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Simplest way  : Binary term-document 
weighting. Example by incidence matrix

Each document can be represented by a set of terms 
or by a binary vector ∈ {0,1}|V|

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

Vocabulary V

Documents



Term-document weighting
Count matrix
• Consider the number of occurrences of a term in a document: 
• Each document is a count vector in ℕv: a column below 

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0



Bag of words model
• Vector representation does not consider the ordering of words 

in a document

• John is quicker than Mary and Mary is quicker than John have 
the same vectors

• This is called the bag of words model.

• We will see how to “recover” positional information



Bag-of-Words with N-grams
• N-grams: a contiguous sequence of N tokens from a 

given piece of text
• E.g., ‘Text mining is to identify useful information.’
• Bigrams: ‘text_mining’, ‘mining_is’, ‘is_to’, ‘to_identify’, 

‘identify_useful’, ‘useful_information’, ‘information_.’ 

• Pros: capture local dependency and order

• Cons: a purely statistical view, increase the vocabulary 
size  



Statistical properties of texts
• How is the frequency of different words distributed in a 

corpus?
• In natural language, there are a few very frequent terms and 

very few very rare terms.
• Zipf’s law describes the frequency of an event (in our case a 

word) in a set according to its rank (rank: the numerical 
position of a word in a list sorted by decreasing frequency);
Given a collection, sort the words 𝑤 in decreasing order of 
their frequency 𝑓(𝑤) in the collection (with an increasing
order of rank). 
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George Kingsley Zipf, Human Behavior and the principle of least effort, Addison Wesley, 1949. 



Natural language and Zipf’s law (1949)
Zipf’s law: the product of the frequency of use of words and the 
rank order is approximately constant. So, the frequency of w, f(w) 
is proportional to 1/r(w): 

where K is a constant value. Different collections have different    
values of K.
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Zipf G.K. Human Behavior and the principle of least effort, Addison Wesley, 1949. 

Natural language and Zipf’s law (1949)
� Zip’s law: the product of the frequency of use of words and the 

rank order is approximately constant. So, the frequency of 𝑤, 
𝑓(𝑤) is proportional to 

( )
:

𝑓 𝑤 ∝ =
( )

where 𝐾 is a constant value

� Different collections have different values of 𝐾

Zipf G.K. Human Behavior and the principle of least effort, Addison Wesley, 1949. 



Natural language and Zipf’s law (1949)
• Given a collection, sort the words w in decreasing order of 

their frequency f(w) in the collection (with an increasing order 
of rank) : 
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Zipf’s law tells us
• Head words take large portion of occurrences, but they 

are semantically meaningless
• E.g., the, a, an, we, do, to

• Tail words take major portion of vocabulary, but they rarely 
occur in documents
• E.g., dextrosinistral



Luhn’s Analysis (1958)

Not all words in a text describe the content with the same 
accuracy/informativity. 

In 1958, Luhn noted that “the frequency with which some 
words appear in a text provides an important indication of 
the significance of words. Moreover, the position of these 
words in sentences is another important parameter that 
indicates the significance of sentences”

IDEA: association of weights to the terms that represent a 
document



Luhn’s Analysis (1958)

• Discriminating power of significant words (Zipf’s curve): 
the ability of words to discriminate the content of 
documents is maximum in the intermediate position 
between the two cut-off levels



Automatic document representation
Remove non-informative 
words

Remove rare 
words



Indexing criteria based on 
Luhn’s Analysis
• Weighing the index terms: very frequent words assume a 

lower weight of significance

• Stop list: very frequent words are eliminated from the 
indexes (upper cut-off)

• Meaningful words: very frequent and infrequent words are 
eliminated from the indexes (upper and lower cut-off)



So: how to assign weights to terms ?
• Based on Luhn’s analysis, proposals of term weighting

appeared
• Two factors were identified:
• Corpus-wise: some terms carry more information about the 

document content
• Document-wise: not all terms are equally important

• How to measure them ?
• Two basic heuristics
• TF (Term Frequency) = Within-doc-frequency
• IDF (Inverse Document Frequency)



Term frequency tf
• The term frequency tft,d of term t in document d is defined as 

the number of times that t occurs in d.
• However, pure term frequency is not what we want:
• A document with 10 occurrences of the term is more relevant than a 

document with 1 occurrence of the term.
• But not 10 times more relevant.

A simple idea: term frequency adjusted for document length
(the number of words in the document) 

Term frequency tf
� The term frequency 𝑡𝑓𝑡,𝑑 of term 𝑡 in document 𝑑 is defined as 

the number of times that 𝑡 occurs in 𝑑.

� However, pure term frequency is not what we want:
� A document with 10 occurrences of the term is more relevant than a 

document with 1 occurrence of the term.
� But not 10 times more relevant.

� A simple idea: term frequency adjusted for document length 
(the number of words in the document)

𝑤𝑡,𝑑 =
𝑡𝑓𝑡,𝑑
|𝑑|



Example

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

� 𝑡𝑓 , = ?

� 𝑤 , = ,

| |
= ?

𝑑1 𝑑 𝑑 𝑑 𝑑 𝑑

157

157
157 + 4 + 232 + 57 + 2 + 2 =

157
454 = 0.34



Normalizing by max occ
� To prevent a bias towards longer documents:

푤 , =
𝑡𝑓 ,

max
∈

𝑡𝑓 ,

� Where max
∈

𝑡𝑓 , is the frequency of the most occurring

term 𝑡 in the document 𝑑.



Example

� 𝑤 ,𝑑 =
𝑓 ,

max
∈

𝑓 ,
Æ 𝑤 ,𝑑 =

𝑓 ,

max
∈

𝑓 ,
= ?

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

𝑑1 𝑑2 𝑑3 𝑑4 𝑑5 𝑑6



Example

� 𝑡𝑓 , = ?

� max
∈

𝑡𝑓 , =

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

𝑑1 𝑑2 𝑑 𝑑 𝑑 𝑑

157

𝑡𝑓 , = ? 232



idfweight
� 𝑑𝑓푡 is the document frequency of 푡: the number of documents 

that contain 푡.
� 𝑑𝑓푡 is an inverse measure of the informativeness of 푡
� 𝑑𝑓푡 d 𝑁 = |𝐷|

� We define the 푖𝑑𝑓 (inverse document frequency) of 푡 by

푖𝑑𝑓 = log
𝑁
𝑑𝑓

� We use log instead of to «dampen» the effect of 푖𝑑𝑓.



tf-idf weighting

• The tf-idf weight of a term is the product of its tf weight and its 
idf weight.

• Best known weighting scheme in information retrieval
• Note: the “-” in tf-idf is a hyphen, not a minus sign!
• Alternative names: tf.idf, tf x idf

• Increases with the number of occurrences within a document
• Increases with the rarity of the term in the collection

w
t ,d
=  (tft,d / maxti tfti,d )× log10 (N / dft )

Sec. 6.2.2



Example ± df

� 𝑑𝑓 = ?

� 𝑑𝑓 = ?

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

𝑑1 𝑑2 𝑑3 𝑑 𝑑 𝑑

1

4



Example ± idf

� 𝑖𝑑𝑓 = log = ?

� 𝑖𝑑𝑓 = log = ?

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

𝑑1 𝑑 𝑑 𝑑 𝑑 𝑑

6
1
= 6

6
4
= 1.5

log 6 = 0.78

log 1.5 = 0.18



tf-idfweighting

� The 𝑡𝑓-𝑖𝑑𝑓 weight of a term is the product of its 𝑡𝑓 weight and 
its 𝑖𝑑𝑓 weight.

𝑤 ,𝑑 =
𝑡𝑓 ,𝑑

max
∈𝑑

𝑡𝑓 ,𝑑
log

𝑁
𝑑𝑓

� Note: the “-” in tf-idf is a hyphen, not a minus sign!

� Alternative names: 𝑡𝑓. 𝑖𝑑𝑓, 𝑡𝑓 × 𝑖𝑑𝑓



Example tf-idf

� 𝑤 , = ,

∈ ,
log =

Antony and Cleopatra Julius Caesar The Tempest Hamlet Othello Macbeth

Antony 157 73 0 0 0 0
Brutus 4 157 0 1 0 0
Caesar 232 227 0 2 1 1

Calpurnia 0 10 0 0 0 0
Cleopatra 57 0 0 0 0 0

mercy 2 0 3 5 5 1

worser 2 0 1 1 1 0

𝑑1 𝑑 𝑑 𝑑 𝑑 𝑑

157
232

log
6
2

=0.32



tf-idfweighting
� Increases with the number of occurrences within a document

� Common in doc Æ high 𝑡𝑓Æ high weight

� Increases with the rarity of the term in the collection
� Rare in collection Æ high 𝑖𝑑𝑓Æ high weight

� Best known weighting scheme in Information Retrieval             
(G. Salton et al. 1983)

“Salton was perhaps the 
leading computer scientist 
working in the field of 
information retrieval during 
his time” - Wikipedia

Gerard Salton Award
highest achievement award in IR


