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Language Models
• A text can be represented as a language model to 

represent its topics
• words that tend to occur often when discussing a topic will have 

high probabilities in the corresponding language model

• A LM model assigns probabilities to sequences of words
• p(“Today is Wednesday”) 
• p(“Today Wednesday is”) 

• It can be regarded as a probabilistic mechanism for 
“generating” text, thus also called a “generative” model



Language models: why ?

• Machine Translation:
• P(high winds tonite) > P(large winds tonite)

• Spell Correction
• The office is about fifteen minuets from my house

• P(about fifteen minutes from) > P(about fifteen minuets from)

• Speech Recognition
• P(I saw a van) >> P(eyes awe of an)



Language models: why ?

• Text categorization
• Given that we observe “baseball” three times and “game” 

once in a news article, how likely is it about “sports” v.s. 
“politics”?         

• Information retrieval 
• Given that a document is centered on the topic of sport, 

how likely would a query “generated” by this document? 

+ Summarization, question-answering, etc., etc.!!



Language Models

• Goal: compute the probability of a sentence or 
sequence of words:

P(W) = P(w1,w2,w3,w4,w5…wn)

• Related task: probability of an upcoming word:
P(w5|w1,w2,w3,w4)

• So, a model that computes either of these:
P(W)     or     P(wn|w1,w2…wn-1)         is called a language model.



You use Language Models every day!
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Notation
• To represent the probability of a particular random 

variable Xi taking on the value “the”, or P(Xi = “the”), we
will use the simplified notation P(the). 

• a sequence of n words is denoted either as w1 . . . wn

or as
• the joint probability of each word in a sequence having a 

particular value: P(X = w1,Y = w2, Z = w3,...,W = wn) is
denoted as P(w1,w2,...,wn). 

3.1 • N-GRAMS 3

Similarly, if we wanted to know the joint probability of an entire sequence of
words like its water is so transparent, we could do it by asking “out of all possible
sequences of five words, how many of them are its water is so transparent?” We
would have to get the count of its water is so transparent and divide by the sum of
the counts of all possible five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce cleverer ways of estimating the proba-
bility of a word w given a history h, or the probability of an entire word sequence W .
Let’s start with a little formalizing of notation. To represent the probability of a par-
ticular random variable Xi taking on the value “the”, or P(Xi = “the”), we will use
the simplification P(the). We’ll represent a sequence of N words either as w1 . . .wn
or wn

1 (so the expression wn�1
1 means the string w1,w2, ...,wn�1). For the joint prob-

ability of each word in a sequence having a particular value P(X = w1,Y = w2,Z =
w3, ...,W = wn) we’ll use P(w1,w2, ...,wn).

Now how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-

bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X2
1 ) . . .P(Xn|Xn�1

1 )

=
nY

k=1

P(Xk|Xk�1
1 ) (3.3)

Applying the chain rule to words, we get

P(wn
1) = P(w1)P(w2|w1)P(w3|w2

1) . . .P(wn|wn�1
1 )

=
nY

k=1

P(wk|wk�1
1 ) (3.4)

The chain rule shows the link between computing the joint probability of a se-
quence and computing the conditional probability of a word given previous words.
Equation 3.4 suggests that we could estimate the joint probability of an entire se-
quence of words by multiplying together a number of conditional probabilities. But
using the chain rule doesn’t really seem to help us! We don’t know any way to
compute the exact probability of a word given a long sequence of preceding words,
P(wn|wn�1

1 ). As we said above, we can’t just estimate by counting the number of
times every word occurs following every long string, because language is creative
and any particular context might have never occurred before!

The intuition of the n-gram model is that instead of computing the probability of
a word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|wn�1
1 ) by using only the conditional probability of the

preceding word P(wn|wn�1). In other words, instead of computing the probability

P(the|Walden Pond’s water is so transparent that) (3.5)

we approximate it with the probability

P(the|that) (3.6)



How to compute P(wn|w1,w2…wn-1)?
• Let us start by computing P(wn|w1,w2…wn-1), the 

probability of a word wn given a sequence of words.
• For example: P(the|its water is so transparent that) 
• Relative frequency counts: given a very large corpus, 

count the number of times we see its water is so 
transparent that, and count the number of times it is
followed by the. 

2 CHAPTER 3 • N-GRAM LANGUAGE MODELS

A probabilistic model of word sequences could suggest that briefed reporters on
is a more probable English phrase than briefed to reporters (which has an awkward
to after briefed) or introduced reporters to (which uses a verb that is less fluent
English in this context), allowing us to correctly select the boldfaced sentence above.

Probabilities are also important for augmentative and alternative communi-

cation systems (Trnka et al. 2007, Kane et al. 2017). People often use such AACAAC

devices if they are physically unable or sign but can instead using eye gaze or other
specific movements to select words from a menu to be spoken by the system. Word
prediction can be used to suggest likely words for the menu.

Models that assign probabilities to sequences of words are called language mod-

els or LMs. In this chapter we introduce the simplest model that assigns probabilitieslanguage model

LM to sentences and sequences of words, the n-gram. An n-gram is a sequence of N
n-gram words: a 2-gram (or bigram) is a two-word sequence of words like “please turn”,

“turn your”, or ”your homework”, and a 3-gram (or trigram) is a three-word se-
quence of words like “please turn your”, or “turn your homework”. We’ll see how
to use n-gram models to estimate the probability of the last word of an n-gram given
the previous words, and also to assign probabilities to entire sequences. In a bit of
terminological ambiguity, we usually drop the word “model”, and thus the term n-

gram is used to mean either the word sequence itself or the predictive model that
assigns it a probability. In later chapters we’ll introduce more sophisticated language
models like the RNN LMs of Chapter 9.

3.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “its water is so transparent that” and we
want to know the probability that the next word is the:

P(the|its water is so transparent that). (3.1)

One way to estimate this probability is from relative frequency counts: take a
very large corpus, count the number of times we see its water is so transparent that,
and count the number of times this is followed by the. This would be answering the
question “Out of the times we saw the history h, how many times was it followed by
the word w”, as follows:

P(the|its water is so transparent that) =
C(its water is so transparent that the)

C(its water is so transparent that)
(3.2)

With a large enough corpus, such as the web, we can compute these counts and
estimate the probability from Eq. 3.2. You should pause now, go to the web, and
compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “Walden
Pond’s water is so transparent that the”; well, used to have counts of zero).

Too many possible sentences!



How to compute P(W) ?
• Similarly, if we aim to know the probability P(W) of a 

sentence W (i.e., the joint probability of an entire
sequence of words like its water is so transparent), we
could do it by asking “out of all possible sequences of five
words, how many of them are its water is so transparent?” 

• To do so, we would have to get the count of its water is so 
transparent and divide by the sum of the counts of all
possible five word sequences. 

• That seems rather a lot to estimate!!!



How to compute P(W) practically
• For example, how to compute this joint probability:

• P(its, water, is, so, transparent, that)

• Intuition: let’s rely on the Chain Rule of Probability



Reminder: The Chain Rule

• Recall the definition of conditional probabilities

p(B|A) = P(A,B)/P(A) Rewriting:   P(A,B) = P(A)P(B|A)

• More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

• The Chain Rule in General
P(x1,x2,x3,…,xn) = P(x1)P(x2|x1)P(x3|x1,x2)…P(xn|x1,…,xn-1)



The Chain Rule applied to compute joint 
probability of words in sentence

P(“its water is so transparent”) =
P(its) × P(water|its) × P(is|its water) 

× P(so|its water is) × P(transparent|its water is so)

So, we can compute a joint probability by multiplying a 
number of conditional probabilities but … this seems not 
help!  However…… we can approximate the “history”

  

€ 

P(w1w2…wn ) = P(wi |w1w2…wi−1)
i
∏



Markov Assumption

•Simplifying assumption:

•Or maybe

€ 

P(the | its water is so transparent that) ≈ P(the | that)

€ 

P(the | its water is so transparent that) ≈ P(the | transparent that)

Andrei Markov



Markov Assumption

• In other words, we approximate each 
component in the product

  

€ 

P(w1w2…wn ) ≈ P(wi |wi−k…wi−1)
i
∏

  

€ 

P(wi |w1w2…wi−1) ≈ P(wi |wi−k…wi−1)



N-grams Language Models
• Unigram language model
• probability distribution over the words in a language
• generation of text consists of pulling words out of a “bucket” 

according to the probability distribution and replacing them
• PROBABILITIES OF WORDS IN A SEQUENCE DO NOT 

DEPEND ON PREVIOUS WORDS

• N-gram language model
• some applications use bigram and trigram language models where 

probabilities depend on previous words
• BIGRAM LM: the probability of a word in a sequence depend on 

the word that preceeds it
• TRIGRAM LM: the probability of a word in a sequence depend on 

the two worda that preceed it



• Example of a 4gram LM (prediction based on the previous
three words)

N-grams Language Modelsn-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have 
discarded the 
“proctor” context?

21

n-gram Language Models: Example

Suppose we are learning a 4-gram Language Model.

as the proctor started the clock, the students opened their _____
discard

condition on this

For example, suppose that in the corpus:

• “students opened their” occurred 1000 times

• “students opened their books” occurred 400 times

• à P(books | students opened their) = 0.4

• “students opened their exams” occurred 100 times

• à P(exams | students opened their) = 0.1

Should we have 
discarded the 
“proctor” context?

21



Sparsity Problems with n-gram
Language ModelsSparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem: What if “students 
opened their” never occurred in 
data? Then we can’t calculate 
probability for any !

Sparsity Problem 2

Problem: What if “students 
opened their     ” never 
occurred in data? Then 
has probability 0!

Sparsity Problem 1

(Partial) Solution: Add small /
to the count for every               . 
This is called smoothing.

(Partial) Solution: Just condition 
on “opened their” instead. 
This is called backoff.
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sPA language model is well-formed over alphabet ∑ if                     .

“Today is Tuesday” 0.01
“The Eigenvalue is positive”    0.001
“Today Wednesday is” 0.00001
…

Generic Language Model
“Today” 0.1
“is” 0.3
“Tuesday” 0.2
“Wednesday” 0.2

Unigram Language Model

“Today” 0.1
“is” | “Today” 0.4
“Tuesday” | “is”  0.8
…

Bigram Language Model

…

)|()|()|()()( 32142131214321 ttttPtttPttPtPttttP =

)()()()()( 43214321 tPtPtPtPttttPuni =

)|()|()|()()( 34231214321 ttPttPttPtPttttPbi =

• Chain Rule (requires long chains of cond. prob.):

• Bigram LM (pairwise cond. prob.):

• Unigram LM (no cond. prob.):

How to handle sequences?

Recap: Language Models



Recap: language models
How do we build probabilities over sequence of terms?

P(t1, t2, t3, t4) = P(t1) x P(t2|t1) x P(t3|t1, t2) x P(t4|t1, t2, t3)

Unigram language model –simplest ; no conditioning context

P(t1, t2, t3, t4) = P(t1) x P(t2) x P(t3) x P(t4)

Bigram language model – condition on previous term

P(t1, t2, t3, t4) = P(t1) x P(t2|t1) x P(t3|t2) x P(t4|t3)

Trigram language model …

Unigram model is the most common in IR
• Often sufficient to judge the topic of a document
• Data sparseness issues when using richer models
• Simple and efficient implementation



N-gram models

• We can extend to trigrams, 4-grams, 5-grams
• In general this is an insufficient model of language

• because language has long-distance dependencies:

“The computer which I had just put into the machine room 
on the fifth floor crashed.”

• But we can often get away with N-gram models



Text representation with unigram LM
text 0.2
mining 0.1
n-gram 0.01
cluster 0.02
...
healthy 0.000001
…

LM for
topic 1:
IR&DM

food 0.25
nutrition 0.1
healthy 0.05
diet 0.02
...
n-gram 0.00002
…

LM for
topic 2:
Health

Article
on
“Text
Mining”

Article
on
“Food
Nutrition”

different qd for different d



LMs for Retrieval
• 3 possibilities:
• probability of generating the query text from a document language 

model
• probability of generating the document text from a query language 

model
• comparing the language models representing the query and 

document topics
• We will see this when will will present IR models



Basic LM for IR

text ?
mining ?
n-gram ?
cluster ?
...
healthy ?
…

food ?
nutrition ?
healthy ?
diet ?
...
n-gram ?
…

Article
on
“Text
Mining”

Article
on
“Food
Nutrition”

parameter estimation

Query q:
“data mining algorithms”

?

?

Which LM
is more likely
to generate q?
(better explains q)



Estimating bigram probabilities
• The Maximum Likelihood Estimate

€ 

P(wi |wi−1) =
count(wi−1,wi)
count(wi−1)

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)



An example

<s> I am Sam </s>
<s> Sam I am </s>
<s> I do not like green eggs and ham </s>

€ 

P(wi |wi−1) =
c(wi−1,wi)
c(wi−1)



Estimating Probabilities
• Obvious estimate for unigram probabilities is 

• Maximum likelihood estimate
• makes the observed value of fqi;D most likely

• If query words are missing from document, score will be 
zero
• Missing 1 out of 4 query words same as missing 3 out of 4



Smoothing
• Document texts are a sample from the language model
• Missing words should not have zero probability of occurring

• Smoothing is a technique for estimating probabilities for 
missing (or unseen) words
• lower (or discount) the probability estimates for words that are seen 

in the document text
• assign that “left-over” probability to the estimates for the words that 

are not seen in the text



Neural Language Models
• To overcome some limitations of Statistical LM, neural LM 

have been definied:
• Fixed window neural LM
• RNN (recurrent NN) LM
• BERT (Bidirectional Encoder Representations from Transformers)
• BERT’s variants
• ….



Evaluation: How good is our model?
• Does our language model “prefer” good sentences to bad 

ones?
• Assign higher probability to “real” or “frequently observed” 

sentences than those sentences that “rarely observed” or 
“ungrammatical” ?

• We train parameters of our model on a training set.
• We test the model’s performance on data we haven’t 

seen.
• A test set is an unseen dataset that is different from our training 

set, totally unused.
• An evaluation metric tells us how well our model does on the test 

set.



(Extra Slide not in video) 
Training on the test set
• We can’t allow test sentences into the training set
• We will assign it an artificially high probability when we set 

it in the test set
• “Training on the test set”
• Bad science!
• And violates the honor code
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Extrinsic evaluation of N-gram models

• Best evaluation for comparing two language 
models A and B
• Put each model in a specific NLP task
• spelling corrector, speech recognizer, MT system

• Run the task, get an accuracy for A and for B
• How many misspelled words corrected properly
• How many words translated correctly

• Compare accuracy for A and B



Difficulty of extrinsic (in-vivo) evaluation of  
N-gram models
• Extrinsic evaluation

• Time-consuming; can take days or weeks
• So

• Sometimes use intrinsic evaluation: perplexity
• Bad approximation 
• unless the test data looks just like the training data
• So generally only useful in pilot experiments

• But is helpful to think about.



Perplexity

Perplexity is the inverse probability of 
the test set, normalized by the number 
of words in the test set:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts unseen words in a test set
• Gives the highest P(sentence)

PP(W ) = P(w1w2...wN )
−

1
N

           =
1

P(w1w2...wN )
N



Lower perplexity = better model

Example Perplexity Values of different N-gram
language models trained using 38 million words and 
tested using 1.5 million words from The Wall Street 
Journal dataset

N-gram 
Order

Unigra
m

Bigram Trigram

Perplexity 962 170 109


