Consegnare solo il presente fiscicolo (van versumo corretti seccicii, parti di seccici; o tisultati iportati su altri fegli) \dot{b} consentito facciare l'aula solo dopo la consegna definitiva dell'elaborato (che va consegnato anche nel caso ci si ritiri). Partie A st richiede di motivare adequatamente la risposta; la sola risposta esatta non verrà valutata. Esercizio 1. (5 punti) Si studi il carattere di due (e mon più di due) delle seguenti serie, stabilendo se convergono, divergono o oscillano: a) $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n+2};$ b) $\sum_{n=1}^{\infty} \frac{(n+2)^n}{n^{n+1}};$ c) $\sum_{n=1}^{\infty} \frac{n^n}{(4n)!}$. a) convere; b) diverge; c) converge.	C	ognome:			Nome:			Matricol	a:		
Parte A si richiede di motivare adeguatamente la risposta; la sola risposta esatta non verrà valutata. Esercizio 1. (5 punti) Si studi il carattere di due (e non più di due) delle seguenti serie, stabilendo se convergono, divergono o oscillano: a) $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n+2};$ b) $\sum_{n=1}^{\infty} \frac{(n+2)^n}{n^{n+1}};$ c) $\sum_{n=1}^{\infty} \frac{n^n}{(4n)!}.$,						*	
Esercizio 1. (5 punti) Si studi il carattere di due (e non più di due) delle seguenti serie, stabilendo se convergono, divergono o oscillano: a) $\sum_{n=0}^{\infty} (-1)^n \frac{1}{n+2};$ b) $\sum_{n=1}^{\infty} \frac{(n+2)^n}{n^{n+1}};$ c) $\sum_{n=1}^{\infty} \frac{n^n}{(4n)!}.$		_									
convergono, divergono o oscillano: $a) \sum_{n=0}^{\infty} (-1)^n \frac{1}{n+2}; \qquad b) \sum_{n=1}^{\infty} \frac{(n+2)^n}{n^{n+1}}; \qquad c) \sum_{n=1}^{\infty} \frac{n^n}{(4n)!}.$											ndo se
					caratter	ai aac	(c non pra	ar ade, de	no soguenti	serie, stabile	nao se
a) convere; b) diverge; c) converge.			a)	$\sum_{n=0}^{\infty} (-1)^n \frac{1}{n}$	$\frac{1}{2+2}$;	$b)$ $\sum_{n=1}^{\infty}$	$\sum_{n=1}^{\infty} \frac{(n+2)^n}{n^{n+1}}$	(c)	$\sum_{n=1}^{\infty} \frac{n!}{(4n)!}.$		
	a) co	onvere; b)	diverge; c	c) converge.							

Esercizio 2. (5 punti) Si determini il valore di due (e non più di due) dei seguenti integrali.

a)
$$\int_0^1 x \log x \, dx,$$

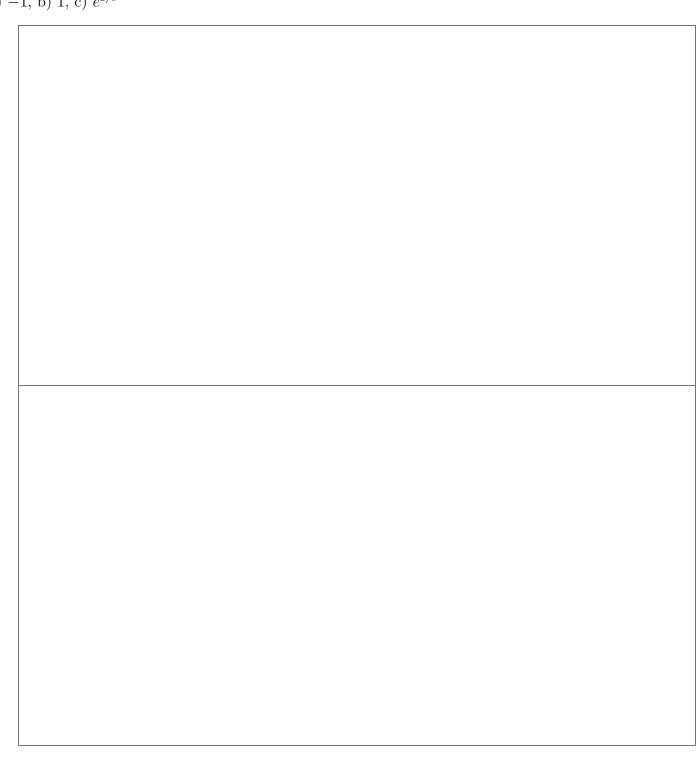
b)
$$\int_0^1 \frac{\log(x+1)}{x+1} dx$$
,

a)
$$\int_0^1 x \log x \, dx$$
, b) $\int_0^1 \frac{\log(x+1)}{x+1} \, dx$, c) $\int_0^1 \frac{x^2 - 2x + 1}{x-1} \, dx$.

$$a) - \frac{1}{4},$$

$$a) - \frac{1}{4},$$
 $b) \frac{1}{2} \log^2 2,$ $c) - \frac{1}{2}.$

$$c) - \frac{1}{2}$$


Esercizio 3. (5 p	p unti) Si	calcolino	due	(e non	più o	di due)	dei seguenti l	imiti
-------------------	-------------------	-----------	-----	--------	-------	---------	----------------	-------

$$a)\lim_{x\to 0}\frac{\arccos x-\frac{\pi}{2}}{x}.$$

$$b)\lim_{x\to 0}\frac{\sin(x^4)}{\sin^2(x^2)}$$

$$a) \lim_{x \to 0} \frac{\arccos x - \frac{\pi}{2}}{x}, \qquad b) \lim_{x \to 0} \frac{\sin(x^4)}{\sin^2(x^2)} \qquad c) \lim_{x \to +\infty} e^{-x} \left(e + \frac{2}{x} \right)^x.$$

a)
$$-1$$
, b) 1, c) $e^{2/e}$

${\operatorname{Parte}}\;{\operatorname{B}}\;$ Si richiede di riportare le risposte alle domande; non si richiede la giustificazione

Esercizio 4. (5 punti) Si considerino le funzioni $g, f : \mathbb{R} \to \mathbb{R}$ definite come

$$g(x) = \cos(x - \sin x) - 1,$$
 $f(x) = 2 - \sqrt[72]{1 + x^6} - \cos(x - \sin x).$

- a) Qual è l'ordine di infinitesimo per $x \to 0$ della funzione g?
- b) Qual è l'ordine di infinitesimo per $x \to 0$ della funzione f?
- c) Detto α l'ordine di infinitesimo per $x \to 0$ di f, quanto vale $\lim_{x \to 0^+} \frac{f(x)}{x^{\alpha}}$?

 Risposta: a) 6; b) 8; c) $-\frac{1}{720}$.

Esercizio 5. (5 punti) Si considerino i seguenti tre numeri complessi

$$z_1 = 1 - i$$
, $z_2 = 1 + i\sqrt{3}$, $z_3 = 2i$

- a) Determinare la forma esponenziale del numero complesso $\left(\frac{z_1 \cdot z_2}{z_3}\right)^{-5}$:
- b) Determinare $\min \left\{ n \in \mathbb{N} \setminus \{0\} \mid \operatorname{Im} \left[\left(\frac{z_1 \cdot z_2}{z_3} \right)^{-n} \right] = 0 \right\} :$
- c) Determinare $\min\left\{n\in\mathbb{N}\setminus\{0\}\mid\operatorname{Re}\left[\left(\frac{z_1\cdot z_2}{z_3}\right)^{-n}\right]=0\right\}:$

Risposta: a) $\frac{\sqrt{2}}{8}e^{\frac{1}{12}\pi i}$, b) 12, c) 6.

Parte C Si richiede di motivare adeguatamente le risposte; la sole risposte esatte non verranno valutate.

Esercizio 6. (8 punti) Ricordiamo che z è un punto fisso per una funzione f se f(z) = z.

- a) Se f è una funzione reale, derivabile in un intervallo I e tale che $f'(x) \neq 1$ per ogni $x \in I$, si dimostri che f possiede al più un solo punto fisso appartenente ad I.
- b) Costruire una funzione $f:[0,1]\to\mathbb{R}$ che possieda due punti fissi appartenenti a [0,1].
- c) Se $f: [0,1] \to [0,1]$ è una funzione continua, si dimostri l'esistenza di almeno un punto fisso per f in [0,1].
- d) Sia $f: \mathbb{R} \to \mathbb{R}$ una funzione che soddisfa la seguente proprietà: esiste $L \in (0,1)$ tale che $|f(x) f(y)| \le L|x-y|$ per ogni $x, y \in \mathbb{R}$. Si dimostri che f possiede al più un solo punto fisso.
- e) Si dimostri che la funzione $f: [0, +\infty) \to [0, +\infty)$ definita da $f(x) = x + \frac{1}{1+x}$ non possiede punti fissi e soddisfa la condizione |f(x) f(y)| < |x y| per ogni $x \neq y$.

SOLUZIONE

- a) Se f possedesse due punti fissi x_1 e x_2 , allora, per il teorema di Rolle, esisterebbe un punto c compreso tra x_1 e x_2 tale che la derivata della funzione $x \mapsto f(x) x$ si annullerebbe in c. Questo contraddice l'ipotesi su f;
- b) Ad esempio $f(x) = x^2$.
- c) Basta considerare la funzione g(x) = f(x) x. Se f(0) = 0 oppure se f(1) = 1, la dimostrazione è finita. Altrimenti f(0) > 0 e f(1) < 1. Dunque g(0) > 0 e g(1) < 0, e per il Teorema dei Valori Intermedi deduciamo l'esistenza di uno zero z di g in [0,1]. Pertanto g(z) = 0, e z è un punto fisso di f.
- d) Supponiamo che $f(x_1) = x_1$ e $f(x_2) = x_2$, con $x_1 \neq x_2$. Dunque

$$|f(x_1) - f(x_2)| = |x_1 - x_2| \le L|x_1 - x_2|,$$

sicché $0 \le (1-L)|x_1-x_2| \le 0$, una contraddizione.

e) Per x > y, si ha

$$|f(x) - f(y)| = \left| x - y + \frac{1}{1+x} - \frac{1}{1+y} \right| = \left| (x-y) - \frac{x-y}{(1+x)(1+y)} \right| = |x-y| \left| 1 - \frac{1}{(1+x)(1+y)} \right| < |x-y|.$$

Scambiando x con y si ottiene che |f(x) - f(y)| < |x - y| per ogni $x \neq y$. Basta osservare che f(x) = x, cioè $x + \frac{1}{1+x} = x$, implica $\frac{1}{1+x} = 0$ che non ha soluzione.