# WORD EMBEDDING Vector semantics

Prof. Marco Viviani marco.viviani@unimib.it



## Word embedding – Definition

- The term word embedding indicates <u>a set of techniques</u> in *Natural Language Processing* (NLP) where words or phrases from the vocabulary are mapped to <u>dense</u> vectors of real numbers.
- Conceptually, it involves a mathematical embedding from a <u>vector space</u> with many dimensions per word to a <u>vector space</u> with a much lower dimension.
- **Models** to generate this <u>mapping</u> include:
  - Count-based models (Distributed semantic models)
  - Predictive models (Neural network models)

## BACKGROUND

Text representation

### **Representing DOCUMENTS as vectors**

- Each document is represented by a vector of words.
  - **Option 1**: <u>Binary</u> representation.



$$d_1 = [1, 0, 0]$$
  $d_2 = [0, 1, 0]$ 

 $d_3 = [0, 0, 1]$ 

### **Representing DOCUMENTS as vectors**

- Each document is represented by a vector of words.
  - Option 2: <u>Raw frequency</u> representation.

|      | $d_1$ | $d_2$ | <i>d</i> <sub>3</sub> |
|------|-------|-------|-----------------------|
| bear | 85    | 0     | 0                     |
| cat  | 0     | 10    | 0                     |
| frog | 0     | 0     | 44                    |

 $d_1 = [85, 0, 0]$   $d_2 = [0, 10, 0]$ 

 $d_3 = [0, 0, 44]$ 

### **Representing DOCUMENTS as vectors**

- Each document is represented by a vector of words.
  - Option 3: Weighted representation.
    - Weighted term frequency (different possibilities)
    - tf-idf

|      | $d_1$ | $d_2$ | <i>d</i> <sub>3</sub> |
|------|-------|-------|-----------------------|
| bear | 0.48  | 0     | 0                     |
| cat  | 0     | 0.48  | 0                     |
| frog | 0     | 0     | 0.48                  |

 $d_1 = [0.48, 0, 0]$   $d_2 = [0, 0.48, 0]$ 

 $d_3 = [0, 0, 0.48]$ 

## Similarity of DOCUMENTS

|        | As You<br>Like It | Twelfth<br>Night | Julius<br>Caesar | Henry V |
|--------|-------------------|------------------|------------------|---------|
| battle | 1                 | 0                | 7                | 13      |
| good   | 114               | 80               | 62               | 89      |
| fool   | 36                | 58               | 1                | 4       |
| wit    | 20                | 15               | 2                | 3       |
|        |                   |                  |                  |         |

- Vectors of the two comedies are similar. They are different with respect to the history plays.
  - Comedies have more "fools" and "wits" and fewer "battles".
- The vector representation of documents is at the basis of Information Retrieval → Vector Space Model

### Visualizing similarity of DOCUMENTS



### WORDS can be represented as vectors too

|   |        | As You<br>Like It | Twelfth<br>Night | Julius<br>Caesar | Henry V |   |
|---|--------|-------------------|------------------|------------------|---------|---|
| ĩ | battle | 1                 | 0                | 7                | 13      | 1 |
| _ | good   | 114               | 80               | 62               | 89      |   |
| Ē | fool   | 36                | 58               | 1                | 4       | ] |
|   | wit    | 20                | 15               | 2                | 3       |   |

- In the term-document matrix representation, a possible interpretation could be:
  - battle is "the kind of word that occurs history plays, in Julius Caesar and Henry V especially".
  - fool is "the kind of word that occurs in comedies, especially Twelfth Night".

### **In-document features**



(a) "In-documents" features

## Similarity of WORDS

- **Usually**, the similarity of words is **NOT** computed by using the term-document representation.
- Two words are similar if their «context vectors» are similar.
  - We are going to detail this concept in the next slides.
- The employed matrix representation, in this case, has words on both rows and columns.
  - Different representations and meanings.
  - Next slides.

### Representing WORDS as vectors 1. Local representation

- Each word is represented by a vector of words.
  - Option 1: each element represents a different word.
    - Also known as "1-hot" or "1-of-V" or local representation.



bear = [1, 0, 0] cat = [0, 1, 0] frog = [0, 0, 1]

### 1-hot vectors

- 1-hot vectors tell us very little.
- We need a separate dimension for every word we want to represent (the base vectors in a vector space).



### 1-hot vectors

Few **problems** with the one-hot approach for encoding:

- The number of dimensions (the columns) increases linearly as we add words to the vocabulary.
  - For a vocabulary of 50,000 words, each word is represented with 49,999 zeros, and a single "one" value in the correct location. As such, memory use is prohibitively large.
- The matrix is very sparse, mainly made up of zeros.
- There is no shared information between words and no commonalities between similar words.

### 1-hot vectors

### There is no shared information between words and no commonalities between similar words.



## **Representing WORDS as vectors**

### 2. Distributed representation

- Each word is represented by a vector of words.
  - Option 2: IDEA: to each word of the vocabulary are associated k "context dimensions" that represent "properties" associated with the words of the vocabulary.
    - Also known as distributed representation.



bear = [0.9, 0.85, 1.0] cat = [0.85, 0.15, 1.0]

### **Distributed representation**

 "Distributed vectors" allow to group similar words/objects together, depending on the considered context.



|       | furry | dangerous |
|-------|-------|-----------|
| bear  | 0.9   | 0.85      |
| cat   | 0.85  | 0.15      |
| cobra | 0.0   | 0.8       |
| lion  | 0.85  | 0.9       |
| dog   | 0.8   | 0.15      |

### **Distributed representation**

 For simple scenarios, we can create a *k*-dimensional mapping for a simple example vocabulary by manually choosing contextual dimensions that make sense.

Vocabulary: Man, woman, boy, girl, prince, princess, queen, king, monarch

|          | Feminini | Youth | Royalty |
|----------|----------|-------|---------|
| Man      | 0        | 0     | 0       |
| Woman    | 1        | 0     | 0       |
| Воу      | 0        | 1     | 0       |
| Girl     | 1        | 1     | 0       |
| Prince   | 0        | 1     | 1       |
| Princess | 1        | 1     | 1       |
| Queen    | 1        | 0     | 1       |
| King     | 0        | 0     | 1       |
| Monarch  | 0.5      | 0.5   | 1       |

Each word gets a 1x3 vector

Similar words... similar vectors

@shane\_a\_lvnn | @TeamEdgeTier\_

### Relationships between words

 In a well-defined distributed representation model, calculations such as:

$$[king] - [man] + [woman] = [queen]$$

$$[Paris] - [France] + [Germany] = [Berlin]$$

(where [x] denotes the vector for the word x) will actually work out!

$$[king] - [man] + [woman] = [queen]$$
$$[0, 0, 1] - [0, 0, 0] + [1, 0, 0] = [1, 0, 1]$$

### **Distributed representation: Advantages**

Some well-known advantages:

- Each word is represented with a k-dimensional vector
  - Optimal representations are those with  $k \ll |V|$ .

### Similar words have similar vectors

• There's a smaller distance between vector representation for "girl" and "princess", than from "girl" to "prince".

### To be continued...

### Distributed representation: Advantages

... cont'd

- The resulting matrix is much less sparse (less empty space), and we could potentially add further words to the vocabulary without increasing the dimensionality.
  - For instance, the word "child" might be represented with [0.5, 1, 0].
- Relationships between words are captured and maintained, e.g., the movement from king to queen, is the same as the movement from boy to girl, and could be represented by [+1, 0, 0].

### Local VS Distributed representation



(a) Local representation

#### Local (or one-hot) representation

• Every term in vocabulary V is represented by a binary vector of length |V|, where one position in the vector is set to one and the rest to zero.

#### Distributed representation

• Every term in vocabulary *V* is represented by a real-valued vector of length *k*. The vector can be *sparse* or *dense*. The vector dimensions may be *observed* (e.g., hand-crafted features) or *latent* (e.g., embedding dimensions).

## Extending to larger vocabularies

- Forming k-dimensional vectors that capture meaning in the same way that our simple example does, where similar words have similar vectors and relationships between words are maintained, is not a simple task.
- <u>Manual assignment</u> of vectors would be **impossibly** complex: individual dimensions cannot be directly interpretable.
- As such, various algorithms have been developed, some recently, that can take large corpora of text and create meaningful models.

## Distributional hypothesis

 "Words which are similar in meaning occur in similar contexts".

(Harris, 1954)

 "You shall know a word by the company it keeps". (Firth, 1957)

• Central idea: represent each word by some context:

- E.g., words co-occurring with the considered word.
- We can use <u>different granularities of contexts</u>: documents, sentences, phrases, *n*-grams.

### Phrase VS sentence

| A phrase is a group of    | A sentence is a group of |
|---------------------------|--------------------------|
| that does not express     | that expresses a         |
| a complete thought.       | complete thought.        |
| A phrase does not         | A sentence has both      |
| have a subject or         | subject and              |
| predicate or both.        | predicate.               |
| A phrase does not         | A sentence gives         |
| give complete             | complete                 |
| information about         | information about        |
| the subject or            | the subject and the      |
| predicate.                | predicate.               |
| A phrase does not begin   | A sentence begins with   |
| with a capital letter and | a capital letter and     |
| end with punctuation      | ends with a full stop,   |
| marks.                    | question or              |
| ₽ediaa.com                | exclamation mark.        |

### Phrase VS sentence: Example

### Phrase: "Red apple".

- This is a phrase consisting of two words, "red" and "apple";
- It is not a complete thought on its own but conveys a simple description of an apple's color.

#### • **Sentence**: "The quick brown fox jumps over the lazy dog".

- This is a complete sentence;
- It consists of multiple words and forms a grammatically correct and meaningful expression;
- In this sentence, the subject is "the quick brown fox", the verb is "jumps", and the object is "over the lazy dog";
- The sentence conveys a clear action, where the fox is jumping over the dog.

### Word-level *n*-grams

| The | quick | brown . | fax | jumped   | over | the | lazy | dag | 10 |
|-----|-------|---------|-----|----------|------|-----|------|-----|----|
| The | quick | brown   | fax | Jumped   | over | the | lazy | dog |    |
| The | quick | brown   | fax | jumped . | over | the | lazy | dog | -  |
| The | quick | brown   | fox | jumped   | over | the | lazy | dog |    |
| The | quick | brown   | fax | jumped   | over | the | lazy | dog | 10 |
|     |       |         | fox |          |      | the |      | dog | 1  |

### Character-level *n*-grams

#### Character-level unigrams

| Text | Token Sequence | Token Value |
|------|----------------|-------------|
| Dogs | 1              | D           |
| Dogs | 2              | 0           |
| Dogs | 3              | g           |
| Dogs | 4              | S           |

#### Character-level bigrams

| Text | Token Sequence | Token Value |
|------|----------------|-------------|
| Dogs | 1              | Do          |
| Dogs | 2              | og          |
| Dogs | 3              | gs          |

#### Character-level trigrams

| Text | Token Sequence | Token Value |
|------|----------------|-------------|
| Dogs | 1              | Dog         |
| Dogs | 2              | ogs         |

## A simple example (Neighbouring terms)



Neighbouring terms features



(b) "Neighbouring terms" features

# COUNTING CO-OCCURRING WORDS

### Window-based Co-occurrence Matrix

- In this method, given a <u>text corpus</u>, we count the number of times each (context) word co-occurs:
  - inside a **window** of a particular size,
  - with the word of interest (i.e., target word).
- The resulting matrix is also known as (window-based)
  - Word-word co-occurrence Matrix
  - Term-context Matrix
  - Count Matrix
- Each word is represented by a so-called Count Vector.

- One way of creating a vector for a word:
  - Let's count how often a (context) word co-occurs together with specific other words.

He is reading a magazine

- This magazine published my story
- She buys a magazine every month
- I was reading a newspaper
- The newspaper published an article
- He buys this newspaper every day

#### The considered text corpus

- One way of creating a vector for a word:
  - Let's **count** how often a (context) word co-occurs together with specific other words.



The considered target words, i.e., magazine and newspaper

- One way of creating a vector for a word:
  - Let's **count** how often a (context) word co-occurs together with specific other words.



We select a <u>window</u> of **size 2** with respect to the considered <u>target words</u>

- One way of creating a vector for a word:
  - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- She buys a magazine every month
- I was reading a newspaper
- This magazine published my story The newspaper published an article
  - He buys this **newspaper** every day

#### We build the window-based co-occurrence matrix

|           | reading | а | this | published | my | buys | the | an | every | month | day |
|-----------|---------|---|------|-----------|----|------|-----|----|-------|-------|-----|
| magazine  | 1       | 2 | 1    | 1         | 1  | 1    | 0   | 0  | 1     | 1     | 0   |
| newspaper | 1       | 1 | 1    | 1         | 0  | 1    | 1   | 1  | 1     | 0     | 1   |

## A simple example

- One way of creating a vector for a word:
  - Let's count how often a (context) word co-occurs together with specific other words.

- He is reading a magazine
- She buys a magazine every month
- I was reading a newspaper
- This magazine published my story The newspaper published an article
  - He buys this **newspaper** every day

| oras  | . – |           | reading | а | this | published | my | buys | the | an | every | month | day |
|-------|-----|-----------|---------|---|------|-----------|----|------|-----|----|-------|-------|-----|
| et vo |     | magazine  | 1       | 2 | 1    | 1         | 1  | 1    | 0   | 0  | 1     | 1     | 0   |
| arge  |     | newspaper | 1       | 1 | 1    | 1         | 0  | 1    | 1   | 1  | 1     | 0     | 1   |

#### context words

# How does this work in general?

- We calculate this count not only for specific target words, but for all the words in the text corpus.
- Let our corpus contain just three sentences and the window size be 1:
  - 1. I enjoy flying
  - 2. I like NLP
  - 3. I like deep learning
- The resulting co-occurrence matrix will then be?
  EXERCISE



# **Solution**

#### I enjoy flying I like NLP I like deep learning



# Solution

#### I enjoy flying I like NLP I like deep learning

|            |          | Ι | like | enjoy | deep | learning | NLP | flying |
|------------|----------|---|------|-------|------|----------|-----|--------|
|            | I        | 0 | 2    | 1     | 0    | 0        | 0   | 0 ]    |
|            | like     | 2 | 0    | 0     | 1    | 0        | 1   | 0      |
|            | enjoy    | 1 | 0    | 0     | 0    | 0        | 0   | 1      |
| <b>у</b> _ | deep     | 0 | 1    | 0     | 0    | 1        | 0   | 0      |
| Λ —        | learning | 0 | 0    | 0     | 1    | 0        | 0   | 0      |
|            | NLP      | 0 | 1    | 0     | 0    | 0        | 0   | 0      |
|            | flying   | 0 | 0    | 1     | 0    | 0        | 0   | 0      |

## To recap

Using a (Window-based) Word-word Co-occurrence Matrix representation for large text corpora:

- Generates a  $|V| \times |V|$  co-occurrence matrix X.
- The distinction between a target word and a context word is arbitrary and that we are free to exchange the two roles.

# Raw frequency is a bad representation

- Frequency is clearly useful; if *sugar* appears a lot near *apricot*, that's useful information.
- But overly frequent words like *the*, *it*, or *they* are not very informative about the context.

### More frequent words dominate the vectors.

- Need a way that resolves this frequency paradox!
- Can use a <u>weighting scheme</u> like:
  - TF-IDF (already seen in detail).
  - Pointwise Mutual Information (PMI).

# **Pointwise Mutual Information (PMI)**

### Pointwise Mutual Information:

• Do events x and y co-occur more than if they were independent?

$$PMI(x, y) = \log_2\left(\frac{P(x, y)}{P(x)P(y)}\right)$$

- PMI between two words: (Church & Hanks 1989)
  - Do words  $w_1$  and  $w_2$  co-occur more than if they were independent?

$$PMI(w_1, w_2) = \log_2\left(\frac{P(w_1, w_2)}{P(w_1)P(w_2)}\right)$$

# Positive PMI (PPMI)

- PMI ranges from  $-\infty$  to  $+\infty$
- **Negative values** are problematic:
  - Things are co-occurring less than we expect by chance.
  - Unreliable without enormous corpora.
    - Imagine  $w_1$  and  $w_2$  whose probability is each  $10^{-6}$ .
    - Hard to be sure  $P(w_1, w_2)$  is significantly different than  $10^{-12}$ .
- We just replace negative PMI values by 0.
  - Positive PMI (PPMI) between  $w_1$  and  $w_2$ :

$$PPMI(w_1, w_2) = \max\left(\log_2\left(\frac{P(w_1, w_2)}{P(w_1)P(w_2)}\right), 0\right)$$

• Let us consider the following **term-context matrix** *X*:

| X           | <br>computer | data | pinch | result | sugar |  |
|-------------|--------------|------|-------|--------|-------|--|
| apricot     | <br>0        | 0    | 1     | 0      | 1     |  |
| pineapple   | <br>0        | 0    | 1     | 0      | 1     |  |
| digital     | <br>2        | 1    | 0     | 1      | 0     |  |
| information | <br>1        | 6    | 0     | 4      | 0     |  |
|             | <br>         |      |       |        |       |  |

- Matrix X with W rows (words) and C columns (context words)
  - Please remember that W and C can be equal in real scenarios, in particular W = C = |V|.

• PPMI(
$$w_i, c_j$$
) = max $\left(\log_2\left(\frac{P(w_i, c_j)}{P(w_i)P(c_j)}\right), 0\right)$ 

• We need to compute:

 $P(w_i, c_j) = (\text{Count of co-occurrence of } w_i \text{ and } c_j \text{ in the context}) / (\text{Total word count in the context})$ 

- $P(w_i) = (\text{Count of word } w_i \text{ in the context}) / (\text{Total word count in the context})$
- $P(c_j) = (\text{Count of word } c_j \text{ w.r.t. target words}) / (\text{Total word count in the context})$

•  $f_{ij}$  is the number of times the word  $w_i$  and  $c_j$  co-occur.

$$P(w_i, c_j) = \frac{f_{ij}}{\sum_{i=1}^W \sum_{j=1}^C f_{ij}}$$
$$P(w_i) = \frac{\sum_{j=1}^C f_{ij}}{\sum_{i=1}^W \sum_{j=1}^C f_{ij}}$$

$$P(c_j) = \frac{\sum_{i=1}^W f_{ij}}{\sum_{i=1}^W \sum_{j=1}^C f_{ij}}$$

### Count(w,context)

|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 0        | 0    | 1     | 0      | 1     |
| pineapple   | 0        | 0    | 1     | 0      | 1     |
| digital     | 2        | 1    | 0     | 1      | 0     |
| information | 1        | 6    | 0     | 4      | 0     |

• 
$$P(w = \text{information}, c = \text{data}) = \frac{6}{19} = 0.32$$

• 
$$P(w = \text{information}) = \frac{11}{19} = 0.58$$
  $P(c = \text{data}) = \frac{7}{19} = 0.37$ 

|             | p(w)     |        |       |        |       |        |
|-------------|----------|--------|-------|--------|-------|--------|
|             | computer | data   | pinch | result | sugar |        |
| apricot     | 0.00     | 0.00   | 0.05  | 0.00   | 0.05  | 0.11   |
| pineapple   | 0.00     | 0.00   | 0.05  | 0.00   | 0.05  | 0.11   |
| digital     | 0.11     | 0.05   | 0.00  | 0.05   | 0.00  | 0.21   |
| information | 0.05     | (0.32) | 0.00  | 0.21   | 0.00  | (0.58) |
| p(context)  | 0.16     | (0.37) | 0.11  | 0.26   | 0.11  |        |

• 
$$P(w = \text{information}, c = \text{data}) = \frac{6}{19} = (0.32)$$

•  $P(w = \text{information}) = \frac{11}{19} \neq (0.58)$ ;  $P(c = \text{data}) = \frac{7}{19} \neq (0.37)$ ;

|             | p(w)     |        |       |        |       |        |
|-------------|----------|--------|-------|--------|-------|--------|
|             | computer | data   | pinch | result | sugar |        |
| apricot     | 0.00     | 0.00   | 0.05  | 0.00   | 0.05  | 0.11   |
| pineapple   | 0.00     | 0.00   | 0.05  | 0.00   | 0.05  | 0.11   |
| digital     | 0.11     | 0.05   | 0.00  | 0.05   | 0.00  | 0.21   |
| information | 0.05     | (0.32) | 0.00  | 0.21   | 0.00  | (0.58) |
| p(context)  | 0.16     | (0.37) | 0.11  | 0.26   | 0.11  |        |

• *PPMI*(information, data) = max
$$\left(\log_2\left(\frac{P(\text{information,data})}{P(\text{information})P(\text{data})}\right), 0\right)$$
  
= max $\left(\log_2\left(\frac{0.32}{0.58*0.37}\right), 0\right) = 0.57$ 

| PPMI | (w,context) |
|------|-------------|
|------|-------------|

|             | computer | data        | pinch | result | sugar |
|-------------|----------|-------------|-------|--------|-------|
| apricot     | -        | -           | 2.25  | -      | 2.25  |
| pineapple   |          | -           | 2.25  | -      | 2.25  |
| digital     | 1.66     | <u>0.00</u> | -     | 0.00   | -     |
| information | 0.00     | 0.57        | -     | 0.47   | -     |

### Exercise

### Count(w,context)

|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 0        | 0    | 1     | 0      | 1     |
| pineapple   | 0        | 0    | 1     | 0      | 1     |
| digital     | 2        | 1    | 0     | 1      | 0     |
| information | 1        | 6    | 0     | 4      | 0     |

• 
$$P(w = \text{information}, c = \text{result}) = -$$

• P(w = information) = - P(c = result) = -

# Weighting (P)PMI

### • (P)PMI is biased toward infrequent events.

• Very rare words have very high PMI values.

|             | Count(w,context) |      |       |        |       |          | PPMI(w,context) |       |        |       |  |
|-------------|------------------|------|-------|--------|-------|----------|-----------------|-------|--------|-------|--|
|             | computer         | data | pinch | result | sugar | computer | data            | pinch | result | sugar |  |
| apricot     | 0                | 0    | 1     | 0      | 1     | -        | -               | 2.25  | -      | 2.25  |  |
| pineapple   | 0                | 0    | 1     | 0      | 1     | -        | -               | 2.25  | -      | 2.25  |  |
| digital     | 2                | 1    | 0     | 1      | 0     | 1.66     | 0.00            | -     | 0.00   | -     |  |
| information | 1                | 6    | 0     | 4      | 0     | 0.00     | 0.57            | -     | 0.47   | -     |  |

- Two solutions:
  - 1. Give rare context words slightly higher probabilities.
  - 2. Use add-*k* smoothing (which has a similar effect).
    - We add a value of k to every frequency in the term-context matrix.

### Slightly higher probability to context words

• Raise the context probabilities to  $\alpha = 0.75$  ( $\alpha \in [0,1]$ ):

$$PPMI_{\alpha}(w,c) = \max\left(\log_{2}\frac{P(w,c)}{P(w)P_{\alpha}(c)},0\right)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}}$$

- This helps because  $P_{\alpha}(c) > P(c)$  for rare c
  - Consider two context words, P(a) = 0.99 and P(b) = 0.01

• 
$$P_{\alpha}(a) = \frac{0.99^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.97$$
  $P_{\alpha}(b) = \frac{0.01^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.03$ 

# Add-2 smoothing

#### Count(w, context)

|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 0        | 0    | 1     | 0      | 1     |
| pineapple   | 0        | 0    | 1     | 0      | 1     |
| digital     | 2        | 1    | 0     | 1      | 0     |
| information | 1        | 6    | 0     | 4      | 0     |

|             | Add-2 Sm | Add-2 Smoothed Count(w, context) |   |   |   |  |  |  |  |  |  |
|-------------|----------|----------------------------------|---|---|---|--|--|--|--|--|--|
|             | computer | computer data pinch result sugar |   |   |   |  |  |  |  |  |  |
| apricot     | 2        | 2                                | 3 | 2 | 3 |  |  |  |  |  |  |
| pineapple   | 2        | 2                                | 3 | 2 | 3 |  |  |  |  |  |  |
| digital     | 4        | 3                                | 2 | 3 | 2 |  |  |  |  |  |  |
| information | 3        | 8                                | 2 | 6 | 2 |  |  |  |  |  |  |

# Add-2 smoothing

#### Add-2 Smoothed Count(w, context)

|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 2        | 2    | 3     | 2      | 3     |
| pineapple   | 2        | 2    | 3     | 2      | 3     |
| digital     | 4        | 3    | 2     | 3      | 2     |
| information | 3        | 8    | 2     | 6      | 2     |

|             |          | p(w) |       |        |       |      |
|-------------|----------|------|-------|--------|-------|------|
|             | computer | data | pinch | result | sugar |      |
| apricot     | 0.03     | 0.03 | 0.05  | 0.03   | 0.05  | 0.20 |
| pineapple   | 0.03     | 0.03 | 0.05  | 0.03   | 0.05  | 0.20 |
| digital     | 0.07     | 0.05 | 0.03  | 0.05   | 0.03  | 0.24 |
| information | 0.05     | 0.14 | 0.03  | 0.10   | 0.03  | 0.36 |
| p(context)  | 0.19     | 0.25 | 0.17  | 0.22   | 0.17  |      |

### PPMI versus add-2 smoothed PPMI

| p(w,context) |          |         |           |        |       |      |
|--------------|----------|---------|-----------|--------|-------|------|
|              | computer | data    | pinch     | result | sugar |      |
| apricot      | 0.00     | 0.00    | 0.05      | 0.00   | 0.05  | 0.11 |
| pineapple    | 0.00     | 0.00    | 0.05      | 0.00   | 0.05  | 0.11 |
| digital      | 0.11     | 0.05    | 0.00      | 0.05   | 0.00  | 0.21 |
| information  | 0.05     | 0.32    | 0.00      | 0.21   | 0.00  | 0.58 |
|              |          |         |           |        |       |      |
| p(context)   | 0.16     | 0.37    | 0.11      | 0.26   | 0.11  |      |
|              |          |         |           |        |       |      |
|              |          | p(w,con | text) [ad | dd-2]  |       | p(w) |
|              | computer | data    | pinch     | result | sugar |      |
| apricot      | 0.03     | 0.03    | 0.05      | 0.03   | 0.05  | 0.20 |
| pineapple    | 0.03     | 0.03    | 0.05      | 0.03   | 0.05  | 0.20 |
| digital      | 0.07     | 0.05    | 0.03      | 0.05   | 0.03  | 0.24 |
| information  | 0.05     | 0.14    | 0.03      | 0.10   | 0.03  | 0.36 |

| p(context) | 0.19 | 0.25 | 0.17 | 0.22 | 0.17 |
|------------|------|------|------|------|------|

## PPMI versus add-2 smoothed PPMI

|             | PPMI(w,context) |      |       |        |       |  |
|-------------|-----------------|------|-------|--------|-------|--|
|             | computer        | data | pinch | result | sugar |  |
| apricot     | -               | -    | 2.25  | -      | 2.25  |  |
| pineapple   | -               | -    | 2.25  | -      | 2.25  |  |
| digital     | 1.66            | 0.00 | -     | 0.00   | -     |  |
| information | 0.00            | 0.57 | -     | 0.47   | -     |  |

----

#### PPMI(w,context) [add-2]

|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 0.00     | 0.00 | 0.56  | 0.00   | 0.56  |
| pineapple   | 0.00     | 0.00 | 0.56  | 0.00   | 0.56  |
| digital     | 0.62     | 0.00 | 0.00  | 0.00   | 0.00  |
| information | 0.00     | 0.58 | 0.00  | 0.37   | 0.00  |

## PPMI versus add-2 smoothed PPMI

#### Count(w, context)

|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 0        | 0    | 1     | 0      | 1     |
| pineapple   | 0        | 0    | 1     | 0      | 1     |
| digital     | 2        | 1    | 0     | 1      | 0     |
| information | 1        | 6    | 0     | 4      | 0     |

#### PPMI(w,context) [add-2]

|             | computer | data | pinch | result | sugar |
|-------------|----------|------|-------|--------|-------|
| apricot     | 0.00     | 0.00 | 0.56  | 0.00   | 0.56  |
| pineapple   | 0.00     | 0.00 | 0.56  | 0.00   | 0.56  |
| digital     | 0.62     | 0.00 | 0.00  | 0.00   | 0.00  |
| information | 0.00     | 0.58 | 0.00  | 0.37   | 0.00  |

### From sparse to dense vectors

- A Co-occurrence Matrix in reality is constituted by a very large number of words
  - For each word, tf-idf and PPMI vectors are:
    - **long** (length |V| = 20,000 to 50,000);
    - **sparse** (most elements are equal to zero).
- There are techniques to learn lower-dimensional vectors for words, which are:
  - **short** (length = 50 to 1,000) (usually around 300);
  - dense (most elements are non-zero).
- These <u>dense vectors</u> are called **embeddings**.