
TOPIC MODELING

Prof. Marco Viviani

marco.viviani@unimib.it

mailto:marco.viviani@disco.unimib.it

Introduction

• Topic Modeling is an unsupervised machine learning
technique aimed at:

• Scanning a set of documents, detecting word and phrase patterns
within them;

• Automatically clustering word groups and similar expressions that
best characterize a set of documents.

Topic Modeling

• Topic Modeling provides collections of words that make
sense together, which are interpreted as topics.

Example:

Text Clustering and Topic Modeling
What's the difference?

• In Text Clustering, the basic idea is to group documents
into different clusters based on a suitable similarity
measure (or distance).

• In Topic Modeling, the basic idea is to group words into
different clusters, where:
• Each word in the cluster is likely to occur “more” (have a

probability of occurrence) for the given topic;

• Different topics have their respective clusters of words along with
corresponding probabilities;

• Different topics may share some words and a document can have
more than one topic associated with it.

Text Clustering and Topic Modeling
What's the difference?

An example of Topic Modeling

Another example of Topic Modeling

• There are three topics (or concepts) – Topic 1, Topic 2, and Topic 3.

• The most dominant topic in the above example is Topic 2, which
indicates that this piece of text is primarily about fake videos.

From Documents to Topics

Clusters of words

Distribution of topics

«Probability» of words

Collection of documents

Topic Model

Topics

Document

Topic

Black Box

Main techniques for Topic Modeling

• Latent Semantic Analysis (LSA)
• The core idea is to take the Document-Term matrix and decompose it

into a separate Document-Topic matrix and a Topic-Term matrix.

• Latent Dirichlet Allocation (LDA)
• Each document is considered a mixture of topics and each word in a

document is considered randomly drawn from document's topics;

• The topics are considered hidden (latent) and must be uncovered via
analyzing joint distribution to compute the conditional distribution of
hidden variables (topics) given the observed variables, words in
documents.

• Disregarding the approach, the output of a topic modeling
algorithm is a list of topics with associated clusters of words
(and their probabilities).

LATENT SEMANTIC
ANALYSIS (LSA)

Latent Semantic Analysis (LSA)

• Latent Semantic Analysis
(LSA) is one of the
simplest Topic Modeling
methods.

• It is based on the
distributional hypothesis:
• The semantics of words can

be grasped by looking at the
contexts the words appear in;

• Under this hypothesis, the
semantics of two words will
be similar if they tend to
occur in similar contexts.

Latent Semantic Analysis (LSA)

• LSA computes how frequently words occur in the
documents – and the whole corpus – and assumes that
similar documents will contain approximately the same
distribution of word frequencies for certain words.

• In this case, syntactic information (e.g., word order) and
semantic information (e.g., the multiplicity of meanings of
a given word) are ignored and each document is treated as
a bag of words.

Latent Semantic Analysis (LSA)

• The standard method for computing word frequencies is
TF-IDF.

• Once TF-IDF frequencies have been computed, we can
create a Document-Term matrix that contains the TF-IDF
values for each term in a given document.

Latent Semantic Analysis (LSA)

Document-

Term Matrix
Lebron Senate Celtics Sprain Cancer

Document 1 0.4 0.01 0.2 0 0

Document 2 0 0.9 0 0 0.02

Document 3 0 0 0 0.2 0.3

Document 4 0 0 0 0.2 0.3

Latent Semantic Analysis (LSA)

• The Document-Term matrix can be decomposed into the
product of 3 matrices (𝑈𝑆𝑉𝑇) by using Singular Value
Decomposition (SVD).

• The 𝑈matrix is known as the Document-Topic matrix and
the 𝑉𝑇 matrix is known as the Topic-Term matrix.

• Linear algebra guarantees that the 𝑆matrix will be
diagonal, and LSA will consider each singular value, i.e.,
each of the numbers in the main diagonal of matrix 𝑆, as a
potential topic found in the documents.

Latent Semantic Analysis (LSA)

Document-Topic matrix Topic-Term matrixDocument-Term matrix Topic-Topic matrix

Latent Semantic Analysis (LSA)

n x n

diagonal

matrix

Latent Semantic Analysis (LSA)

Document-

Term Matrix
Lebron Senate Celtics Sprain Cancer

Document 1 0.4 0.01 0.2 0 0

Document 2 0 0.9 0 0 0.02

Document 3 0 0 0 0.2 0.3

Document 4 0 0 0 0.2 0.3

Document-

Topic Matrix
T1 T2 T3 T4

Document 1 0.8 0.2 0 0

Document 2 0 0.7 0 0

Document 3 0.1 0 0 0

Document 4 0.6 0 0.2 0.2

Topic-

Term

Matrix

Lebron Senate Celtisc Sprain Cancer

T1 0.8 0 0.9 0.6 0

T2 0.1 0.7 0.1 0 0

T3 0.1 0.3 0 0.4 0.7

… … … … … …

Implementation of LSA in Python
#IMPORTING DATA

import pandas as pd

pd.set_option("display.max_colwidth", 200)

from sklearn.datasets import fetch_20newsgroups

dataset = fetch_20newsgroups(shuffle = True,

random_state=1, remove=('headers', 'footers', 'quotes'))

documents = dataset.data

#print(len(documents))

#print(dataset.target_names)

WARNING:

NOT to be used for

Projects !!!

Implementation of LSA in Python

11,314

['alt.atheism','comp.graphics','comp.os.ms-

windows.misc','comp.sys.ibm.pc.hardware','comp.sys.mac.har

dware','comp.windows.x','misc.forsale','rec.autos','rec.mo

torcycles','rec.sport.baseball','rec.sport.hockey','sci.cr

ypt','sci.electronics','sci.med','sci.space','soc.religion

.christian','talk.politics.guns','talk.politics.mideast','

talk.politics.misc','talk.religion.misc']

Implementation of LSA in Python

#BUILDING THE MATRIX

from sklearn.feature_extraction.text import

TfidfVectorizer

vectorizer = TfidfVectorizer(stop_words='english',

max_features= 1000, # keep top 1000 terms

max_df = 0.5,

smooth_idf = True)

X = vectorizer.fit_transform(news_df['clean_doc'])

Implementation of LSA in Python

#PERFORMING TOPIC MODELING

from sklearn.decomposition import TruncatedSVD

SVD represent documents and terms in vectors

svd_model = TruncatedSVD(n_components = 20, algorithm =

'randomized', n_iter = 100, random_state = 122)

svd_model.fit(X)

#print(len(svd_model.components_))

Implementation of LSA in Python

#PRINTING TOPICS

terms = vectorizer.get_feature_names()

for i, comp in enumerate(svd_model.components_):

terms_comp = zip(terms, comp)

sorted_terms = sorted(terms_comp, key= lambda x:x[1],

reverse=True)[:7]

print("Topic "+str(i)+": ")

for t in sorted_terms:

print(t[0])

print(" ")

Implementation of LSA in Python
Topic 0: like know people think good time thanks

Topic 1: thanks windows card drive mail file advance

Topic 2: game team year games season players good

Topic 3: drive scsi disk hard card drives problem

Topic 4: windows file window files program using problem

Topic 5: government chip mail space information encryption data

Topic 6: like bike know chip sounds looks look

Topic 7: card sale video offer monitor price jesus

Topic 8: know card chip video government people clipper

Topic 9: good know time bike jesus problem work

Topic 10: think chip good thanks clipper need encryption

Topic 11: thanks right problem good bike time window

Topic 12: good people windows know file sale files

Topic 13: space think know nasa problem year israel

Topic 14: space good card people time nasa thanks

Topic 15: people problem window time game want bike

Topic 16: time bike right windows file need really

Topic 17: time problem file think israel long mail

Topic 18: file need card files problem right good

Topic 19: problem file thanks used space chip sale

Some of LSA's Drawbacks

• Results that can be justified on the mathematical level,
may have no interpretable meaning in natural language.

• LSA can only partially capture polysemy.

• This is not always a problem due to words having a predominant
sense throughout a corpus (i.e., not all meanings are equally likely).

• Limitations of the bag of words (BOW) model
unordered collection of words. Possible solutions:

• Multi-gram dictionary can be used to find direct and indirect
association;

• Higher-order co-occurrences among terms.

PROBABILISTIC LSA (pLSA)

High-level Description of pLSA

• pLSA uses a probabilistic method instead of SVD to tackle
the problem.

• The core idea is to find a probabilistic model with latent
topics that can generate the data we observe in our
Document-Term matrix.

• In particular, we want a model 𝑃(𝐷,𝑊) such that for any
document 𝑑 ∈ 𝐷 and word 𝑤 ∈ 𝑊, 𝑃(𝑑,𝑤) corresponds to
that entry in the Document-Term matrix.

High-level Description of pLSA

• pLSA considers that our data can be expressed in terms of
3 sets of variables:

• Documents: 𝑑 ∈ 𝐷 = {𝑑1, … , 𝑑𝑁} observed variables. Let 𝑁 be their
number, defined by the size of our given corpus.

• Words: 𝑤 ∈ 𝑊 = {𝑤1, … , 𝑤𝑀} observed variables. Let 𝑀 be the
number of distinct words from the corpus.

• Topics: 𝑧 ∈ 𝑍 = {𝑧1, … , 𝑧𝐾} latent (or hidden) variables. Their
number, 𝐾, has to be specified a priori.

• 𝑃 𝐷,𝑊 = (𝑑,𝑤)𝑃(𝑑,𝑤)

For more details:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/oneata.pdf

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/oneata.pdf

High-level Description of pLSA

High-level Description of pLSA

• 𝑃(𝑑,𝑤) under conditional independence and using
the Bayesian rule:

 𝑃 𝑤, 𝑑 = 𝑧∈𝑍𝑃 𝑧 𝑃 𝑑 𝑧 𝑃(𝑤|𝑧)

 𝑃 𝑤, 𝑑 = 𝑃(𝑑) 𝑧∈𝑍𝑃 𝑧 𝑑 𝑃(𝑤|𝑧)

Probability

theory

P(w|z)P(z|d)

High-level Description of pLSA

Documents
Latent

Topics
Words

High-level Description of pLSA

• If we reason in terms of matrix decomposition:

𝑃 𝑤, 𝑑 =

𝑧∈𝑍

𝑃 𝑧 𝑃 𝑑 𝑧 𝑃(𝑤|𝑧)

𝐴 ≈ 𝑈𝑘𝑆𝑘𝑉𝑘
𝑇

pLSA: Syntesis (1)
• Document-Term Matrix

• Imagine to have a large collection of documents.
• Each document can be represented as a bag of words.
• We create a matrix where rows represent documents, columns represent

unique words, and the cells contain the frequency of each word (TF) in the
corresponding document.

• Latent Semantic Analysis (LSA)
• It analyzes the relationships between terms and documents by performing SVD

on the Document-Term Matrix.
• This helps identify latent (hidden) semantic patterns (drawbacks discussed

before).

• pLSA, probabilistic aspect
• In pLSA, the idea is to introduce a probabilistic model to the latent structure.
• Instead of treating the relationships between terms and documents as fixed

values, pLSA introduces probabilities.
• It assumes that there are latent (hidden) variables governing the generation of

terms within a document.

pLSA: Syntesis (2)

• Generative model
• pLSA assumes that documents are generated by a mixture of latent

topics, and each topic is associated with a probability distribution over
terms.

• The process of generating a document involves choosing a topic
according to a probability distribution and then selecting words from
the corresponding topic’s distribution.

• Learning parameters
• The goal in pLSA is to learn the parameters of the model, which

include the probability distributions over terms for each topic and the
probability of each document belonging to a particular topic.

• This is typically done using the Expectation-Maximization (EM)
algorithm.
• A statistical method used for finding maximum likelihood estimates of

parameters in models with latent variables.

Implementation of pLSA in Python

• Exercise.

• It can be part of your projects.

Probabilistic LSA (References)

• Hofmann, T. (1999, August). Probabilistic latent semantic
indexing. In Proceedings of the 22nd annual international
ACM SIGIR conference on Research and development in
information retrieval (pp. 50-57).

• Hofmann, T. (2013). Probabilistic latent semantic
analysis. arXiv preprint arXiv:1301.6705.

• http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_CO
PIES/AV1011/oneata.pdf

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV1011/oneata.pdf

Probabilistic LSA (Some details) (1)

From

𝑃 𝑤, 𝑑 =

𝑧∈𝑍

𝑃 𝑧 𝑃 𝑑 𝑧 𝑃(𝑤|𝑧)

to?

𝑃 𝑤, 𝑑 = 𝑃(𝑑)

𝑧∈𝑍

𝑃 𝑧 𝑑 𝑃(𝑤|𝑧)

Probabilistic LSA (Some details) (2)

𝑃 𝑤, 𝑑 =

𝑧∈𝑍

𝑃 𝑧 𝑃 𝑑 𝑧 𝑃(𝑤|𝑧) =

=

𝑧∈𝑍

𝑃 𝑧
𝑃 𝑧 𝑑 𝑃(𝑑)

𝑃 𝑧
𝑃 𝑤 𝑧 =

= 𝑃(𝑑)

𝑧∈𝑍

𝑃 𝑧 𝑑 𝑃(𝑤|𝑧)

Bayes’ Theorem

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃 𝐵

LATENT DIRICHLET
ALLOCATION (LDA)

High-level Description of LDA

• Latent Dirichlet Allocation (LDA) is a Bayesian version of
pLSA.

• LDA treats documents as bags of words;

• It is designed to discover topics based on term frequencies.

• LDA assumes documents are produced from a mixture of topics;

• LDA categorizes documents by topic via a generative

probabilistic model;

• Distribution of topics in a document and the distribution of words
in topics are Dirichlet distributions.

High-level Description of LDA

• The idea is that:

• Words are generated from topics;

• Each document has a particular probability of using particular
topics to generate a given word;

• We seek to find which topics given documents are likely to use to
generate words.

High-level Description of LDA

• INPUT: We start with a corpus of 𝑀 documents and
choose how many 𝑘 topics we want to discover out of this
corpus.

• OUTPUT: the topic model, and the 𝑀 documents
expressed as a combination of the 𝑘 topics.

• OPERATION: the algorithm finds the weight of
connections between documents and topics and between
topics and words.

High-level Description of LDA

Topics

High-level Description of LDA

• For 𝑘 = 2, an LDA model could look like this:

High-level Description of LDA

• The algorithm created an intermediate layer with topics
and figured out the weights between documents and
topics and between topics and words.

• Documents are no longer connected to words but to
topics.

• In the previous example, each topic was named for clarity,
but in real life, we would not know exactly what they
represent.

• We would have topics 1, 2, …, up to 𝑘, that’s all.

High-level Description of LDA

• When LDA models a new document, it works in the
following way:

Why Dirichlet Distributions?

• Dirichlet distributions encode the intuition that
documents are related to a few topics.

• In practical terms, this results in better disambiguation of
words and a more precise assignment of documents to
topics.

• Let us suppose to have four topics:

Why Dirichlet Distributions?

• In a random distribution, documents would be evenly
distributed across the four topics:

Why Dirichlet Distributions?

• In real life, however, we know they are more sparsely
distributed, like this:

What are Dirichlet Distributions?

• This also happens between topics and words:

What are Dirichlet Distributions?

• A Dirichlet distribution 𝐷𝑖𝑟(𝑝) is a way to model a
probability function (PF) which gives probabilities for
discrete random variables.

• Example: rolling a die

• It is a discrete random variable: The result is unpredictable, and
the values can be 1, 2, 3, 4, 5, or 6.

• For a fair die, a PF would give these probabilities: [0.16, 0.16, 0.16,
0.16, 0.16, 0.16].

• For a biased die, a PF could return these probabilities: [0.25, 0.15,
0.15, 0.15, 0.15, 0.15], where obtaining a one is higher than the
other sides.

What are Dirichlet Distributions?

• In the example with documents, topics, and words, we
have two PFs:

• 𝜃𝑑: the probability of topic 𝑘 occurring in document 𝑑;

• 𝜑𝑘: the probability of word 𝑤 occurring in topic 𝑘.

• The 𝑝 parameter in 𝐷𝑖𝑟(𝑝) is named concentration
parameter, and rules the trend of the distribution to be:

• uniform (𝑝 = 1)

• concentrated (𝑝 > 1)

• sparse (𝑝 < 1)

What are Dirichlet Distributions?

• When we consider document and topics, we denote 𝑝 = 𝛼.

distribution with 𝛼 = 1 distribution with 𝛼 > 1 distribution with 𝛼 < 1

What are Dirichlet Distributions?

• When we consider topics and words, we denote 𝑝 = 𝛽.

• By using concentration parameters 𝛼, 𝛽 < 1, these
probabilities will be closer to the real world.

• In other words, they follow Dirichlet distributions:

𝜃𝑑 ≈ 𝐷𝑖𝑟(𝛼)
𝜑𝑘 ≈ 𝐷𝑖𝑟(𝛽)

where 𝛼 and 𝛽 rule each distribution, and both have
values < 1.

What are Dirichlet Distributions?

• IMPORTANT. Using the same concentration parameter, e.g.,
𝛼, we obtain many different distributions of documents over
topics

• They get adjusted during the training process to make the
model better.

High-level Description of LDA

Parameters of LDA (1)

• Alpha and Beta Hyperparameters

• Alpha represents document-topic density.

• Higher the value of alpha, documents are composed of more topics and
lower the value of alpha, documents contain fewer topics.

• Beta represents topic-word density.

• Higher the beta, topics are composed of a large number of words in the
corpus, and with the lower value of beta, they are composed of few
words.

• Number of Topics

• Selected randomly.

• By using the Kullback-Leibler (KL) Divergence Score.

Parameters of LDA (2)

• Number of Topic Terms

• Generally decided according to the requirement.

• If the problem statement talks about extracting themes or concepts, it is
recommended to choose a higher number;

• If problem statement talks about extracting features or terms, a low
number is recommended.

• Number of Iterations

• Maximum number of iterations allowed to LDA algorithm for
convergence.

LSA (and pLSA) vs LDA

• The main difference between LSA and LDA is that LDA
assumes that the distribution of topics in a document and the
distribution of words in topics are Dirichlet distributions.

• LSA does not assume any distribution and, therefore, leads to
more opaque vector representations of topics and documents.

• LDA typically works better than pLSA because it can generalize
to new documents easily.
• In pLSA, the document probability is a fixed point in the dataset.

• If we have not seen a document, we do not have that data point.

• In LDA, the dataset serves as training data for the Dirichlet
distribution of document-topic distributions.
• If we have not seen a document, we can easily sample from the Dirichlet

distribution and move forward from there.

Implementation of LDA in Python
#IMPORTING DATA – AS IN THE LSA EXAMPLE

#PREPROCESSING - LDA requires some basic pre-processing of text data

def tokenize_lemma_stopwords(text):

tokens = nltk.tokenize.word_tokenize(text.lower())

split string into words (tokens)

tokens = [t for t in tokens if t.isalpha()]

keep strings with only alphabets

tokens = [wordnet_lemmatizer.lemmatize(t) for t in tokens]

put words into base form

tokens = [stemmer.stem(t) for t in tokens]

tokens = [t for t in tokens if len(t) > 2]

remove short words, they're probably not useful

tokens = [t for t in tokens if t not in stopwords]

remove stopwords

return tokens

def dataCleaning(data):

data["content"] = data["content"].apply(tokenize_lemma_stopwords)

return data

Implementation of LDA in Python
#Convert pre-processed tokens into a dictionary with word index

and it’s count in the corpus

#We can use gensim package to create this dictionary then to

create bag-of-words

dictionary = gensim.corpora.Dictionary(X)

dictionary.filter_extremes(no_below=5, no_above=0.5,

keep_n=100000)

filter words that occurs in less than 5 documents and words

that occurs in more than 50% of total documents

keep top 100000 frequent words

bow_corpus = [dictionary.doc2bow(doc) for doc in X]

create bag-of-words ==> list(index, count) for words in

doctionary

Implementation of LDA in Python
Create lda model with gensim library

Manually pick number of topic

lda_model = gensim.models.LdaModel(bow_corpus,

id2word=dictionary,

num_topics=5,

offset=2,

random_state=100,

update_every=1,

passes=10,

alpha='auto',

beta="auto",

per_word_topics=True)

Implementation of LDA in Python
from pprint import pprint

pprint(lda_model.print_topics())

[(0, # Seems to be Computer and Technology

'0.014*"key" + 0.007*"chip" + 0.006*"encryption" + 0.006*"system" + '

'0.005*"clipper" + 0.005*"article" + 0.004*"university" + '

'0.004*"information" + 0.004*"government" + 0.004*"time"'),

(1, # Seems to be Science and Technology

'0.008*"drive" + 0.007*"university" + 0.007*"window" + 0.007*"system" + '

'0.006*"doe" + 0.005*"card" + 0.005*"thanks" + 0.005*"space" + '

'0.004*"article" + 0.004*"computer"'),

(2, # Seems to be politics

'0.010*"people" + 0.006*"gun" + 0.006*"armenian" + 0.005*"time" + '

'0.005*"article" + 0.005*"then" + 0.005*"israel" + 0.004*"war" + '

'0.004*"government" + 0.004*"israeli"'),

(3, # Seems to be sports

'0.013*"game" + 0.011*"team" + 0.008*"article" + 0.007*"university" + '

'0.006*"player" + 0.006*"time" + 0.005*"play" + 0.005*"season" + '

'0.004*"hockey" + 0.004*"win"'),

(4, # Seems to be religion

'0.018*"god" + 0.011*"people" + 0.008*"doe" + 0.008*"christian" + '

'0.007*"jesus" + 0.006*"believe" + 0.006*"then" + 0.006*"article" + '

'0.005*"life" + 0.005*"time"')]

EVALUATING TOPIC MODELING

Evaluation Approaches

• Eye Balling Models
• Top-n words

• Topics/Documents

• Intrinsic Evaluation Metrics
• Capturing model semantics

• Topics interpretability

• Human Judgements
• Quantitative methods for evaluating human judgement

• Extrinsic Evaluation Metrics/Evaluation at task
• Is the model good at performing predefined tasks, such as

classification?

Internal coherence of

topic models

Intrinsic Evaluation Metrics

• Intrinsic Evaluation metrics that best describe the
performance of a topic model:

• Perplexity

• Coherence

• Diversity

Measure Details

• Perplexity is a measure of uncertainty, meaning lower the
perplexity better the model.

• Coherence is the measure of semantic similarity between
top words in our topic. Higher the coherence better the
model performance.

• Diversity evaluates whether topics are diverse and not
redundant.

Perplexity

• Perplexity is a statistical measure of how well a probability
model predicts a sample.

• It aims to capture how “surprised” a model is of new data it has
not seen before.

• This metric is measuring “how probable” some new unseen
data is given the model that was learned earlier.

#COMPUTING PERPLEXITY

print('Perplexity: ',

lda_model.log_perplexity(bow_corpus))

Coherence

• Topic Coherence measures score a single topic by measuring
the degree of semantic similarity between high scoring words in
the topic.

• These measurements help distinguish between topics that are
semantically interpretable topics and topics that are artifacts of
statistical inference.

#COMPUTING COHERENCE

coherence_model_lda =
models.CoherenceModel(model=lda_model, texts=X,
dictionary=dictionary, coherence='c_v’)

coherence_lda = coherence_model_lda.get_coherence()

print('Coherence Score: ', coherence_lda)

Distinct Coherence measures

• c_v

• based on a sliding window, one-set segmentation of the top words
and an indirect confirmation measure that uses normalized
pointwise mutual information (NPMI) and the cosine similarity.

• c_p

• based on a sliding window, one-preceding segmentation of the top
words and the confirmation measure of Fitelson’s coherence.

• c_uci

• based on a sliding window and the pointwise mutual information
(PMI) of all word pairs of the given top words.

Distinct Coherence measures

• c_umass

• based on document cooccurrence counts, a one-preceding
segmentation and a logarithmic conditional probability as
confirmation measure.

• c_npmi

• enhanced version of the c_uci coherence using the normalized

pointwise mutual information (NPMI).

• c_a

• baseed on a context window, a pairwise comparison of the top
words and an indirect confirmation measure that uses normalized
pointwise mutual information (NPMI) and the cosine similarity.

Diversity
• Metrics for diversity could include measuring the cosine similarity

between topic vectors or quantifying the spread of topics across
documents.

• Redundant topics might occur when the model identifies similar topics
with slight variations.

#COMPUTING DIVERSITY

doc_topic_matrix =
lda_model.get_document_topics(corpus)

doc_topic_array = np.array([np.array(doc_topic)[:, 1]
for doc_topic in doc_topic_matrix])

cosine_sim_matrix = cosine_similarity(doc_topic_array)

topic_diversity = 1 - np.mean(np.max(cosine_sim_matrix,
axis=1))

print("Topic Diversity: {topic_diversity}")

A (VERY) BRIEF INTRODUCTION
TO TOPIC CLASSIFICATION

Topic Modeling VS Topic Classification

• Topic Modeling is an unsupervised machine learning
technique (i.e., it does not require training).

• If there is not the possibility to priorly analyze texts (to label it), or
if the aim is not looking for a fine-grained analysis, topic modeling
algorithms are indicated.

• Topic Classification is a supervised machine learning
technique, i.e., it needs training before being able to
automatically analyze texts.

• If there is a list of predefined topics for a set of texts, and the aim is
to gain accurate insights, topic classification is more suitable.

Topic Classification Approaches

• Rule-based systems

• Human-based

• Machine learning systems

• Automatic supervised approaches

• Hybrid systems

• A mix of the previous two

Rule-Based Systems

• They works by directly programming a set of hand-made rules,
based on the content of the documents that a human expert has
read.

• Each one of these rules is made up of a pattern and a
prediction. Since we are focusing on topic analysis, the
prediction will be the topic.

• Downsides:
• Too complex for someone without expert knowledge;

• Require constant analysis and testing to ensure they are functioning in
the correct way;

• When adding new rules, existing rules are altered;

• In short, these systems are high-maintenance and unscalable.

Machine Learning Systems

• A topic classification machine learning model needs to be
fed examples of text and a list of predefined tags, known
as training data.

• Once the text is transformed into vectors and the training
data is tagged with the expected tags, this information is
fed to an algorithm to create the classification model.

Machine Learning Systems

TOPIC

Machine Learning Systems

TOPIC

Machine Learning Systems

• Naive Bayes
• Family of that deliver good results even when dealing with small

amounts of data, say between 1,000 and 10,000 texts;

• It works by correlating the probability of words appearing in a text
with the probability of that text being about a certain topic.

• Support Vector Machines (SVM)
• Slightly more complex than Naive Bayes;

• They often deliver better results than NB for topic classification;

• Downside: they require complex programming and require more
computing resources.
• It is possible to speed up the training process of an SVM by optimizing

the algorithm by feature selection, in addition to running an optimized
linear kernel such as scikit-learn's Linear SVC.

Machine Learning Systems

• Deep Learning

• Topic Classification benefit from Deep Learning;

• It employs two main deep learning architectures:

• Convolutional Neural Networks (CNN);

• Recurrent Neural Networks (RNN).

• Downside: They require much more training data than traditional
machine learning algorithms.

• Instead of, for example, 1,000 training samples, it is necessary to have
millions of samples.

Hybrid Systems

• These are simply combinations of machine learning
classifiers and rule-based systems, which improve results
as you fine-tune rules.

• You can use these to rules to tweak topics that have been
incorrectly modeled by the machine learning classifier.

Metrics and Evaluation

• As in many other classification tasks, in Topic Classification it
is necessary to test the actual label (topic) for a specific text and
compare it to the predicted label (topic).

• With the results, it is possible to compute the following (well-
known) evaluation metrics:

• Accuracy: the percentage of texts that were assigned the correct topic;

• Precision: the percentage of texts the classifier tagged correctly out of
the total number of texts it predicted for each topic;

• Recall: the percentage of texts the model predicted for each topic out of
the total number of texts it should have predicted for that topic;

• F1 Score: the average of both Precision and Recall.

