

Biological characterization of CFTR corrector ARN23765 in live cells

Fabio Bertozzi, PhD

D3-PharmaChemistry Istituto Italiano di Tecnologia Genova

Università Milano Bicocca Dipartimento di Biotecnologie e Bioscienze 24 maggio 2024

Cystic Fibrosis (CF)

CF is caused by mutations in the <u>Cystic Fibrosis Transmembrane conductance Regulator</u> (CFTR) gene that lead to <u>loss-of-function</u> or <u>loss-of-expression</u> of the CFTR protein.

Molecular structure of human CFTR determined in the dephosphorylated, ATP-free form

Liu et al., Cell 2017, 169, 85-89

CFTR is an epithelial ion channel involved in anions transport (Cl⁻ and HCO₃⁻) in multiple organs.

CFTR structure

CFTR is an ion channel that belongs to the ATP-binding cassette (ABC) transporter family of proteins

Schematic representation of CFTR with its characteristic ABC transporter architecture

- two transmembrane domains (TMD1 and TMD2, each consisting of 6 transmembrane α -helices) that form an ion permeation pathway
- two cytosolic nucleotide-binding domains (NBD1 and NBD2) that bind and hydrolyse ATP
- a unique cytosolic regulatory (R) domain that includes several phosphorylation sites by protein kinase A (PKA)

Overall structure of human CFTR in the dephosphorylated, ATP-Free conformation

CFTR function

In the absence of phosphorylation and ATP, CFTR forms a *pore-closed* conformation in which the *NBDs are separated*, and the R domain sterically precludes NBD dimerization

Dephosphorylated Phosphorylated cryo-EM cryo-EM F50

In the phosphorylated and ATP-bound CFTR conformation, the *NBDs form a closed dimer* with two ATP molecules bound at their interface

The *ion channel opens* when R-domain is phosphorylated by PKA and ATP is bound at the NBDs. Phosphorylation displaces the

disordered R domain allowing NBD dimerization and *pore-opening*

Subsequent ATP hydrolysis destabilizes the NBD dimer and favors return to the anion closed conformation

Orthogonal views of the cryo-EM structures of human CFTR (resolution (2.7Å)

Kleizen et al., *J. Cyst. Fibrosis* **2020**, *19*, S19-S24 Fiedorczuk et al., *Cell* **2022**, *185*, 158-168 Levring et al., *Nature* **2023**, *616*, 606-614

CFTR modulators

CFTR modulators are small molecules that target specific defects caused by mutations in the *CFTR* gene (e.g., *read-through agents, potentiators, correctors, stabilizers and amplifiers*)

Potentiators

increase the flow of chloride through CFTR channels at the cell surface (modulate CFTR function)

Correctors

increase the processing and trafficking of CFTR proteins to the cell surface (modulate the quantity of CFTR)

Correctors classification

(based on postulated mechanism)¹

Type I correctors (VX-809, VX-661) primarily stabilize the NBD1-ICL4 and NBD1-ICL1 interface

VX-809 (Lumacaftor)

VX-661 (Tezacaftor)

Type II correctors target NBD2 and/or its interface

Type III correctors (VX-445, VX-659) stabilizes ΔF508-NBD1

VX-445 (Elexacaftor)

Cryo-EM structure of Trikafta-corrected AF508-CFTR. Orthogonal views of Δ508/E1371Q CFTR in complex with ivacaftor, elexacaftor, and tezacaftor.²

1. Okiyoneda et al., Nat. Chem. Biol. 2013, 9, 444-454

2. Fiedorczuk et al., Science 2022, 378, 284-290

Search for new modulators of mutant CFTR

The Task Force for Cystic Fibrosis (TFCF) Project

A collaborative drug discovery project aimed at the identification of new drugs for the treatment of CF

Istituto Giannina Gaslini (IGG)

Luis J. V. Galietta (now at TIGEM) Nicoletta Pedemonte

Istituto Italiano di Tecnologia (IIT) Tiziano Bandiera

Project funded by FFC

http://www.fibrosicisticaricerca.it/

Phenotypic HTS of IIT compound collection

A collection of 11,334 maximally diverse compounds was screened on two cell lines:

- CFBE410- and
- FRT

DI TECNOLOGIA

Both cell lines stably express F508del-CFTR and the halide-sensitive yellow fluorescent protein (HS-YFP)¹.

CFBE41o-: Cystic Fibrosis Bronchial Epithelial cells; **FRT**: Fisher Rat Thyroid cells

Discovery of ARN23765

ISTITUTO ITALIANO

 E_{max} vs. EC₅₀ on F508del-CFTR FRT cells (HS-YFP assay)

F508del/F508del HBE cells

ARN23765EC_{50}:**0.038** nMVX-809EC_{50}: ~200 nM

iit ARN23765: Target/mechanism of action???

ISTITUTO ITALIANO DI TECNOLOGIA

ARN23765 was identified after a *phenotypic screening** campaign in two cell lines (FRT and CFBE41o-) overexpressing F508del-CFTR

**Phenotypic screening* is a type of screening used in drug discovery <u>to identify substances/hits</u> (e.g., small molecules, peptides) with desirable efficacy that <u>alter the phenotype of a cell</u> in a specific manner, but often with <u>unknown modes of action</u>.

Follow-up *target identification (and validation)* often through the use of chemoproteomics are essential to successful drug discovery research to identify the mechanisms through which a phenotypic hit works.

It ARN23765: Target/mechanism of action ID

ISTITUTO ITALIANO DI TECNOLOGIA

ARN23765 shows sub-nanomolar activity in rescuing F508del-CFTR in primary HBE cells from a F508del/F508del CF patient

No additive effect elicited in combination with VX-809 (type I corrector) in CFBE410- cells

ARN23765: Target/mechanism of action ID

ISTITUTO ITALIANO DI TECNOLOGIA

Mode of action of proteostasis regulators and pharmacological chaperones

Gersting et al., J. Inherit. Metab. Dis. 2014, 37, 505-523

ARN23765 biological target(s) and mechanism/site of action were not known:

- CFTR molecular chaperone (promoting folding/trafficking of mutant CFTR via direct binding)?
- Proteostasis regulator (restoring mutant CFTR delivery to the plasma membrane)?

Chemical Biology

Chemical Biology is a scientific discipline between the fields of *chemistry* and *biology*.

It involves the application of *chemical techniques*, *analysis*, and *(small)molecules* produced through *synthetic chemistry*, to the <u>study and manipulation of biological systems</u>

Biochemistry studies the chemistry of biomolecules and regulation of biochemical pathways within and between cells

Castaldi et al., Annual Rep. Med. Chem. 2017, 50, 335-370

Chemical Biology & Bioorthogonal Chemistry

Bioorthogonal chemistry refers to any chemical reaction that can occur inside of living systems (e.g., cells, tissues, organs) without interfering with native biochemical processes

DI TECNOLOGIA

Bioorthogonal reactions can occur between complementary chemical groups not present in living biological systems (also *in vivo*) and have been exploited in for diagnostic and therapeutic applications in humans.

Activity-based Protein Profiling (ABPP) for target ID and validation

ABPP is a powerful chemical biology strategy for profiling of functional states of proteins in native biological systems.

[Adapted from: Romeo et al. ACS Chem. Biol. 2015, 10, 2057-2064]

Wang et al., Front Pharmacol. 2018, 9, 353

Cravatt et al., Annu Rev Biochem. 2008, 77, 383-414

ABP: *activity-based probes* are active-sitedirected chemical probes to enable visualization of the active form of proteins.

N-Acylethanolamine-hydrolyzing Acid Amidase (NAAA) is lysosomal *cysteine hydrolase* responsible for the deactivation of fatty acid ethanolamides (FAEs), primarily palmitoylethanolamide (PEA)

a) WB analysis of h-NAAA-overexpressing HEK293 cells or lysate incubated with **Probe 1** (+) or DMSO (-). WB membranes were probed with a streptavidin–HRP conjugate or an anti-NAAA antibody (α -NAAA).

N-Acylethanolamine-hydrolyzing Acid Amidase (NAAA) is lysosomal *cysteine hydrolase* responsible for the deactivation of fatty acid ethanolamides (FAEs), primarily palmitoylethanolamide (PEA)

a) WB analysis of h-NAAA-overexpressing HEK293 cells or lysate incubated with **Probe 1** (+) or DMSO (-). WB membranes were probed with a streptavidin–HRP conjugate or an anti-NAAA antibody (α -NAAA) b) h-NAAA-HEK intact cells preincubated (10x) with **ARN726** or **ARN077** before addition of **Probe 1**.

N-Acylethanolamine-hydrolyzing Acid Amidase (NAAA) is lysosomal *cysteine hydrolase* responsible for the deactivation of fatty acid ethanolamides (FAEs), primarily palmitoylethanolamide (PEA)

N-Acylethanolamine-hydrolyzing Acid Amidase (NAAA) is lysosomal *cysteine hydrolase* responsible for the deactivation of fatty acid ethanolamides (FAEs), primarily palmitoylethanolamide (PEA)

In-cell bioimaging

(Rheumatoid Arthritis mouse model)

Bonezzi et al., J. Pharmacol. Exp. Ther. 2016, 356, 656-663

Petracca et al., Chem Comm 2017, 53, 11810-11813

it ARN23765: Target/mechanism of action ID

ISTITUTO ITALIANO DI TECNOLOGIA

Photo-affinity labelling (PAL) for target ID

Photo-affinity probes (PAPs)

- > high degree of *similarity* to the parent compound
- comparable activity and affinity levels (SAR understanding is critical)
- > little steric interference
- > **stability** in the dark at a range of pHs
- > activation at wavelengths that minimize damage to biological molecules

it ARN23765: Target/mechanism of action ID

ISTITUTO ITALIANO DI TECNOLOGIA

Identification of **ARN23765** target protein(s) and mechanism/site of action in live cells

(wt- and F508del-CFTR CFBE41o-)

Discovery of other proteins related and/or unrelated (*i.e.*, off-targets) to the CFTR interactome will represent an important finding

it ARN23765: Target/mechanism of action ID

ISTITUTO ITALIANO DI TECNOLOGIA

[Adapted from: Sletten, Bertozzi. Angew. Chem. Int. Ed. Engl. 2009, 48, 6974-6798]

Created in BioRender.com bio

PAL studies with alkyne-PAPs

ARN23765-derived alkyne-PAPs

In situ PAL with alkyne-PAPs

D P

Biotinylated-PAPs structure

Biotinylated-PAPs structure and activity

ISTITUTO ITALIANO DI TECNOLOGIA

g-P

In cell PAL studies with biotinylated-PAPs

Wt- or F508del-CFTR CFBE410- cells were incubated for 2h with **PAP7 DS-biot** (2.5μ M) or **PAP3S DS-biot** (5.0μ M). PAPs were added alone or in combination with a 10-fold excess of **ARN23765**.

Competitive PAL studies with known correctors

ISTITUTO ITALIANO DI TECNOLOGIA

- Type I correctors compete with ARN23765-derived PAP for the binding to CFTR
- Type II and III correctors do not affect ARN23765-derived PAP's binding to CFTR

ARN23765 and type I correctors (may) share a similar binding site on CFTR

ARN23765 mode of action elucidation

ISTITUTO ITALIANO DI TECNOLOGIA

CONFIDENTIAL

HEK293 cells transfected with CFTR fragments, incubated for 24h with ARN23765 (10nM), VX-661 (3μ M) or Corr-4a (10μ M) and analyzed by WB

Loo et al., Biochem. Pharm. 2017, 136, 24-31

ARN23765 mode of action elucidation

DI TECNOLOGIA

HEK293 cells transfected with $MSD1_{(1-380)}$ or $MSD2_{(837-1196)}$ in the presence or absence of ARN23765 (10 nM); after 24h, protein synthesis inhibited with CXM (200 μ M).

ARN23765 docking studies to mutant CFTR

ISTITUTO ITALIANO DI TECNOLOGIA

it ARN23765 docking studies to mutant CFTR

ISTITUTO ITALIANO DI TECNOLOGIA

In-silico mutagenesis scan

			F508del			wт
			8EIO	8EIQ	8EIG	7SVD
Residue	Original	Mutated	d Affinity	d Affinity	d Affinity	d Affinity
A:198	ALA	TYR	40.98	41.80	185.32	25.11
A:361	TRP	ALA	12.92	19.43	17.77	19.45
A:81	PHE	ALA	10.41	11.18	8.03	12.22
A:68	LYS	ILE	8.64	9.36	8.99	9.77
A:74	ARG	ALA	10.85	9.35	5.91	10.50
A:364	SER	PHE	4.85	3.49	3.83	5.69
A:195	LEU	TRP	1.94	-0.04	-0.92	0.49
A:364	SER	ALA	-0.61	-1.18	2.85	-1.52
A:71	ASN	ILE	-1.62	-1.90	2.43	-2.78

Selected mutations:

Ala198Tyr Trp361Ala Phe81Ala Lys68lle Arg74Ala Ser364Phe Asn71lle

it ARN23765 site-directed mutagenesis studies

ISTITUTO ITALIANO DI TECNOLOGIA

Effect of single-point mutations on F508del-CFTR maturation

				wт		
			8EIO	8EIQ	8EIG	7SVD
Residue	Original	Mutated	d Affinity	d Affinity	d Affinity	d Affinity
A:198	ALA	TYR	40.98	41.80	185.32	25.11
A:361	TRP	ALA	12.92	19.43	17.77	19.45
A:81	PHE	ALA	10.41	11.18	8.03	12.22
A:68	LYS	ILE	8.64	9.36	8.99	9.77
A:74	ARG	ALA	10.85	9.35	5.91	10.50
A:364	SER	PHE	4.85	3.49	3.83	5.69
A:195	LEU	TRP	1.94	-0.04	-0.92	0.49
A:364	SER	ALA	-0.61	-1.18	2.85	-1.52
A:71	ASN	ILE	-1.62	-1.90	2.43	-2.78

HEK-293 cells transfected with F508del-CFTR double mutants and treated with ARN23765 (10 nM) or with a positive control [3151 (10 μ M)+VX-445 (3 μ M)] for 24h at 30° C. Protein maturation evaluated with WB using an anti-CFTR-specific antibody [band C abundance = C/C+B, and expressed as fold change of DMSO negative control]

MD simulation of CFTR-ARN23765 complexes

ISTITUTO ITALIANO DI TECNOLOGIA

Conclusions

ARN23765 primary target (wt- and F508del-CFTR), mechanism of action and putative binding site were identified.

- ✓ PAL technology applied to the identification of ARN23765 biological target(s).
 wt- and F508del-CFTR demonstrated as ARN23765 biological target in live cells.
- ✓ Functional studies on single or multiple CFTR domains allowed identifying the domains involved in ARN23765-induced correction.
- ✓ Computational docking analyses, along with MD calculations predicted and highlighted the key molecular interactions for ARN23765 binding.
- ✓ Structure-function studies through site-directed mutagenesis experiments proved ARN23765 putative binding site to CFTR in cells.

Acknowledgments

Elisa Romeo

Tiziano Bandiera

Francesco Saccoliti

Angela Andonaia

Istituto Giannina Gaslini

Nicoletta Pedemonte Cristina Pastorino

Università di Foggia

Caterina Allegretta

Onofrio Laselva

Dept. Clinical & Exper. Medicine

Dip. di Farmacia e Biotecnologie Università di Bologna

Federico Falchi

Riccardo Occello

Image: Delegazione FFC di
VicenzaDelegazione FFC
Ricerca BolzanoDelegazione FFC
Ricerca di Acqui TermeImage: Delegazione FFC
Ricerca "Insieme per
Giulia Sofia"Delegazione FFC
Ricerca di Vercelli

(FFC#4-2020)

(FFC#2-2022)

ARN23765: Target/mechanism of action ID

Identification of **ARN23765** target protein(s) and mechanism/site of action

(wt- and F508del-CFTR CFBE41o-)

Discovery of other proteins related and/or unrelated (i.e., off-targets) to the CFTR interactome will represent an important finding

THANKS & LOT FOR YOUR KIND & TTENTION

