
3
Unsupervised learning of term representations

3.1 A tale of two representations

Vector representations are fundamental to both information retrieval and
machine learning. In IR, terms are typically the smallest unit of representation
for indexing and retrieval. Therefore, many IR models—both non-neural and
neural—focus on learning good vector representations of terms. Different vector
representations exhibit different levels of generalization—some consider every
term as a distinct entity while others learn to identify common attributes.
Different representation schemes derive different notions of similarity between
terms from the definition of the corresponding vector spaces. Some representa-
tions operate over fixed-size vocabularies, while the design of others obviate
such constraints. They also differ on the properties of compositionality that
defines how representations for larger units of information, such as passages
and documents, can be derived from individual term vectors. These are some
of the important considerations for choosing a term representation suitable for
a specific task.

Local representations Under local (or one-hot) representations, every term
in a fixed size vocabulary T is represented by a binary vector ~v ∈ {0, 1}|T |,
where only one of the values in the vector is one and all the others are set to
zero. Each position in the vector ~v corresponds to a term. The term “banana”,
under this representation, is given by a vector that has the value one in the
position corresponding to “banana” and zero everywhere else. Similarly, the

27

28 Unsupervised learning of term representations

banana

mango

dog

(a) Local representation

banana

mango

dog

fruit elongate ovatebarks has tail

(b) Distributed representation

Figure 3.1: Under local representations the terms “banana”, “mango”, and “dog”
are distinct items. But distributed vector representations may recognize that “banana”
and “mango” are both fruits, but “dog” is different.

terms “mango” and “dog” are represented by setting different positions in the
vector to one. Figure 3.1a highlights that under this scheme each term is a
unique entity, and “banana” is as distinct from “dog” as it is from “mango”.
Terms outside of the vocabulary either have no representation or are denoted
by a special “UNK” symbol under this scheme.

Distributed representations Under distributed representations every term
is represented by a vector ~v ∈ R|k|. ~v can be a sparse or a dense vector—a vector
of hand-crafted features or a latent representation in which the individual
dimensions are not interpretable in isolation. The key underlying hypothesis
for any distributed representation scheme, however, is that by representing a
term by its attributes allows for defining some notion of similarity between the
different terms based on the chosen properties. For example, in Figure 3.1b
“banana” is more similar to “mango” than “dog” because they are both fruits,
but yet different because of other properties that are not shared between the
two, such as shape.

Under a local or one-hot representation ev-
ery item is distinct. But when items have dis-

tributed or feature based representation, then the
similarity between two items is determined based
on the similarity between their features.

A key consideration in any feature based distributed representation is the
choice of the features themselves. One approach involves representing terms
by features that capture their distributional properties. This is motivated by

3.1. A tale of two representations 29

banana

Doc 8Doc 3 Doc 12

(a) In-document features

banana

likeflies afruit

(b) Neighbouring-term features

banana

fruit-4 a-1flies-3 like-2 fruit+1

(c) Neighbouring-term w/ distance features

banana

nan#ba anana# ban

(d) Character-trigraph features

Figure 3.2: Examples of different feature-based distributed representations of the
term “banana”. The representations in (a), (b), and (c) are based on external contexts
in which the term frequently occurs, while (d) is based on properties intrinsic to the
term. The representation scheme in (a) depends on the documents containing the
term while the scheme shown in (b) and (c) depends on other terms that appears
in its neighbourhood. The scheme (b) ignores inter-term distances. Therefore, in
the sentence “Time flies like an arrow; fruit flies like a banana”, the feature “fruit”
describes both the terms “banana” and “arrow”. However, in the representation
scheme of (c) the feature “fruit−4” is positive for “banana”, and the feature “fruit+1”
for “arrow”.

the distributional hypothesis (Harris, 1954) that states that terms that are
used (or occur) in similar context tend to be semantically similar. Firth (1957)
famously purported this idea of distributional semantics1 by stating “a word is
characterized by the company it keeps”. However, the distribution of different
types of context may model different semantics of a term. Figure 3.2 shows three
different sparse vector representations of the term “banana” corresponding to
different distributional feature spaces—documents containing the term (e.g.,
LSA (Deerwester et al., 1990)), neighbouring terms in a window (e.g., HAL
(Lund and Burgess, 1996), COALS (Rohde et al., 2006), and (Bullinaria and
Levy, 2007)), and neighbouring terms with distance (e.g., (Levy et al., 2014)).
Finally, Figure 3.2d shows a vector representation of “banana” based on the

1Readers should take note that while many distributed representations take
advantage of distributional properties, the two concepts are not synonymous. A term
can have a distributed representation based on non-distributional features—e.g.,
parts of speech classification and character trigraphs in the term.

30 Unsupervised learning of term representations

banana

mango
dog

Figure 3.3: A vector space representation of terms puts “banana” closer to “mango”
because they share more common attributes than “banana” and “dog”.

character trigraphs in the term itself—instead of external contexts in which
the term occurs. In §3.2 we will discuss how choosing different distributional
features for term representation leads to different nuanced notions of semantic
similarity between them. When the vectors are high-dimensional, sparse, and
based on observable features we refer to them as observed (or explicit) vector
representations (Levy et al., 2014). When the vectors are dense, small (k � |T |),
and learnt from data then we instead refer to them as latent vector spaces,
or embeddings. In both observed and latent vector spaces, several distance
metrics can be used to define the similarity between terms, although cosine
similarity is commonly used.

sim(~vi, ~vj) = cos(~vi, ~vj) = ~v ᵀ
i ~vj

‖~vi‖‖~vj‖
(3.1)

Most embeddings are learnt from observed features, and hence the dis-
cussions in §3.2 about different notions of similarity are also relevant to the
embedding models. In §3.3 and §3.4 we discuss observed and latent space
representations. In the context of neural models, distributed representations
generally refer to learnt embeddings. The idea of ‘local’ and ‘distributed’ rep-
resentations has a specific significance in the context of neural networks. Each
concept, entity, or term can be represented within a neural network by the
activation of a single neuron (local representation) or by the combined pattern
of activations of several neurons (distributed representation) (Hinton, 1984).

Finally, with respect to compositionality, it is important to understand that
distributed representations of items are often derived from local or distributed
representation of its parts. For example, a document can be represented by the
sum of the one-hot vectors or embeddings corresponding to the terms in the

3.2. Notions of similarity 31

Table 3.1: A toy corpus of short documents that we consider for the discussion on
different notions of similarity between terms under different distributed represen-
tations. The choice of the feature space that is used for generating the distributed
representation determines which terms are closer in the vector space, as shown in
Figure 3.4.

Sample documents

doc 01 Seattle map doc 09 Denver map
doc 02 Seattle weather doc 10 Denver weather
doc 03 Seahawks jerseys doc 11 Broncos jerseys
doc 04 Seahawks highlights doc 12 Broncos highlights
doc 05 Seattle Seahawks Wilson doc 13 Denver Broncos Lynch
doc 06 Seattle Seahawks Sherman doc 14 Denver Broncos Sanchez
doc 07 Seattle Seahawks Browner doc 15 Denver Broncos Miller
doc 08 Seattle Seahawks Ifedi doc 16 Denver Broncos Marshall

document. The resultant vector, in both cases, corresponds to a distributed
bag-of-terms representation. Similarly, the character trigraph representation of
terms in Figure 3.2d is simply an aggregation over the one-hot representations
of the constituent trigraphs.

3.2 Notions of similarity

Any vector representation inherently defines some notion of relatedness between
terms. Is “Seattle” closer to “Sydney” or to “Seahawks”? The answer depends
on the type of relationship we are interested in. If we want terms of similar
type to be closer, then “Sydney” is more similar to “Seattle” because they are
both cities. However, if we are interested to find terms that co-occur in the
same document or passage, then “Seahawks”—Seattle’s football team—should
be closer. The former represents a typical, or type-based notion of similarity
while the latter exhibits a more topical sense of relatedness.

If we want to compare “Seattle” with “Sydney” and “Seahawks based on
their respective vector representations, then the underlying feature space needs
to align with the notion of similarity that we are interested in. It is, therefore,
important for the readers to build an intuition about the choice of features
and the notion of similarity they encompass. This can be demonstrated by
using a toy corpus, such as the one in Table 3.1. Figure 3.4a shows that the
“in documents” features naturally lend to a topical sense of similarity between
the terms, while the “neighbouring terms with distances” features in Figure
3.4c gives rise to a more typical notion of relatedness. Using “neighbouring
terms” without the inter-term distances as features, however, produces a

32 Unsupervised learning of term representations

mixture of topical and typical relationships. This is because when the term
distances (denoted as superscripts) are considered in the feature definition
then the document “Seattle Seahawks Wilson” produces the bag-of-features
{Seahawks+1,Wilson+2} for “Seattle” which is non-overlapping with the bag-
of-features {Seattle−1,Wilson+1} for “Seahawks”. However, when the feature
definition ignores the term-distances then there is a partial overlap between the
bag-of-features {Seahawks,Wilson} and {Seattle,Wilson} corresponding to
“Seattle” and “Seahawks”, respectively. The overlap increases when a larger
window-size over the neighbouring terms is employed pushing the notion of
similarity closer to a topical definition. This effect of the windows size on the
latent vector space was reported by Levy and Goldberg (2014) in the context
of term embeddings.

Different vector representations capture differ-
ent notions of similarity between terms. “Seat-

tle” may be closer to either “Sydney” (typically sim-
ilar) or “Seahawks” (topically similar) depending on
the choice of vector dimensions.

Readers should note that the set of all inter-term relationships goes beyond
the two notions of typical and topical that we discuss in this section. For
example, vector representations could cluster terms closer based on linguistic
styles—e.g., terms that appear in thriller novels versus in children’s rhymes,
or in British versus American English. However, the notions of typical and
topical similarities frequently come up in discussions in the context of many
IR and NLP tasks—sometimes under different names such as Paradigmatic
and Syntagmatic relations2—and the idea itself goes back at least as far as
Saussure (De Saussure, 1916; Harris, 2001; Chandler, 1994; Sahlgren, 2006).

2Interestingly, the notion of Paradigmatic (typical) and Syntagmatic (topical)
relationships show up almost universally—not just in text. In vision, for example, the
different images of “nose” are typically similar to each other, while sharing topical
relationship with images of “eyes” and “ears”. Curiously, Barthes (1977) extended
the analogy to garments. Paradigmatic relationships exist between items of the same
type (e.g., different style of boots) and the proper Syntagmatic juxtaposition of items
from these different Paradigms—from hats to boots—forms a fashionable ensemble.

3.2. Notions of similarity 33

Seahawks

Denver

Broncos

Doc 02

Doc 01

Seattle

Doc 04

Doc 03

Doc 06

Doc 05

Doc 08

Doc 07

Doc 10

Doc 09

Doc 12

Doc 11

Doc 14

Doc 13

Doc 16

Doc 15

(a) “In-documents” features

Seahawks

Denver

Broncos

Denver

Seattle

Seattle

Broncos

Seahawks

weather

map

highlights

jerseys

Sherman

Wilson

Ifedi

Browner

Sanchez

Lynch

Marshall

Miller

(b) “Neighbouring terms” features

Seahawks

Denver

Broncos

Denver-1
Seattle-1

Seattle

Broncos+1
Seahawks+1

weather+1
map+1

highlights+1
jerseys+1

Wilson+2
Wilson+1

Sherman+2
Sherman+1

Browner+2
Browner+1

Ifedi+2
Ifedi+1

Lynch+2
Lynch+1

Sanchez+2
Sanchez+1

Miller+2
Miller+1

Marshall+2
Marshall+1

(c) “Neighbouring terms w/ distances” features

Figure 3.4: The figure shows different distributed representations for the four
terms—”Seattle”, “Seahawks”, “Denver”, and “Broncos”—based on the toy corpus
in Table 3.1. Shaded circles indicate non-zero values in the vectors—the darker shade
highlights the vector dimensions where more than one vector has a non-zero value.
When the representation is based on the documents that the terms occur in then
“Seattle” is more similar to “Seahawks” than to “Denver”. The representation scheme
in (a) is, therefore, more aligned with a topical notion of similarity. In contrast, in
(c) each term is represented by a vector of neighbouring terms—where the distances
between the terms are taken into consideration—which puts “Seattle” closer to
“Denver” demonstrating a typical, or type-based, similarity. When the inter-term
distances are ignored, as in (b), a mix of typical and topical similarities is observed.
Finally, it is worth noting that neighbouring-terms based vector representations leads
to similarities between terms that do not necessarily occur in the same document,
and hence the term-term relationships are less sparse than when only in-document
features are considered.

34 Unsupervised learning of term representations

Seahawks

Denver

Broncos

Seattle

Seahawks – Seattle + Denver

Denver

Seattle

Broncos

Seahawks

weather

map

highlights

jerseys

Sherman

Wilson

Ifedi

Browner

Sanchez

Lynch

Marshall

Miller

Figure 3.5: A visual demonstration of term analogies via simple vector algebra.
The shaded circles denote non-zero values. Darker shade is used to highlight the
non-zero values along the vector dimensions for which the output of ~vSeahawks −
~vSeattle + ~vDenver is positive. The output vector is closest to ~vBroncos as shown in
this toy example.

3.3 Observed feature spaces

Observed feature space representations can be broadly categorized based on
their choice of distributional features (e.g., in documents, neighbouring terms
with or without distances, etc.) and different weighting schemes (e.g., TF-IDF,
positive pointwise mutual information, etc.) applied over the raw counts. We
direct the readers to (Turney and Pantel, 2010; Baroni and Lenci, 2010) which
are good surveys of many existing observed vector representation schemes.

Levy et al. (2014) demonstrated that explicit vector representations are
amenable to the term analogy task using simple vector operations. A term
analogy task involves answering questions of the form “man is to woman as
king is to ____?”—the correct answer to which in this case happens to
be “queen”. In NLP, term analogies are typically performed by simple vector
operations of the following form followed by a nearest-neighbour search,

~vSeahawks − ~vSeattle + ~vDenver ≈ ~vBroncos (3.2)

It may be surprising to some readers that the vector obtained by the
simple algebraic operations ~vSeahawks − ~vSeattle + ~vDenver produces a vector
close to the vector ~vBroncos. We present a visual intuition of why this works
in practice in Figure 3.5, but we refer the readers to (Levy et al., 2014; Arora
et al., 2015) for a more rigorous mathematical handling of this subject.

3.4. Latent feature spaces 35

3.4 Latent feature spaces

While observed vector spaces based on distributional features can capture
interesting relationships between terms, they have one big drawback—the
resultant representations are highly sparse and high-dimensional. The number
of dimensions, for example, may be the same as the vocabulary size, which is
unwieldy for most practical tasks. An alternative is to learn lower dimensional
representations that retains useful attributes from the observed feature spaces.

An embedding is a representation of items in a new space such that
the properties of—and the relationships between—the items are preserved.
Goodfellow et al. (2016) articulate that the goal of an embedding is to generate
a simpler representation—where simplification may mean a reduction in the
number of dimensions, an increase in the sparseness of the representation,
disentangling the principle components of the vector space, or a combination of
these goals. In the context of term embeddings, the explicit feature vectors—like
those discussed in §3.3—constitutes the original representation. An embedding
trained from these features assimilate the properties of the terms and the
inter-term relationships observable in the original feature space.

An embedding is a representation of items in
a new space such that the properties of—and

the relationships between—the items are preserved
from the original representation.

Common approaches for learning embeddings include either factorizing
the term-feature matrix (e.g.LSA (Deerwester et al., 1990)) or using gradient
descent based methods that try to predict the features given the term (e.g.,
(Bengio et al., 2003; Mikolov et al., 2013a)). Baroni et al. (2014) empirically
demonstrate that these feature-predicting models that learn lower dimensional
representations, in fact, also perform better than explicit counting based models
on different tasks—possibly due to better generalization across terms—although
some counter evidence the claim of better performances from embedding models
have also been reported in the literature (Levy et al., 2015).

The sparse feature spaces of §3.3 are easier to visualize and leads to more
intuitive explanations—while their latent counterparts may be more practically
useful. Therefore, it may be useful to think sparse, but act dense in many
scenarios. In the rest of this section, we will describe some of these neural and
non-neural latent space models.

36 Unsupervised learning of term representations

Latent Semantic Analysis (LSA) LSA (Deerwester et al., 1990) involves
performing singular value decomposition (SVD) (Golub and Reinsch, 1970) on
a term-document (or term-passage) matrix X to obtain its low-rank approxi-
mation (Markovsky, 2011). SVD on X involves solving X = UΣV T , where U
and V are orthogonal matrices and Σ is a diagonal matrix.3

X U Σ V ᵀ

(~dj) (~dj)
↓ ↓

(~t ᵀ
i

)→


x1,1 . . . x1,|D|

...
. . .

...

x|T |,1 . . . x|T |,|D|

 = (~t ᵀ
i

)→


~u1

 . . .
~ul


 ·
σ1 . . . 0

...
. . .

...
0 . . . σl

 ·

[
~v1
]

...[
~vl

]

(3.3)

σ1, . . . , σl, ~u1, . . . , ~ul, and ~v1, . . . , ~vl are the singular values, and the left
and the right singular vectors, respectively. The k largest singular values—and
corresponding singular vectors from U and V—is the rank k approximation of
X (Xk = UkΣkV Tk) and Σk~ti is the embedding for the ith term.

While LSA operate on a term-document matrix, matrix factorization based
approaches can also be applied to term-term matrices (Rohde et al., 2006;
Bullinaria and Levy, 2012; Lebret and Collobert, 2013).

Probabilistic Latent Semantic Analysis (PLSA) PLSA (Hofmann, 1999)
learns low-dimensional representations of terms and documents by modelling
their co-occurrence p(t, d) as follows,

p(t, d) = p(d)
∑
c∈C

p(c|d)P (t|c) (3.4)

where, C is the set of latent topics—and the number of topics |C| is
a hyperparameter of the model. Both p(c|d) and P (t|c) are modelled as
multinomial distributions and their parameters are typically learned using
the EM algorithm (Dempster et al., 1977). After learning the parameters
of the model, a term ti can be represented as a distribution over the latent
topics [p(c0|ti), . . . , p(c|C|−1|ti)]. In a related approach called Latent Dirichlet
Allocation (LDA) (Blei et al., 2003), each document is represented by a
Dirichlet prior instead of a fixed variable.

Neural term embedding models are typically trained by setting up a predic-
tion task. Instead of factorizing the term-feature matrix—as in LSA—neural

3The matrix visualization is taken from https://en.wikipedia.org/wiki/Latent_
semantic_analysis.

https://en.wikipedia.org/wiki/Latent_semantic_analysis
https://en.wikipedia.org/wiki/Latent_semantic_analysis

3.4. Latent feature spaces 37

models are trained to predict the term from its features. The model learns
dense low-dimensional representations in the process of minimizing the predic-
tion error. These approaches are based on the information bottleneck method
(Tishby et al., 2000)—discussed more in §6.2—with the low-dimensional rep-
resentations acting as the bottleneck. The training data may contain many
instances of the same term-feature pair proportional to their frequency in
the corpus (e.g., word2vec (Mikolov et al., 2013a)), or their counts can be
pre-aggregated (e.g., GloVe (Pennington et al., 2014)).

Instead of factorizing the term-feature matrix,
neural models learn embeddings by setting up

a feature prediction task and employ architectures
motivated by the information bottleneck principle.

Word2vec For word2vec (Mikolov et al., 2013a; Mikolov et al., 2013b;
Mikolov et al., 2013c; Goldberg and Levy, 2014; Rong, 2014), the features
for a term are made up of its neighbours within a fixed size window over
the text. The skip-gram architecture (see Figure 3.6a) is a simple one hidden
layer neural network. Both the input and the output of the model are one-hot
vectors and the loss function is as follows,

Lskip−gram = − 1
|S|

|S|∑
i=1

∑
−c≤j≤+c,j 6=0

log(p(ti+j |ti)) (3.5)

where, p(ti+j |ti) =
exp ((Wout~vti+j

)ᵀ(Win~vti))∑|T |
k=1 exp ((Wout~vtk)ᵀ(Win~vti))

(3.6)

S is the set of all windows over the training text and c is the number of
neighbours we want to predict on either side of the term ti. The denominator
for the softmax function for computing p(ti+j |ti) sums over all the terms in
the vocabulary. This is prohibitively costly and in practice either hierarchical-
softmax (Morin and Bengio, 2005) or negative sampling is employed, which we
discuss more in §5.2. Note that the model has two different weight matricesWin

and Wout that constitute the learnable parameters of the models. Win gives
us the IN embeddings corresponding to the input terms and Wout corresponds
to the OUT embeddings for the output terms. Generally, only Win is used
and Wout is discarded after training. We discuss an IR application that makes
use of both the IN and the OUT embeddings in §4.1.

38 Unsupervised learning of term representations

Win Wout

ti ti+j

(a) Skip-gram

Win
Wout

t i
+
2

t i
+
1

t i
-
2

t i
-
1

t
i*

t
i

(b) Continuous bag-of-words (CBOW)

Figure 3.6: The (a) skip-gram and the (b) continuous bag-of-words (CBOW)
architectures of word2vec. The architecture is a neural network with a single hidden
layer whose size is much smaller than that of the input and the output layers.
Both models use one-hot representations of terms in the input and the output. The
learnable parameters of the model comprise of the two weight matrices Win and
Wout that corresponds to the embeddings the model learns for the input and the
output terms, respectively. The skip-gram model trains by minimizing the error
in predicting a term given one of its neighbours. The CBOW model, in contrast,
predicts a term from a bag of its neighbouring terms.

3.4. Latent feature spaces 39

The continuous bag-of-words (CBOW) architecture (see Figure 3.6b) is
similar to the skip-gram model, except that the task is to predict the middle
term given all the neighbouring terms in the window. The CBOW model
creates a single training sample with the sum of the one-hot vectors of the
neighbouring terms as input and the one-hot vector ~vti—corresponding to the
middle term—as the expected output. Contrast this with the skip-gram model
that creates 2× c samples by individually pairing each neighbouring term with
the middle term. During training, the skip-gram model trains slower than the
CBOW model (Mikolov et al., 2013a) because it creates more training samples
from the same windows of text.

LCBOW = − 1
|S|

|S|∑
i=1

log(p(ti|ti−c, . . . , ti−1, ti+1, . . . , ti+c)) (3.7)

Word2vec gained particular popularity for its ability to perform term
analogies using simple vector algebra, similar to what we discussed in §3.3. For
domains where the interpretability of the embeddings is important, Sun et al.
(2016b) introduced an additional constraint in the loss function to encourage
more sparseness in the learnt representations.

Lsparse−CBOW = Lsparse−CBOW − λ
∑
t∈T
‖~vt‖1 (3.8)

GloVe The skip-gram model trains on individual term-neighbour pairs. If
we aggregate all the training samples such that xij is the frequency of the pair
〈ti, tj〉 in the training data, then the loss function changes to,

Lskip−gram = −
|T |∑
i=1

|T |∑
j=1

xij log(p(tj |ti)) (3.9)

= −
|T |∑
i=1

xi

|T |∑
j=1

xij
xi
log(p(tj |ti)) (3.10)

= −
|T |∑
i=1

xi

|T |∑
j=1

p̄(tj |ti)log(p(tj |ti)) (3.11)

=
|T |∑
i=1

xiH(p̄(tj |ti), p(tj |ti)) (3.12)

40 Unsupervised learning of term representations

Wd,in Wt,out

dj ti

ti+2ti+1ti-2 ti-1

Wt,in

Figure 3.7: The paragraph2vec architecture as proposed by Le and Mikolov (2014)
trains by predicting a term given a document (or passage) ID containing the term.
By trying to minimize the prediction error, the model learns an embedding for the
term as well as for the document. In some variants of the architecture, optionally
the neighbouring terms are also provided as input—as shown in the dotted box.

H(. . .) is the cross-entropy error between the actual co-occurrence proba-
bility p̄(tj |ti) and the one predicted by the model p(tj |ti). This is similar to the
loss function for GloVe (Pennington et al., 2014) if we replace the cross-entropy
error with a squared-error and apply a saturation function f(. . .) over the
actual co-occurrence frequencies.

LGloV e = −
|T |∑
i=1

|T |∑
j=1

f(xij)(log(xij − ~v ᵀ
wi
~vwj

))2 (3.13)

(3.14)

3.4. Latent feature spaces 41

where,

f(x) =
{

(x/xmax)α, ifx ≤ xmax
1, otherwise

(3.15)

GloVe is trained using AdaGrad (Duchi et al., 2011). Similar to word2vec,
GloVe also generates two different (IN and OUT) embeddings, but unlike
word2vec it generally uses the sum of the IN and the OUT vectors as the
embedding for each term in the vocabulary.

Paragraph2vec Following the popularity of word2vec (Mikolov et al., 2013a;
Mikolov et al., 2013b), similar neural architectures (Le and Mikolov, 2014;
Grbovic et al., 2015b; Grbovic et al., 2015a; Sun et al., 2015; Ai et al., 2016b; Ai
et al., 2016a) have been proposed that trains on term-document co-occurrences.
The training typically involves predicting a term given the ID of a document
or a passage that contains the term. In some variants, as shown in Figure 3.7,
neighbouring terms are also provided as input. The key motivation for training
on term-document pairs is to learn an embedding that is more aligned with a
topical notion of term-term similarity—which is often more appropriate for
IR tasks. The term-document relationship, however, tends to be more sparse
(Yan et al., 2013)—including neighbouring term features may compensate
for some of that sparsity. In the context of IR tasks, Ai et al. (2016b) and
Ai et al. (2016a) proposed a number of IR-motivated changes to the original
Paragraph2vec (Le and Mikolov, 2014) model training—including, document
frequency based negative sampling and document length based regularization.

	Unsupervised learning of term representations
	A tale of two representations
	Notions of similarity
	Observed feature spaces
	Latent feature spaces

