
Nicola I Lorè, PhD
Emerging Bacterial Pathogens Unit, DITID-San Raffaele Scientific Institute, Milan.
Università Vita-Salute San Raffaele, Milan, Italy

Unimib 
Corso laurea magistrale
Malattia Genetiche: dalla diagnosi alla malattia

Milano, Monday April 15, 2024



Introduction
NTM-host interaction, DITID-San Raffaele Scientific Institute, 
Milan.

Emerging Bacterial Pathogens Unit

Project leader Nicola Lorè

NTM-host interaction:

• Host Biomarkers in NTM-PD
• NTM-Host modellling infection (M. abscessus)
• Sequencing of M. abscessus clinical strains in CF
• New antimicrobials or therapeutics against Mabs



Background
Genetic disease – Cystic Fibrosis CF

• Recessively inherited disorder caused by the presence of one mutations in the cystic fibrosis transmembrane conductance 
regulator (CFTR) gene (~ more than 1,500 possible mutations)

•  incidence of clinical disease of 1 in 2,500 live births 

•  The mutations lead to the malfunction or loss-of-function of CFTR, a cyclic AMP-regulated chloride ion channel, resulting 
in defective chloride ion transport across epithelial cell surfaces. 

• This decreases the volume of the periciliary fluid in the lower respiratory tract, which in turn interferes with the 
mucociliary clearance of inhaled microorganisms 

Folkesson A. et al Nat rev 2012
 Rowe M.S. et al N engl j med 2005

https://www.youtube.com/watch?v=YzjnxegMWfk&t=38s
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Genetic disease – Cystic Fibrosis CF

Rowe M.S. et al N engl j med 2005
Thida Ong, MD; Bonnie W. Ramsey, MD JAMA 2023 

Figure 1. Cystic Fibrosis Transmembrane Conductance Regulator Variant Classes1,5,6,19
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Cystic fibrosis transmembrane conductance regulator (CFTR) variants can be
generally classified in 6mechanistic classes based on how they alter CFTR RNA
transcription, protein trafficking, channel function, and stability.5,19 Reported
prevalence, and clinical features (sweat chloride, pancreatic insufficiency) are

summarized for exemplar variants per class.1,6 The CFTR2 database provides
information on all the CFTR variants and updates it as information becomes
available.6 The figure is adapted from Boyle and De Boeck.5 N/A indicates
number not available.
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Background
Cycles of infection/inflammation

Adapted from Chandrasekaran et al. BMC Pulmonary Medicine 2018
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Cystic Fibrosis CF potentiator and Correctors

Thida Ong, MD; Bonnie W. Ramsey, MD JAMA 2023 



Background
Cystic Fibrosis CF potentiator and Correctors

https://www.youtube.com/watch?v=7WTjQY0
V4qI

have aided in the development of CFTR modulator therapies.21

Modulator therapies that increase the quantity of CFTR protein at
thecell surfaceare termed correctors, and those thataugmentchan-
nel function are termed potentiators (Figure 2).

Clinical Presentation
Because disease-causing variants of the CFTR gene result in a range
of protein dysfunction, the clinical presentation and rate of disease
progressionarevariable (Figure 1).5,21More than80%ofpeoplewith
cystic fibrosis and2severegenevariantshaveconsequencesofexo-
crine pancreatic insufficiency including protein and fat maldiges-
tion, steatorrhea, and poor growth.25 Both upper and lower airway
disease begin in infancy with cough, increased respiratory rate, or
wheezing or crackles on chest auscultation.26 As patients become
infected with pathogens such as S aureus and subsequently
P aeruginosa, they frequently experience acute pulmonary exacer-
bations, characterized by cough, sputumproduction, and dyspnea,
which requiremore frequent airway clearance treatments (Table 1)
andoftenhospitalization.44Chronicendobronchial infectionsand in-
flammation lead to adecline in lung function, characterizedby ade-
crease in the forced expiratory volume in the first second (FEV1) of
expiration and forced vital capacity (FVC) on spirometry. Most pa-
tientswith cystic fibrosis developanobstructivepatternon spirom-
etry. Recurrent pulmonary infections cause bronchiectasis, a major
cause of morbidity and mortality.7 In addition, patients with ad-
vanced cystic fibrosismaydeveloppulmonary hypertension,which
is associatedwith decreased survival.49 Adults in the US have been
reported to have increased risk of comorbidities1 including cystic
fibrosis–related diabetes (29.2%),50 liver disease with cirrhosis
(4.1%),51 and osteoporosis (7.5%).52 Peoplewith cystic fibrosiswho
haveat least 1copyofaCFTRvariantwithresidual functionoftenhave
later onset of lung disease yet have comparable disease progres-
sion with those withminimally functional variants.53

Of 563 infants diagnosed by newborn screening in the US in
2021, 88.3%were asymptomatic at the time of diagnosis.1 Among

the216 individualsdiagnosedatagesolder than6months, themost
common presenting symptoms were acute or persistent respira-
tory abnormalities (50.2%) such as cough or wheeze, nasal polyps
or sinusdisease (15.5%), congenital bilateral absenceof thevasdef-
erensor infertility (9%), steatorrheaor abnormal stools (7.7%), fail-
ure to thrive (6.9%), and digital clubbing (2.6%).1

Assessment and Diagnosis
Diagnostic criteria for cystic fibrosis consist of 1 or more organ-
specific manifestations and elevated sweat chloride levels or ge-
netic confirmation of 2 disease-causing variants in the CFTR gene.
Most newborn screeningmethods includemeasurement of immu-
noreactivetrypsinogen(IRT) fromabloodspot, followedbyDNAtest-
ing for CFTR variants, but the thresholds that define IRT elevation
and selection ofCFTR variants can vary across theUS, affecting the
prevalence of positive screening results.54,55

Sweat chloride testing is the main diagnostic test for cystic fi-
brosiswithhigh sensitivity (99%)and specificity (93%) andhas es-
tablished guidelines for technical quality and accuracy at special-
ized cystic fibrosis centers.12,56 Elevated chloride concentration of
collected sweat (!60mEq/L) is consistent with the diagnosis. In-
termediate sweat chloride levels (30-59mEq/L) require furtherbio-
chemical, genetic testing, or nasal potential difference measure-
ment and long-term follow-upat specialized centers because some
patients may later be diagnosed with definite cystic fibrosis, rang-
ing from 6% to 48% based on prospective and retrospective case
series and registry studies.12,57-59

Treatment
Long-term Therapies
For patients with cystic fibrosis, at least quarterly visits with a spe-
cialized,multidisciplinary team, includingphysicians, nurses, social
workers,anddietitians,arerecommendedtomonitor fordiseasepro-
gression and treat multiorgan manifestations.29,30,49,60,61 Annual
screening for psychosocial health concerns is recommended in

Figure 2. Cystic Fibrosis Transmembrane Conductance RegulatorModulator Therapy Functions21-24
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p.Gly551Asp indicates glycine at
residue 551 replaced by aspartic acid;
and p.Phe508del, phenylalanine
deleted at position 508.
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Background
Microbiology of CF lung disease

Annual Data Report 2021   Cystic Fibrosis Foundation Patient Registry 29 

MICROBIOLOGY

This section provides information on trends in CF airway pathogens over time 
and by age group. Infection prevention and control guidelines provide current 
best practices for reducing exposure to CF pathogens in the health care setting 
and in everyday life.21

As noted in the About this Report section, the decreased number of cultures collected in 
2021 is likely a contributing factor to the lower prevalence of bacterial and mycobacterial 
pathogens. Less frequent culture surveillance during the COVID-19 pandemic, increased 
use of highly effective modulator therapy (HEMT), and increased infection prevention and 
control strategies may have impacted prevalence of several microorganisms. 

The graph shows that the prevalence of Pseudomonas aeruginosa (P. aeruginosa or PA) 
continues to decrease. This may relate in part to widespread implementation of eradication 
strategies at the time of initial acquisition.26 The prevalence of infection with multidrug-
resistant P. aeruginosa (MDR-PA) dropped from 4.2 percent in 2020 to 3.5 percent in 2021. 
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Background
Single-cell RNA sequencing

https://www.youtube.com/watch?v=6UVOdCc1Q7I



Question 

How can we exploit Single-cell RNA sequencing techniques for a deeper 
understanding of  Cystic Fibrosis disease? 



Background
Single-cell RNA sequencing in Cystic Fibrosis

Januska Mn, et al AJRCMB 2023
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Background
Epithelial composition in the lung

Davis JD, et al Muc. Imm. 2021
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Methods
Sampling biological material for single-cell RNA sequencing
in Cystic Fibrosis

Januska Mn, et al AJRCMB 2023



Results
Sampling biological material for single-cell RNA sequencing
in Cystic Fibrosis
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Results
Single-Cell Transcriptional Archetypes of Respiratory
epithelial/alveolar barrier

A single cell atlas of the tracheal epithelium reveals the CFTR-
rich pulmonary ionocyte

Lindsey W. Plasschaert#1, Rapolas Žilionis#2,3, Rayman Choo-Wing1, Virginia Savova2, 
Judith Knehr4, Guglielmo Roma4, Allon M. Klein2,†, and Aron B. Jaffe1,†

1Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Cambridge, 
Massachusetts 02139, USA. 2Department of Systems Biology, Harvard Medical School, Boston, 
Massachusetts 02115, USA. 3Institute of Biotechnology, Vilnius University, Vilnius LT-10222, 
Lithuania 4Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, 
CH-4056 Basel, Switzerland.
# These authors contributed equally to this work.

The functions of epithelial tissues are dictated by the types, abundance, and distribution of 
the differentiated cells they contain. Attempts to restore tissue function after damage require 
knowledge of how physiological tasks are distributed among cell types, and how cell states 
vary between homeostasis, injury/repair, and disease. In the conducting airway, a 
heterogeneous basal cell population gives rise to specialized luminal cells that perform 
mucociliary clearance1. We performed single cell profiling of human bronchial epithelial 
cells and mouse tracheal epithelial cells to obtain a comprehensive picture of cell types in 
the conducting airway and their behavior in homeostasis and regeneration. Our analysis 
reveals cell states that represent known and novel cell populations, delineates their 
heterogeneity, and identifies distinct differentiation trajectories during homeostasis and 
tissue repair. Finally, we identified a novel, rare cell type, which we call the ‘pulmonary 
ionocyte’, that co-expresses FOXI1, multiple subunits of the V-ATPase, and CFTR, the gene 
mutated in cystic fibrosis (CF). Using immunofluorescence, signaling pathway modulation, 
and electrophysiology, we show that Notch signaling is necessary and FOXI1 expression 
sufficient to drive the production of the pulmonary ionocyte, and that the pulmonary 
ionocyte is a major source of CFTR activity in the conducting airway epithelium.

The conducting airway is lined by a pseudostratified epithelium consisting of basal, 
secretory and ciliated cells, as well as rare pulmonary neuroendocrine cells (PNECs) and 
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A revised airway epithelial hierarchy includes CFTR-expressing 
ionocytes
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Results
Single-Cell Transcriptional Archetypes of Respiratory
epithelial/alveolar barrier
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Abstract

Rationale: Cystic fibrosis (CF) is a life-shortening, multisystem
hereditary disease caused by abnormal chloride transport. CF lung
disease is driven by innate immune dysfunction and exaggerated
inflammatory responses that contribute to tissue injury. To define the
transcriptional profile of this airway immune dysfunction, we performed
the first single-cell transcriptome characterization of CF sputum.

Objectives:To define the transcriptional profile of sputum cells and
its implication in the pathogenesis of immune function and the
development of CF lung disease.

Methods:We performed single-cell RNA sequencing of sputum cells
fromnine subjectswithCF andfive healthy control subjects.We applied
novel computational approaches to define expression-based cell
function and maturity profiles, herein called transcriptional archetypes.

Measurements and Main Results: The airway immune
cell repertoire shifted from alveolar macrophages in healthy
control subjects to a predominance of recruited monocytes and

neutrophils in CF. Recruited lung mononuclear phagocytes
were abundant in CF and were separated into the following
three archetypes: activated monocytes, monocyte-derived
macrophages, and heat shock–activated monocytes. Neutrophils
were the most prevalent in CF, with a dominant immature
proinflammatory archetype. Although CF monocytes exhibited
proinflammatory features, both monocytes and neutrophils
showed transcriptional evidence of abnormal phagocytic and
cell-survival programs.

Conclusions: Our findings offer an opportunity to understand
subject-specific immune dysfunction and its contribution
to divergent clinical courses in CF. As we progress toward
personalized applications of therapeutic and genomic developments,
we hope this inflammation-profiling approach will enable
further discoveries that change the natural history of CF lung
disease.
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subjects to undergo sputum induction
according to previous protocols (16).

Study subjects were closely age
matched, with a higher inclusion of female
subjects in the CF group (67% CF, n= 6;
40% HC, n= 2). The CF cohort was
comprised primarily of F508del
homozygous subjects (78%, n= 7), with
only two F508del heterozygotes harboring
either one deletion or one frameshift
mutation in one CFTR allele and an F508del
in the other. The CF cohort’s degree of
lung function impairment, as determined
by FEV1, ranged from mild to severe
(FEV1 19–84% of predicted), with a
mean FEV1 of 57%. All subjects with
CF had pancreatic exocrine insufficiency,
and 44% (n= 4) carried a diagnosis of
CF-related diabetes. Pseudomonas
aeruginosa was isolated in the sputum
of 56% of subjects with CF (n= 5). The
majority of subjects with CF were receiving
CFTR-modulator therapy (89%, n= 8) with
a combination of either ivacaftor/tezacaftor
(67%, n= 6) or ivacaftor/lumacaftor
(22%, n= 2). For further demographic and
clinical details, see Table 1.

We developed a standardized
scRNAseq workflow for sputum sample
analysis (Figure 1A) and profiled a total of
20,095 sputum cells (12,494 CF and 7,601
HC). We identified the following nine
distinct sputum cell populations based on
known transcriptomic markers (Figure 1C
and Data file E1 in the online supplement):
mononuclear phagocytes (recruited lung
monocytes, monocyte-derived MFs
[MoMFs], and alveolar MFs [alvMFs]);
classical and plasmacytoid dendritic cells;
PMNs; lymphocytes (B, T, and NK cells);
and airway epithelial cells from buccal and
tracheobronchial mucosa (Figures 1B–1D).
The expression of CFTR in sputum cells
was overall very low, and CFTR was
detected in most cell types in frequencies
ranging from 0 to 6.84% (Figure E1).

The Inflammatory Cell Repertoire of
CF Sputum Displays a Shift from
alvMFs to Airway Monocytes and
PMNs
The dominant cell populations in the CF
and HC samples were strikingly different.
PMNs contributed 64% of all CF cells, with
minimal numbers of alvMFs (0.4%). In
contrast, the HC samples were composed of
80.2% alvMFs with almost no detectable
PMNs (,2%; P, 0.002 for both).
Furthermore, subjects with CF also

exhibited increased numbers of airway
monocytes (19% CF and 1% HC; P= 0.001)
and B cells (4% CF and 1% HC; not
significant) and lower numbers of MoMFs
(1% CF and 6% HC; P= 0.007) (Figures
1B–1D). Disease-associated PMNs, MFs,
and monocyte cellular distributions were
confirmed on mass cytometry data from a
previously published study by our group
that compared surface markers of
inflammatory sputum cells in CF and HC
cells (Figure E2) (16). Furthermore,
correlation of cell-type gene classifiers in
this study and analogous cell types in the
largest scRNAseq dataset of the distal lung
available to date (n= 28) revealed a greater
correlation between HC cell types from
each dataset than that within other cell
types from the same dataset, confirming
our cell annotations (Figure E3) (31).
Our findings indicate that immune
cell populations in CF sputum are
distinguishable from HC sputum through
scRNAseq and that our cell annotations

and shifts in major cell distributions in CF
are consistent with other mass cytometry
and scRNAseq studies.

Recruited CF Lung Mononuclear
Phagocytes Display Distinct
Maturation and Immune Activation
Archetypes
AlvMFs were rare in CF sputum; however,
we identified a distinct subpopulation of
recruited lung mononuclear phagocytes
(RLPs) (Figure 1B) that included recruited
lung monocytes and MoMFs. These RLPs
were defined by a high expression of
mononuclear phagocyte–associated genes
(LYZ, CTSB, CTSH, CTSL, CTSS, CTSZ,
HLA-DRA, HLA-DRB1, LGALS1, FTL, and
CD74). RLPs were relatively abundant in
CF (20% of CF cells) and were rarely
identified in HC sputum (7% of HC cells;
P= 0.06). RLPs were a heterogeneous
group, with pronounced and notably
different plasticity in CF. This suggested
that RLPs would differ not only in

Table 1. Demographic Characteristics of Study Subjects from the Yale Adult Cystic
Fibrosis Program and Healthy Control Subjects

Characteristics HC Subjects (n=5) Subjects with CF (n=9)

Age, yr
Mean6SD 35.465.9 30.66 6.5
Range 26–42 24–43

Sex, n (%)
F 2 (40) 6 (67)
M 3 (60) 3 (33)

Mutation background, n (%)
F508del/F508del NA 7 (77.8)
F508del/other NA 2 (22.2)
No F508del mutations NA 0 (0)

FEV1, L
Mean6SD NA 1.960.7
Range NA 0.68–2.85

FEV1, %
Mean6SD NA 57621.5
Range NA 19–84

BMI, kg/m2

Mean6SD NA 22.262.1
Range NA 19.11–25.73

CF comorbidities, n (%)
Pancreatic exocrine insufficiency NA 9 (100)
CF-related diabetes NA 4 (44.4)
Liver disease NA 1 (11.1)

Microbiology, n (%)
P. aeruginosa colonization NA 5 (55.6)

CFTR modulators, n (%)
Ivacaftor/tezacaftor NA 6 (66.7)
Ivacaftor/lumacaftor NA 2 (22.2)
No modulator NA 1 (11.1)

Definition of abbreviations: BMI = body mass index; CF= cystic fibrosis; CFTR=cystic fibrosis
transmembrane conductance regulator; HC=healthy control; NA=not applicable; P. aeruginosa=
Pseudomonas aeruginosa.
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subjects to undergo sputum induction
according to previous protocols (16).

Study subjects were closely age
matched, with a higher inclusion of female
subjects in the CF group (67% CF, n= 6;
40% HC, n= 2). The CF cohort was
comprised primarily of F508del
homozygous subjects (78%, n= 7), with
only two F508del heterozygotes harboring
either one deletion or one frameshift
mutation in one CFTR allele and an F508del
in the other. The CF cohort’s degree of
lung function impairment, as determined
by FEV1, ranged from mild to severe
(FEV1 19–84% of predicted), with a
mean FEV1 of 57%. All subjects with
CF had pancreatic exocrine insufficiency,
and 44% (n= 4) carried a diagnosis of
CF-related diabetes. Pseudomonas
aeruginosa was isolated in the sputum
of 56% of subjects with CF (n= 5). The
majority of subjects with CF were receiving
CFTR-modulator therapy (89%, n= 8) with
a combination of either ivacaftor/tezacaftor
(67%, n= 6) or ivacaftor/lumacaftor
(22%, n= 2). For further demographic and
clinical details, see Table 1.

We developed a standardized
scRNAseq workflow for sputum sample
analysis (Figure 1A) and profiled a total of
20,095 sputum cells (12,494 CF and 7,601
HC). We identified the following nine
distinct sputum cell populations based on
known transcriptomic markers (Figure 1C
and Data file E1 in the online supplement):
mononuclear phagocytes (recruited lung
monocytes, monocyte-derived MFs
[MoMFs], and alveolar MFs [alvMFs]);
classical and plasmacytoid dendritic cells;
PMNs; lymphocytes (B, T, and NK cells);
and airway epithelial cells from buccal and
tracheobronchial mucosa (Figures 1B–1D).
The expression of CFTR in sputum cells
was overall very low, and CFTR was
detected in most cell types in frequencies
ranging from 0 to 6.84% (Figure E1).

The Inflammatory Cell Repertoire of
CF Sputum Displays a Shift from
alvMFs to Airway Monocytes and
PMNs
The dominant cell populations in the CF
and HC samples were strikingly different.
PMNs contributed 64% of all CF cells, with
minimal numbers of alvMFs (0.4%). In
contrast, the HC samples were composed of
80.2% alvMFs with almost no detectable
PMNs (,2%; P, 0.002 for both).
Furthermore, subjects with CF also

exhibited increased numbers of airway
monocytes (19% CF and 1% HC; P= 0.001)
and B cells (4% CF and 1% HC; not
significant) and lower numbers of MoMFs
(1% CF and 6% HC; P= 0.007) (Figures
1B–1D). Disease-associated PMNs, MFs,
and monocyte cellular distributions were
confirmed on mass cytometry data from a
previously published study by our group
that compared surface markers of
inflammatory sputum cells in CF and HC
cells (Figure E2) (16). Furthermore,
correlation of cell-type gene classifiers in
this study and analogous cell types in the
largest scRNAseq dataset of the distal lung
available to date (n= 28) revealed a greater
correlation between HC cell types from
each dataset than that within other cell
types from the same dataset, confirming
our cell annotations (Figure E3) (31).
Our findings indicate that immune
cell populations in CF sputum are
distinguishable from HC sputum through
scRNAseq and that our cell annotations

and shifts in major cell distributions in CF
are consistent with other mass cytometry
and scRNAseq studies.

Recruited CF Lung Mononuclear
Phagocytes Display Distinct
Maturation and Immune Activation
Archetypes
AlvMFs were rare in CF sputum; however,
we identified a distinct subpopulation of
recruited lung mononuclear phagocytes
(RLPs) (Figure 1B) that included recruited
lung monocytes and MoMFs. These RLPs
were defined by a high expression of
mononuclear phagocyte–associated genes
(LYZ, CTSB, CTSH, CTSL, CTSS, CTSZ,
HLA-DRA, HLA-DRB1, LGALS1, FTL, and
CD74). RLPs were relatively abundant in
CF (20% of CF cells) and were rarely
identified in HC sputum (7% of HC cells;
P= 0.06). RLPs were a heterogeneous
group, with pronounced and notably
different plasticity in CF. This suggested
that RLPs would differ not only in

Table 1. Demographic Characteristics of Study Subjects from the Yale Adult Cystic
Fibrosis Program and Healthy Control Subjects

Characteristics HC Subjects (n=5) Subjects with CF (n=9)

Age, yr
Mean6SD 35.465.9 30.66 6.5
Range 26–42 24–43

Sex, n (%)
F 2 (40) 6 (67)
M 3 (60) 3 (33)

Mutation background, n (%)
F508del/F508del NA 7 (77.8)
F508del/other NA 2 (22.2)
No F508del mutations NA 0 (0)

FEV1, L
Mean6SD NA 1.960.7
Range NA 0.68–2.85

FEV1, %
Mean6SD NA 57621.5
Range NA 19–84

BMI, kg/m2

Mean6SD NA 22.262.1
Range NA 19.11–25.73

CF comorbidities, n (%)
Pancreatic exocrine insufficiency NA 9 (100)
CF-related diabetes NA 4 (44.4)
Liver disease NA 1 (11.1)

Microbiology, n (%)
P. aeruginosa colonization NA 5 (55.6)

CFTR modulators, n (%)
Ivacaftor/tezacaftor NA 6 (66.7)
Ivacaftor/lumacaftor NA 2 (22.2)
No modulator NA 1 (11.1)

Definition of abbreviations: BMI = body mass index; CF= cystic fibrosis; CFTR=cystic fibrosis
transmembrane conductance regulator; HC=healthy control; NA=not applicable; P. aeruginosa=
Pseudomonas aeruginosa.
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
sputum from healthy control subjects was collected. Sputum was processed into a single-cell suspension. Droplet-based single-cell RNA sequencing
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
sputum from healthy control subjects was collected. Sputum was processed into a single-cell suspension. Droplet-based single-cell RNA sequencing
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
sputum from healthy control subjects was collected. Sputum was processed into a single-cell suspension. Droplet-based single-cell RNA sequencing
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
sputum from healthy control subjects was collected. Sputum was processed into a single-cell suspension. Droplet-based single-cell RNA sequencing
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
sputum from healthy control subjects was collected. Sputum was processed into a single-cell suspension. Droplet-based single-cell RNA sequencing
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Figure 1. Single-cell RNA sequencing reveals an immune cell repertoire shift from alveolar macrophages to recruited monocytes and polymorphonuclear
neutrophils in cystic fibrosis (CF). (A) Schematic of the experimental design. Spontaneously expectorated sputum from patients with CF and induced
sputum from healthy control subjects was collected. Sputum was processed into a single-cell suspension. Droplet-based single-cell RNA sequencing
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Figure 2. Recruited lung mononuclear phagocytes are a distinct cell population with a broad spectrum of maturity and immune activation in cystic fibrosis
airways. (A) Potential of heat diffusion for affinity-based transition embedding (PHATE) of monocytes and monocyte-derived macrophages colored by
pseudotime, all starting from quiescent monocytes toward 1) activated monocytes, 2) mature monocyte-derived macrophages, 3) monocytes expressing
a heat-shock response, and 4) monocytes and monocyte-derived macrophages, colored by disease state. All three archetypes are accompanied by three
PHATE plots colored by the gene expression of typical genes, ramping up along a specific pseudotime. For the corresponding uniform manifold
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Figure 2. Recruited lung mononuclear phagocytes are a distinct cell population with a broad spectrum of maturity and immune activation in cystic fibrosis
airways. (A) Potential of heat diffusion for affinity-based transition embedding (PHATE) of monocytes and monocyte-derived macrophages colored by
pseudotime, all starting from quiescent monocytes toward 1) activated monocytes, 2) mature monocyte-derived macrophages, 3) monocytes expressing
a heat-shock response, and 4) monocytes and monocyte-derived macrophages, colored by disease state. All three archetypes are accompanied by three
PHATE plots colored by the gene expression of typical genes, ramping up along a specific pseudotime. For the corresponding uniform manifold
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Results
Single-Cell Transcriptional Archetypes of Airway Inflammation
in Cystic Fibrosis

Shupp C, et al AJRCCM 2020

1. Understand subject-specific immune dysfunction and its contribution to divergent clinical courses in CF. 

2. As we progress toward personalized applications of therapeutic and genomic developments, this inflammation-profiling 

approach will enable further discoveries that change the natural history of CF lung disease. 
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MICROBIOLOGY

This section provides information on trends in CF airway pathogens over time 
and by age group. Infection prevention and control guidelines provide current 
best practices for reducing exposure to CF pathogens in the health care setting 
and in everyday life.21

As noted in the About this Report section, the decreased number of cultures collected in 
2021 is likely a contributing factor to the lower prevalence of bacterial and mycobacterial 
pathogens. Less frequent culture surveillance during the COVID-19 pandemic, increased 
use of highly effective modulator therapy (HEMT), and increased infection prevention and 
control strategies may have impacted prevalence of several microorganisms. 

The graph shows that the prevalence of Pseudomonas aeruginosa (P. aeruginosa or PA) 
continues to decrease. This may relate in part to widespread implementation of eradication 
strategies at the time of initial acquisition.26 The prevalence of infection with multidrug-
resistant P. aeruginosa (MDR-PA) dropped from 4.2 percent in 2020 to 3.5 percent in 2021. 
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The graph shows the proportion of individuals in various age groups who cultured positive 
for the bacterial species indicated during 2021.
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The graph shows the proportion of individuals in various age groups who cultured positive 
for the bacterial species indicated during 2021.

0

10

20

30

40

50

60

70

80

<2 2 to 5 6 to 10 11 to 17 18 to 24 25 to 34 35 to 44 ≥45

Pe
rc

en
ta

g
e 

of
 I

nd
iv

id
ua

ls

Age (Years)

P. aeruginosa H. influenzae B. cepacia complex S. aureus

MRSA Achromobacter S. maltophilia

Prevalence of Respiratory Microorganisms by Age Cohort, 2021
Prevalence of Respiratory Microorganisms by Age Cohort, 2021
    

 P. aeruginosa

 MRSA

 H. influenzae

 Achromobacter

 B. cepacia complex

 S. maltophilia

 S. aureus

US CFF Registry 2021
US CFF Registry high 2022



Background
Nontuberculous mycobacteria (NTM) in cystic fibrosis

Annual Data Report 2021   Cystic Fibrosis Foundation Patient Registry 33 

Nontuberculous Mycobacteria 

The CF Foundation/European Cystic Fibrosis Society Guidelines Committee recommends that 
individuals with CF who are able to expectorate sputum should be cultured for nontuberculous 
mycobacteria (NTM) infections annually.28 Individuals should also be screened before and six 
months after beginning chronic azithromycin therapy and annually thereafter.2 The data show 
improvement in screening rates over time, but wide variation by CF care center persists. In 
addition, the median percentage of individuals (by center) who produced a sputum sample in 
2021 was higher than in 2020, 71.4 percent compared to 68.3 percent, respectively. 

Percentage of Individuals with a Mycobacterial Culture, by Center

0         50    100 Median Min Max

Individuals Who Produced a Sputum Sample 
During the Year

71.4 0.0 100.0

Individuals Taking a Chronic Macrolide Who 
Produced a Sputum Sample During the Year

76.3 0.0 100.0

A throat swab is insufficient for a mycobacterial culture, so a patient must be able to produce 
sputum for this culture to be performed. A majority (68.9 percent) of the individuals 
who produced sputum for a bacterial culture also had a mycobacterial culture performed 
during the year, but this was lower than the 79.5 percent in 2019. In the graph below, the 
proportion of individuals providing a sputum sample for mycobacterial culture surveillance 
is highest in adults. Among those cultured, the percentage of positive mycobacterial cultures 
increases until age 20, after which the percentage with a positive culture plateaus and remains 
relatively constant until age 60.

Sputum Produced and Mycobacterial Cultures by Age in Years, 2021
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Of the 9,796 individuals who had a mycobacterial culture performed in 2021, 937 (9.6 
percent) had a mycobacterial species isolated one or more times, a decrease from 10.0 percent 
in 2020 and 13.9 percent in 2019. 

Data are not mutually exclusive. Some individuals had more than one species isolated in 2021.
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Nontuberculous mycobacteria (NTM) lung disease in cystic 
fibrosis



Background

immune response is sufficient to constrain most NTM 
species. However, similarly to other pathogenic myco-
bacteria, M. abscessus can resist phagosomal defence 
mechanisms and induces the production of inflamma-
tory cytokines such as tumour necrosis factor (TNF), 
which recruits neighbouring immune cells to the site 
of infection, leading to the formation of a granuloma35,36. 
The granuloma is the hallmark of mycobacterial infec-
tion, and represents a dynamic host- pathogen interface 
usually containing the infection. Adaptive immunity has 
an important role in granuloma maturation through the 
recruitment of B and T cells to the periphery of the gran-
uloma37. However, M. abscessus has a unique course of 
infection as it can irreversibly transition from the smooth 
to the rough variant during persistent infection, resulting 
in granuloma breakdown and the formation of massive 
extracellular bacterial cords, as seen in the zebrafish 
model of infection38. The exact biological and environ-
mental triggers responsible for this transition are still 
unknown (FIG. 1).

Acquisition of NTM infections involves complex 
interactions between host, pathogen and environmental 
determinants and risk factors (FIG. 1). The importance of 
host factors in the development of mycobacterial infec-
tion, and particularly NTM infection, was dramatically 
illustrated during the AIDS pandemic in the late 1980s 
and throughout the 1990s11,12, highlighting the crucial 
role of CD4+ T cells for the control of mycobacterial 
infection. This NTM infection outbreak in AIDS patients 
was mostly caused by species belonging to MAC, illus-
trating that HIV- positive patients are at risk of infection 
with specific NTM species. In addition, mutations in 
the interferon- γ pathway increase the risk of infection 
with species such as M. avium and M. abscessus39,40. TNF 
inhibitors, which are drugs commonly used in the treat-
ment of inflammatory diseases, increase the risk of infec-
tions with mycobacterial species such as M. tuberculosis, 
M. avium and M. abscessus and highlight the importance 
of TNF in the control of mycobacteria41. In prospective 
epidemiological studies, comparison of people with and 

Granuloma
An aggregation of immune cells 
formed during inflammation in 
different diseases such as 
mycobacterial infections.
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Fig. 1 | The M. abscessus infection cycle. The exact transmission routes of Mycobacterium abscessus are currently 
unknown. However, it is likely that infection occurs after contact with environmental sources or an infected person, either 
directly or indirectly. Non- tuberculous mycobacteria (NTM) such as M. abscessus can survive in the environment, and 
contaminated water sources have been reported as a substantial risk factor for NTM infection and, in particular, M. abscessus 
infection. Biofilms are a known reservoir for NTM species, with viable M. abscessus identified in showerhead biofilms and 
shower- based aerosols. Fomites such as dust have also been demonstrated to support M. abscessus survival and have  
been implicated in the transmission of M. abscessus between at- risk individuals. Although the environmental reservoir  
of M. abscessus has not been determined, genomic analyses have identified specific genetic elements that may promote 
intracellular life in soil and aquatic environments, particularly inside amoebae; however, further research is needed to 
confirm this potential reservoir. Host factors that predispose to infection include genetic disorders such as cystic fibrosis. 
Other chronic lung diseases such as bronchiectasis are also major risk factors, in particular when co- infections with other 
bacteria such as Pseudomonas aeruginosa occur. Although debated, recent evidence has suggested that lifestyle choices 
may be possible risk factors for M. abscessus infection; however, further research is needed to establish this link. After 
exposure to M. abscessus, immune cells such as macrophages and neutrophils phagocytose the invading bacteria. However, 
M. abscessus can resist intracellular destruction and establish infection, leading to immune activation, recruitment of 
further immune cells and granuloma formation. As the granuloma matures, the adaptive immune response is activated, and 
B and T lymphocytes are recruited to encase the granuloma. The smooth variant of M. abscessus can irreversibly transition to 
a rough variant, resulting in the formation of massive bacterial cords capable of withstanding phagocytosis, and resulting in 
extensive tissue destruction. The biological triggers responsible for this process are still unknown.
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Nontuberculous mycobacteria (NTM) pulmonary disease 
(NTM-PD)
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Work flow
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PBMC subpopulations
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Validation of enriched pathways with bulk RNA-seq

Unpublished data - confidential

Unique EP Whole 
blood RNA-seq Unique EP scRNA-seq ( CD14+ cells cluster) Common EP

Positively enriched pathways

Negatively enriched pathwaysEnriched pathway (EP) of CF MABSC-PD



Conclusion
Cystic fibrosis and NTM polmonary disease

• CFTR loss-of-function alters the mucociliary clearance and predisposes patients to be colonized by opportunistic 
pathogens

• CFTR modulators are improving the lung health status in cystic fibrosis patients, although this cure is not available for al 
the patients 

•  Among CF pathogens, NTMs can cause asymptomatic colonization or promote sustained lung disease called NTM-PD

• Define biomarker to define better the NTM-PD is an unmet clinical and research to improve therapy and limits the 
progression NTM-PD

• scRNA seq allow us to determined the relevance of hyperinflammatory Monocytes (CD14+ Monocytic cells) in NTM-PD

• Through bioinformatic approaches and publicly available datasets we validated the relevance of hyperinflammatory 
Monocytes 
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