DESCRIPTIVE STATISTICS

Exercises

EXERCISE 1

The following table shows the glycemia ($\mathrm{mg} / \mathrm{dL}$) of 500 older adults grouped in 5 classes having the same width:

CLASS INTERVAL	MIDDLE POINT	FREQUENCY		CUMULATIVE FREQUENCY	
		f	$\mathrm{p} \%$		F
$\mathbf{n y y n n}-\mid 75$	$\mathbf{7 0}$	75	15	75	$\mathrm{P} \%$
$75-\mid 85$	80	100	20	175	15
$85-\mid 95$	90	150	30	225	35
$95-\mid 105$	100	125	25	450	65
$105-\mid 115$	$\mathbf{1 1 0}$	50	10	500	90

a. Calculate mean and variance
b. Identify the modal class
c. Represent the data in a Galton Ogive and identify the glycemic value exceeded by only 5% of these older adults
d. Find the class containing the $50^{\text {th }}$ percentile

SOLUTION 1

a.

To calculate the mean and the variance, it is necessary to consider the middle point as the representative value of each class.
$\begin{aligned} \bar{x}=\frac{\sum_{i=1}^{k} x_{i} \cdot f_{i}}{n} & =\frac{(70 \cdot 75)+(80 \cdot 100)+(90 \cdot 150)+(100 \cdot 125)+(110 \cdot 50)}{500}=\frac{44750}{500} \\ & =89.5 \mathrm{mg} / \mathrm{dL}\end{aligned}$
$s^{2}=\frac{\sum_{i=1}^{k}\left(x_{i}-\bar{x}\right)^{2} \cdot f_{i}}{(n-1)}$
$=\frac{(70-89.5)^{2} \cdot 75+(80-89.5)^{2} \cdot 100+(90-89.5)^{2} \cdot 150+(100-89.5)^{2} \cdot 125+(110-89.5)^{2} \cdot 50}{499}$
$=\frac{28518.75+9025+37.5+13781.25+21012.5}{499}=\frac{72375}{499}=145.04(\mathrm{mg} / \mathrm{dL})^{2}$
$s=\sqrt{s^{2}}=\sqrt{145.04}=12.04 \mathrm{mg} / \mathrm{dL}$
b.

The modal class is $85-\mid 95 \mathrm{mg} / \mathrm{dL}$
c.

$110 \mathrm{mg} / \mathrm{dL}$ is the glycemic value exceeded by only 5% of older adults
d.

The class containing the $50^{\text {th }}$ percentile is $85-\mid 95$. Consequently, the median is $90 \mathrm{mg} / \mathrm{dL}$

EXERCISE 2

The following table shows the absolute frequencies of the hemoglobin blood concentration (g / dL) categorized into 5 classes for 300 patients:

	Blood concentration of $\mathbf{~ H b}(\mathrm{g} / \mathrm{dL})$					
	12	13	14	15	16	
	$(11.5,12.5]$	$(12.5,13.5]$	$(13.5,14.5]$	$(14.5,15.5]$	$(15.5,16.5]$	Total
Females	18	65	14	2	1	$\mathbf{1 0 0}$
Males	2	40	71	58	29	$\mathbf{2 0 0}$
Total	$\mathbf{2 0}$	$\mathbf{1 0 5}$	$\mathbf{8 5}$	$\mathbf{6 0}$	$\mathbf{3 0}$	$\mathbf{3 0 0}$

a. What is the proportion of patients with $\mathrm{Hb}>14.5 \mathrm{~g} / \mathrm{dL}$?
b. What is the proportion of females with $\mathrm{Hb}>14.5 \mathrm{~g} / \mathrm{dL}$?
c. What is the proportion of males with $\mathrm{Hb}>14.5 \mathrm{~g} / \mathrm{dL}$?
d. What is the proportion of females among patients with $\mathrm{Hb}<12.5 \mathrm{~g} / \mathrm{dL}$?

SOLUTION 2

a.
$p=\frac{60+30}{300}=\frac{90}{300}=0.3$
b.
$p=\frac{2+1}{100}=\frac{3}{100}=0.03$
c.
$p=\frac{58+29}{200}=\frac{87}{200}=0.435$
d.
$p=\frac{18}{20}=0.9$

EXERCISE 3

Five men with obesity have been visited in the same day. The following table shows their weights (kg):

Patient ID	Weight (kg)
1	120
2	147
3	132
4	128
5	138

a. Calculate mean and standard deviation

The scale was later discovered to have been calibrated badly and that all measurements were wrong overestimated by 5 kg .
b. Calculate mean and standard deviation
c. Calculate mean and standard deviation in hg
d. Calculate the coefficient of variation of the weight both in kg and hg

SOLUTION 3

a.
$\bar{x}=\frac{120+147+132+128+138}{5}=\frac{665}{5}=133 \mathrm{~kg}$
$s=\sqrt{\frac{(120-133)^{2}+(147-133)^{2}+(132-133)^{2}+(128-133)^{2}+(138-133)^{2}}{4}}$
$=\sqrt{\frac{169+196+1+25+25}{4}}=\sqrt{\frac{416}{4}}=\sqrt{104}=10.2 \mathrm{~kg}$
b.
$\bar{x}=133-5=128 \mathrm{~kg}$
$s=10.2 \mathrm{~kg} \rightarrow$ remain unchanged
c.
$1 \mathrm{~kg}=10 \mathrm{hg}$. So,
$\bar{x}=128 \cdot 10=1280 \mathrm{hg}$
$s=10.2 \cdot 10=102 \mathrm{hg}$
d.
$C V=\frac{s}{\bar{x}}=\frac{128}{10.2}=\frac{12.8}{1.02}=12.55$

E

EXERCISE 4

A sample is composed by 120 males and 80 females. The following table shows their age in years with the percentage distribution by gender:

Age (years)	Males (\%)	Females (\%)
$0-19$	10	20
$20-29$	10	20
$30-49$	30	30
$50-89$	50	30
Total	100	100

a. How many people are< 20 years old?
b. What is the percentage of individuals that are ≥ 50 years old?
c. How many males are ≥ 30 years old?
d. Find the modal classes for males and females separately and for the total sample
e. Identify the median of the total sample

SOLUTION 4

	Males (years)		Females		
	$\mathbf{p \%}$	\mathbf{f}	$\mathbf{p} \%$	\mathbf{f}	
$0-19$	10	12	20	16	
$20-29$	10	12	20	16	
$30-49$	30	36	30	24	
$50-89$	50	60	30	24	
Total	100	120	100	80	

a.

28 subjects are < 20 years old
b.

$$
\frac{60+24}{120+80}=0.42 \rightarrow 42 \%
$$

c.

96 males are ≥ 30 years old
d.

Modal class for males: 50-89 years
Modal class for females: 30-49 and 50-89 years \rightarrow bimodal distribution
Modal class overall: 50-89 years
e.

The median age of the total sample is 35 years.

EXERCISE 5

The following table shows the distribution of frequencies of the attitude towards smoking observed in a group of young people.

	Age			
	$[16,18]$	$\mathbf{1 1 8}, \mathbf{2 2}]$]22, 25]]25, 30]
Smoking habit	7	8	21	30
	16	18	9	10
No				

a. Calculate the mean age of the smokers and non-smokers
b. Identify the median age class of the smokers and non-smokers
c. Identify the modal age class of the smokers and non-smokers

SOLUTION 6

Age
$[16,18] \quad] 18,22] \quad$]22, 25] $] 25,30]$

Smoking habit

(class middle point)	17	20.5	24	28
Yes	7	8	21	30
No	16	18	9	10

a.
$\bar{x}_{S}=\frac{(17 \cdot 7)+(20.5 \cdot 8)+(24 \cdot 21)+(28 \cdot 30)}{66}=\frac{119+164+504+840}{66}=\frac{1627}{66}=24.65$
$\bar{x}_{N S}=\frac{(17 \cdot 16)+(20.5 \cdot 18)+(24 \cdot 9)+(28 \cdot 10)}{53}=\frac{272+369+216+280}{53}=\frac{1137}{53}=21.45$
b.

Adding the cumulative frequencies into the table:

	Age				
Smoking habit	$[16, \mathbf{1 8}]$	$\mathbf{1 1 8 , 2 2]}$]22, 25]]25, 30]	Total
(class middle point)	17	20.5	24	28	
Yes	$7(11 \%)$	$8(23 \%)$	$21(55 \%)$	$30(100 \%)$	66
No	$16(30 \%)$	$18(64 \%)$	$9(81 \%)$	$10(100 \%)$	53

Median age class for smokers:]22, 25]
Median age class for non-smokers:]18, 22]
c.

Modal class for smokers:]25, 30] years
Modal class for non-smokers:]18, 22] years

