
WORD EMBEDDING
Count-based and Predictive Models

Prof. Marco Viviani

marco.viviani@unimib.it

mailto:marco.viviani@disco.unimib.it

From sparse to dense vectors

• A Co-occurrence Matrix in reality is constituted by a
very large number of words
• For each word, TF-IDF or PPMI or other weighted vectors are:

• long (length |𝑉| = 20,000 to 50,000)

• sparse (most elements are equal to zero)

• There are techniques to learn lower-dimensional
vectors for words, which are:
• short (length = 50 to 1,000) (usually around 300)

• dense (most elements are non-zero)

• These dense vectors in a latent space are called
embeddings.

WORD EMBEDDINGS

Low-dimensional dense word vectors

Learning Embeddings (Dense Vectors)

Two (main) types of models:

• Count-based models

• Distributed semantics models

• Predictive models

• Neural network models

Count-based models

• Count-based models

• Compute the statistics of how often each word co-occurs with its
neighbor words in a large text corpus;

• Then map these count-statistics down to a small, dense vector for
each word.

• Count-based models learn vectors by doing dimensionality
reduction on a term-context matrix.

• The term-context matrix contains the information on how frequently
each “word” (stored in rows), is seen in some “context” (the columns).

• They factorize this matrix to yield a lower-dimensional matrix
of words and features, where each row yields a (dense)
vector representation for each word.

Count-based models

• Latent Dirichlet Allocation (LDA)

• Based on a term-document matrix (suitable for topic modeling)

• Singular Value Decomposition (SVD) → Linear algebra

• Latent Semantic Analysis (LSA)

• GloVe (Pennington, Socher, Manning, 2014)

General idea

→

Predictive models

• Predictive models directly try to predict a word from its

neighbors in terms of learned small, dense embedding

vectors (considered parameters of the model).

• Neural-network-inspired models:

• word2vec (Mikolov et al., 2013)

• FastText (Bojanowski et al., 2016)

COUNT-BASED MODELS

Singular Value Decompositio (SVD)

Singular Value Decomposition

• Any rectangular 𝑤 × 𝑐 matrix 𝑋 can be expressed

as the product of 3 matrices:

• 𝑈: a 𝑤 × 𝑚 matrix where the 𝑤 rows correspond to rows

of the original matrix 𝑋, but the 𝑚 columns represents a

dimension (feature) in a new latent space.

• 𝑆: diagonal 𝑚 × 𝑚 matrix of singular values expressing

the importance of each dimension (feature).

• 𝑉𝑇: transposed 𝑚 × 𝑐 matrix where the 𝑐 columns

correspond to the columns of the original matrix 𝑋, but

the 𝑚 rows correspond to singular values.

Classic linear algebra result.
Golub, G. H., & Reinsch, C. (1971). Singular value decomposition and least

squares solutions. In Linear Algebra (pp. 134-151). Springer, Berlin, Heidelberg.

https://link.springer.com/chapter/10.1007%2F978-3-662-39778-7_10

https://link.springer.com/chapter/10.1007%2F978-3-662-39778-7_10

Singular Value Decomposition

𝑋 𝑈

𝑆 𝑉𝑇

=

𝑤 × 𝑐 𝑤 × 𝑚

𝑚 × 𝑚 𝑚 × 𝑐

Context words

T
a
rg

e
t
w

o
rd

s

SVD and Embedding: Latent Semantic Analysis

• If, instead of keeping all 𝑚 dimensions, we just keep the

top-𝒌 singular values, we obtain a low-rank

approximation of the original matrix 𝑋.

Dumais, S. T. (2004). Latent semantic analysis. Annual review

of information science and technology, 38(1), 188-230

𝑋 𝑈

𝑆 𝑉𝑇

≈

𝑤 × 𝑐 𝑤 × 𝑚

𝑚 × 𝑚 𝑚 × 𝑐

Context words

T
a
rg

e
t
w

o
rd

s

𝑘

𝑘 𝑘
=

𝑘

SVD and Embedding: Latent Semantic Analysis

• Instead of multiplying, we just make use of the matrix 𝑈.

• In this way, we obtain the following matrix:

• Each row of 𝑈:

• A 𝑘-dimensional vector,

• Representing a word in the vocabulary.

• 300 dimensions are commonly used.

• 𝑘 = 300

𝑈

𝑤 × 𝑘

T
a
rg

e
t
w

o
rd

s

Features

SVD applied to term-context matrix

|𝑉|

|𝑉|

SVD applied to term-context matrix

𝑋 𝑈 𝑉𝑇

𝒌

SVD applied to term-context matrix

𝑋 𝑈

𝑉𝑇

SVD applied to term-context matrix

Embedding for

the word 𝑤𝑖

𝑤1

𝑤2

𝑤3

…

𝑤𝑖

…

𝑤 𝑉

Simple SVD word vectors in Python

• Corpus: I like deep learning. I like NLP. I enjoy flying.

Simple SVD word vectors in Python

• Printing first two columns of 𝑈 corresponding to the 2

biggest singular values

Singular Value Decomposition

Drawbacks:

• The dimensions of the matrix change very often (new words

are added very frequently and corpus changes in size).

• The matrix is extremely sparse since most words do not co-

occur.

• Quadratic cost to perform SVD.

• Requires the incorporation of some “hacks” on 𝑋 to account

for the drastic imbalance in word frequency → Next slide.

Singular Value Decomposition

Some “hacks” to resolve some of the issues:

• Ignore words such as "the", "he", "she", "has", etc.

• Apply a ramp window – i.e., weight the co-occurrence

count based on distance between the words in the

document.

• Use Pearson correlation and set negative counts to 0

instead of using just raw count or PPMI.

COUNT-BASED MODELS

GloVe

Origins (2014)

Introduction

• The model leverages statistical information by training

only on the non-zero elements in a word-word co-

occurrence matrix, rather than:

• on the entire sparse matrix (e.g., SVD)

• on individual context windows in a large corpus (e.g., word2vec).

• Global corpus statistics are captured directly by the

model.

Basic notation

• 𝑋 → the term-context matrix.

• 𝑋𝑖𝑗 → the frequency of word 𝑗 occurring in context

of word 𝑖.

• 𝑋𝑖 = σ𝑘 𝑋𝑖𝑘 → the global frequency of any word

appearing in the context of word 𝑖.

• 𝑃𝑖𝑗 = 𝑃 𝑗 𝑖 =
𝑋𝑖𝑗

𝑋𝑖
 → probability that word 𝑗 appears in the

context of word 𝑖 → co-occurrence

 probability

Example

• Can certain aspects of meaning be extracted directly

from co-occurrence probabilities?

• Consider two words 𝑖 and 𝑗 that exhibit a particular aspect

of interest; for concreteness, suppose we are interested in

the concept of thermodynamic phase, for which we

might take 𝑖 = 𝑖𝑐𝑒 and 𝑗 = 𝑠𝑡𝑒𝑎𝑚.

• The relationship of these words can be examined by

studying the ratio of their co-occurrence probabilities with

various “probe” words (i.e., context words), 𝑘.

Example

• For words 𝑘 related to 𝑖 = 𝑖𝑐𝑒 but not 𝑗 = 𝑠𝑡𝑒𝑎𝑚, say 𝑘 =

𝑠𝑜𝑙𝑖𝑑, the ratio
𝑃𝑖𝑘

𝑃𝑗𝑘
should be large.

• Similarly, for words 𝑘 related to 𝑗 = 𝑠𝑡𝑒𝑎𝑚 but not 𝑖 = 𝑖𝑐𝑒,

say 𝑘 = 𝑔𝑎𝑠, the ratio
𝑃𝑖𝑘

𝑃𝑗𝑘
should be small.

• For words 𝑘 like 𝑤𝑎𝑡𝑒𝑟 or 𝑓𝑎𝑠ℎ𝑖𝑜𝑛, that are either related

to both 𝑖 = 𝑖𝑐𝑒 and 𝑗 = 𝑠𝑡𝑒𝑎𝑚, or to neither, the ratio
𝑃𝑖𝑘

𝑃𝑗𝑘

should be close to “1”.

Meaning extraction

• Co-occurrence probabilities for target words 𝑖𝑐𝑒 and 𝑠𝑡𝑒𝑎𝑚
with selected context words from a 6 billion token corpus.

• Only in the ratio capture non-discriminative words like 𝑤𝑎𝑡𝑒𝑟
and 𝑓𝑎𝑠ℎ𝑖𝑜𝑛, because:

• large values (much greater than 1) correlate well with properties
specific to 𝑖𝑐𝑒.

• small values (much less than 1) correlate well with properties specific
of 𝑠𝑡𝑒𝑎𝑚.

The GloVe model

• Starting point for word vector learning?

• Co-occurrence probabilities ratios instead of

probabilities themselves.

• Co-occurence probabilities ratios capture relevant

information about words’ relationships.

The GloVe model

• The ratio
𝑃𝑖𝑘

𝑃𝑗𝑘
depends on three words 𝑖, 𝑗, and 𝑘

• The most general model takes the form:

𝐹 𝑤𝑖 , 𝑤𝑗 , ෥𝑤𝑘 =
𝑃𝑖𝑘

𝑃𝑗𝑘

where 𝑤 ∈ R
𝑑 are word vectors and ෥𝑤 ∈ R

𝑑 are separate

context word vectors.

The GloVe model

• The GloVe model constructs this 𝐹 function to learn

word vectors representation.

• After a series of steps, which we omit, a simplification

over 𝐹 𝑤𝑖 , 𝑤𝑗 , ෥𝑤𝑘 =
𝑃𝑖𝑘

𝑃𝑗𝑘
is as follows:

𝑤𝑖
𝑇 ෥𝑤𝑘 + 𝑏𝑖 + ෨𝑏𝑘 = log(𝑋𝑖𝑘) (*)

some parameters to be

selected

We are interested in these vectors!

The GloVe model

• Then, GloVe builds an objective function 𝐽 that

associates word vectors to text statistics.

• Least squares regression model.

• Cast the equation (*) as a least squares regression

model.

Pennington, J., Socher, R., & Manning, C. (2014). Glove:

Global vectors for word representation. In Proceedings

of the 2014 conference on empirical methods in natural

language processing (EMNLP) (pp. 1532-1543)

Pharenteses: Least squares regression

• A least squares regression model, often referred to as
linear regression, is a statistical approach used to:

Model the relationship between a dependent variable and
one or more independent variables by finding the best-

fitting linear equation.

• The "least squares" part of the name refers to the method
used to estimate the parameters of the linear equation by:

Minimizing the sum of the squared differences between the
observed values and the values predicted by the model.

The GloVe model

• Then, GloVe builds an objective function 𝐽 that
associates word vectors to text statistics.
• Least squares regression model.

• Cast the equation (*) as a least squares regression
problem with a weighting function 𝑓(𝑋𝑖𝑘).

𝐽 = ෍

𝑖,𝑘=1

𝑉

𝑓 𝑋𝑖𝑘 𝑤𝑖
𝑇 ෥𝑤𝑘 + 𝑏𝑖 + ෨𝑏𝑘 − log 𝑋𝑖𝑘

2

where 𝑉 is the size
of the vocabulary.

Pennington, J., Socher, R., & Manning, C. (2014). Glove:

Global vectors for word representation. In Proceedings

of the 2014 conference on empirical methods in natural

language processing (EMNLP) (pp. 1532-1543)

The GloVe model – Simplification

𝐽 =
1

2
෍

𝑖,𝑘=1

𝑉

𝑓 𝑋𝑖𝑘 𝑤𝑖
𝑇 ෥𝑤𝑘 − log 𝑋𝑖𝑘

2

• We end up with 𝑈 and 𝑉 from all the vectors 𝑢 = 𝑤 and
𝑣 = ෥𝑤

• What to do with the two sets of vectors?
• Both capture similar co-occurrence information. It turns out, the

best solution is to simply sum them up (one of many
hyperparameters explored in GloVe):

𝑋𝑓𝑖𝑛𝑎𝑙 = 𝑈 + 𝑉

https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/

PREDICTIVE MODELS

word2vec and FastText

Origins (2013)

Origins (2013)

word2vec

• This technique provides a tool to create collections of

similar concepts automatically, on raw texts and without

advanced language skills on the part of the user.

• Raw texts are used as implicitly supervised

training data.

• No need for hand-labeled supervision.

• Not all the “traditional” pre-processing steps performed with the

BoW and TF-IDF representations are necessary → Next slides.

word2vec

• The largest the training set, the better the performance

• Very good performances are obtained by employing very large

texts in the learning phase (> 10M of words).

• The texts should include as many different words as

possible.

• Code available on the Web:

• https://code.google.com/archive/p/word2vec/

https://code.google.com/archive/p/word2vec/

Main idea (neural network word embeddings)

• Similar to language modeling but predicting context,

rather than next word.

𝑃(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑤𝑜𝑟𝑑)  maximize

• In practice:

𝐽 = 1 − 𝑃(𝑐𝑜𝑛𝑡𝑒𝑥𝑡|𝑤𝑜𝑟𝑑)  minimize

• We adjust the vector representations of words to

minimize the loss.

Directly learning low-dimensional vectors

Relevant literature:

• Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning
representations by back-propagating errors. Cognitive modeling, 5(3).

• Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural
probabilistic language model. Journal of machine learning
research, 3(Feb), 1137-1155.

• Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., &
Kuksa, P. (2011). Natural language processing (almost) from
scratch. Journal of machine learning research, 12(Aug), 2493-2537.

• The word2vec papers illustrated before and explained in the next
slides.

Two basic architectures

• There are two architectures used by word2vec:

• Skip-gram

• Continuous bag-of-words (CBOW)

• Two (moderately efficient) training methods:

• Softmax

• Negative sampling

Algorithms for producing

word vectors

Softmax and negative sampling

Softmax

• A function used, in the context of word2vec and word
embedding, to predict the context words (or target words) for a
given input word.

• Softmax “bottleneck”.

Negative sampling

• A technique introduced to address the computational
inefficiency of softmax in training word embeddings.

• Instead of predicting the entire vocabulary, select a small
number of negative samples (typically a few dozen) and the
true context words.
• The negative examples are words that do not appear in the context of the

target word.

• The model is trained to assign higher probabilities to the true
context words and lower probabilities to the negative samples.

word2vec Architecture

Skip-gram model

• Predict the

surrounding words

(context words), based

on the current word

(the center word).

• Mikolov et. al. 2013.

Efficient Estimation of

Word Representations

in Vector Space.

CBOW model

• Predict the current

word (the center word)

based on the

surrounding words

(context words).

• Mikolov et. al. 2013.

Efficient Estimation of

Word Representations

in Vector Space.

The skip-gram model

Skip-gram

• It predicts context words from the target word.

The model (1)

• Given a sliding window of a fixed size moving
along a sentence:
• the word in the middle is the “target”;
• those on its left and right within the sliding window

are the context words.

The model (2)

The model (3)

• Given a sliding window of a fixed size moving
along a sentence:
• the word in the middle is the “target”;
• those on its left and right within the sliding window

are the context words.

• The skip-gram model is trained to predict the
probabilities of a word being a context word
for the given target.

The model

• The hidden layer is the word embedding of size 𝑁.

The CBOW model

CBOW

• The Continuous Bag-of-Words (CBOW) is another
similar model for learning word vectors.

• It predicts the target word from source context words.

The model (1)

The model (1)

The model (2)

Skip-gram VS CBOW

• Skip-gram: works well also with a smaller amount of the

training data, represents well even rare words or phrases.

• CBOW: several times faster to train than the skip-gram,

slightly better accuracy for the frequent words.

FastText (Origins, 2017)

FastText: Main characteristics

• Subword Embeddings

• It breaks words down into smaller character n-grams (subwords) and
learns embeddings for these subwords.

• This allows FastText to capture morphological and syntactic
information, making it effective for handling out-of-vocabulary words
and languages with rich morphology.

• Efficiency

• Designed for efficient training and inference.

• Its subword modeling reduces the dimensionality of the embedding
space.

• It stores embeddings for subwords and composes word embeddings from
these subword representations.

• This can lead to significant memory savings, especially when dealing
with large vocabularies, making it more memory and computationally
efficient compared to some other embedding models.

WORD EMBEDDING AND
PRE-PROCESSING

Text pre-processing

• Common pre-processing:

• Tokenization

• Normalization (Lowercasing, handling numerals, special

characters, punctuation, etc.)

• Stop word removal

• Lemmatization or Stemming

• In word embedding representation not all of these steps

are always necessary.

Pre-processing for GloVe and Word2Vec

• Tokenization

• Necessary

• Both GloVe and Word2Vec work with individual words as tokens, so you

must tokenize your text.

• Normalization (Lowercasing, handling numerals,

special characters, punctuation, etc.)

• Optional

• Depending on the task

• To be verified w.r.t. pre-trained versions of word2vec and GloVe

Pre-processing for GloVe and Word2Vec

• Stop word removal

• The specific vocabulary of a model depends on the training data

and the preprocessing choices made during model training.

• Stop words are not typically included in the vocabulary of GloVe

and word2vec.

• If you train your own model, you have control over whether to

include or exclude stop words from the vocabulary.

• Optional

• Removing stop words can reduce noise, but it is not always necessary,

especially if the model include stop words in their vocabulary.

Pre-processing for GloVe and Word2Vec

• Lemmatization and Stemming

• Pretrained GloVe and Word2Vec models typically do not stem or

lemmatize words as part of their training process.

• These models are trained on large text corpora and generally use the

original word forms from the text data.

• Stemming or lemmatizing words would change word forms and

potentially disrupt the context in which they appear.

• GloVe and Word2Vec models rely on word co-occurrences, and altering

the words could hinder their ability to capture meaningful relationships

between words.

• Optional

• Stemming and lemmatization are preprocessing steps that are typically

applied to text data before training models like GloVe and Word2Vec

when creating custom embeddings.

Pre-processing for FastText

• FastText tokenizes text in a manner that differs from traditional
word-based tokenization.

• FastText uses a subword-level tokenization approach.

• This subword tokenization allows FastText to handle out-of-vocabulary
words and morphological variations effectively.

• It can reconstruct word vectors based on the constituent subword
vectors.

• Character n-grams

• FastText breaks words into smaller units called "character 𝑛-grams”.

• Contiguous sequences of 𝑛 characters (letters or symbols).

• By default, FastText uses bi-grams (𝑛 = 2) and tri-grams (𝑛 = 3), but
you can configure it to use different 𝑛-gram sizes.

Word embedding pre-processing

• Pay attention to the type of tokenization the model is

based on.

• Understand what the characteristics of the task are with

respect to which model is used.

• Check what the characteristics of the pre-trained

model are compared to the use of the other pre-

processing phases.

ISSUES AND SOLUTIONS

Main Issues

• Context independence
• Traditional word embeddings are “context-independent”, which means that

each word is represented by a single static vector.

• This fails to capture the various meanings of a word in different contexts.

• For example, "bank" can refer to a financial institution or the side of a river, but a
traditional embedding represents it with a single vector.

• Out-of-Vocabulary (OOV) words
• Traditional embeddings cannot handle out-of-vocabulary words, as they are

limited to the words present in the training data.

• In contrast, models like FastText, which use subword representations, can handle such
words.

• Lack of transparency
• Traditional embeddings are not always transparent, and it can be difficult to

interpret the meaning of individual dimensions or vectors.

AND…

Changes in meaning…

• The word gay shifted from meaning “cheerful” or “frolicsome” to referring to

homosexuality.

• In the early 20th century broadcast referred to “casting out seeds”; with the

rise of television and radio its meaning shifted to “transmitting signals”.

• Awful underwent a process of pejoration, as it shifted from meaning “full of

awe” to meaning “terrible or appalling”.

Semantic change in English. From: Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change

https://arxiv.org/abs/1605.09096

Bias over time…

Bias over time…

Bias over time…

https://www.pnas.org/content/pnas/115/16/E3635.full.pdf

https://www.pnas.org/content/pnas/115/16/E3635.full.pdf

Current trends in word embedding

• Contextual word
embeddings: a different
embedding depending on
context):
• The nail hit the beam behind

the wall.

• They reflected a beam off the
moon.

• Tackling changes in
meaning.

• Tackling bias over time.

	Diapositiva 1: Word embedding Count-based and Predictive Models
	Diapositiva 2: From sparse to dense vectors
	Diapositiva 3: Word embeddings
	Diapositiva 4: Learning Embeddings (Dense Vectors)
	Diapositiva 5: Count-based models
	Diapositiva 6: Count-based models
	Diapositiva 7: Predictive models
	Diapositiva 8: Count-based models
	Diapositiva 9: Singular Value Decomposition
	Diapositiva 10: Singular Value Decomposition
	Diapositiva 11: SVD and Embedding: Latent Semantic Analysis
	Diapositiva 12: SVD and Embedding: Latent Semantic Analysis
	Diapositiva 13: SVD applied to term-context matrix
	Diapositiva 14: SVD applied to term-context matrix
	Diapositiva 15: SVD applied to term-context matrix
	Diapositiva 16: SVD applied to term-context matrix
	Diapositiva 20: Simple SVD word vectors in Python
	Diapositiva 21: Simple SVD word vectors in Python
	Diapositiva 22: Singular Value Decomposition
	Diapositiva 23: Singular Value Decomposition
	Diapositiva 24: Count-based models
	Diapositiva 25: Origins (2014)
	Diapositiva 26: Introduction
	Diapositiva 27: Basic notation
	Diapositiva 28: Example
	Diapositiva 29: Example
	Diapositiva 30: Meaning extraction
	Diapositiva 31: The GloVe model
	Diapositiva 32: The GloVe model
	Diapositiva 33: The GloVe model
	Diapositiva 34: The GloVe model
	Diapositiva 35: Pharenteses: Least squares regression
	Diapositiva 36: The GloVe model
	Diapositiva 37: The GloVe model – Simplification
	Diapositiva 43: Predictive models
	Diapositiva 44: Origins (2013)
	Diapositiva 45: Origins (2013)
	Diapositiva 47: word2vec
	Diapositiva 48: word2vec
	Diapositiva 49: Main idea (neural network word embeddings)
	Diapositiva 50: Directly learning low-dimensional vectors
	Diapositiva 51: Two basic architectures
	Diapositiva 52: Softmax and negative sampling
	Diapositiva 54: word2vec Architecture
	Diapositiva 55: Skip-gram model
	Diapositiva 56: CBOW model
	Diapositiva 57: The skip-gram model
	Diapositiva 58: Skip-gram
	Diapositiva 59: The model (1)
	Diapositiva 61: The model (2)
	Diapositiva 62: The model (3)
	Diapositiva 63: The model
	Diapositiva 64: The CBOW model
	Diapositiva 65: CBOW
	Diapositiva 66: The model (1)
	Diapositiva 67: The model (1)
	Diapositiva 68: The model (2)
	Diapositiva 69: Skip-gram VS CBOW
	Diapositiva 75: FastText (Origins, 2017)
	Diapositiva 76: FastText: Main characteristics
	Diapositiva 77: WORD EMBEDDING AND PRE-PROCESSING
	Diapositiva 78: Text pre-processing
	Diapositiva 79: Pre-processing for GloVe and Word2Vec
	Diapositiva 80: Pre-processing for GloVe and Word2Vec
	Diapositiva 83: Pre-processing for GloVe and Word2Vec
	Diapositiva 84: Pre-processing for FastText
	Diapositiva 85: Word embedding pre-processing
	Diapositiva 86: ISSUES AND SOLUTIONS
	Diapositiva 87: Main Issues
	Diapositiva 88: Changes in meaning…
	Diapositiva 89: Bias over time…
	Diapositiva 90: Bias over time…
	Diapositiva 91: Bias over time…
	Diapositiva 92: Current trends in word embedding

