sound
with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade
which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL ! ATE (e.g., relational ! relate)
ING ! ✏ if stem contains vowel (e.g., motoring ! motor)

SSES ! SS (e.g., grasses ! grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity



Other stemmers
• Other stemmers exist:
• Lovins stemmer 

• http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

• Single-pass, longest suffix removal (about 250 rules)
• Paice/Husk stemmer
• Snowball

• Full morphological analysis (lemmatization)
• At most modest benefits for retrieval



Language-specificity
• The above methods embody transformations that are
• Language-specific, and often
• Application-specific

• These are “plug-in” addenda to the indexing process
• Both open source and commercial plug-ins are available for 

handling these



Does stemming help in retrieval?
• English: very mixed results. Helps recall for some queries but 

harms precision on others
• E.g., operative (dentistry) ⇒ oper

• Definitely useful for Spanish, German, Finnish, …
• 30% performance gains for Finnish!



Stop words

• With a stop list, you exclude from the dictionary entirely the 
commonest words. Intuition:
• They have little semantic content: the, a, and, to, be
• There are a lot of them: ~30% of postings for top 30 words

• However, for example Web SE do not use stoplists, due to the 
following reasons:
• Good compression techniques means the space for including stop 

words in a system is very small
• You need them for:

• Phrase queries: “King of Denmark”
• Various song titles, etc.: “Let it be”, “To be or not to be”
• “Relational” queries: “flights to London”



Recap: construction of a text 
representation

4. Stopword/controlled vocabulary 
filtering:

D1: ‘Text mining is to identify useful information.’

D1: ‘Text’, ‘mining’, ‘is’, ‘to’, ‘identify’, ‘useful’, ‘information’, ‘.’

D1: ‘text’, ‘mine’, ‘is’, ‘to’, ‘identify’, ‘use’, ‘inform’, ‘.’

D1: ‘text-mine’, ‘mine-is’, ‘is-to’, ‘to-identify’, ‘identify-use’, ‘use-inform’, ‘inform-.’

D1: ‘text-mine’, ‘to-identify’, ‘identify-use’, ‘use-inform’

1. Tokenization: 

2. Stemming/normalization:

3. N-gram construction:

Reducer


