BASIC TEXT
PROCESSING

Gabriella Pasi
gabriella.pasi@diunimib.it

Basic Text Processing

“Basic text processing is often the first step in any text
mining application and consists of several layers of simple
processing such as tokenization, lemmatization,
normalization, or more advanced ”

From: Gabe Ignatow and Rada Mihalcea. “An Introduction to
Text Mining”. Apple Books.

Text and documents

Textual Documents: simplest case

- Free-format text
- EBCDIC coding, ASCII (8 bit), UNICODE (16 bit), etc.
- Language
- Text consisting of strings of characters from an alphabet, etc.

- E.g., genome sequences, formulas of chemical compounds, words in
natural language

- Examples

- Articles from newspapers, magazines, messages, letters, medical
reports, Web pages, etc.

Document characteristics

- Document

- Text
+

- Structure
+

- Other media (images, sounds, ...)
+

- Metadata

What is a document?

metadata
S(e}lirgggein i_ ;;l_th;);_z_:g'_él;i_tﬁzui external
«— crdate = °25.05.98" attribute
content ' ladate = 30.06.99" | >
structure B. Smith e e '
semantics layout structure
logicalIstmcture style
Sailing head | |
Greece title
Mediterenean author E—
Fish chapter
Sunset section
section
chapter

R
Metadata

- Metadata associated with a document is data related to
the document:

- Descriptive metadata (Dublin Core Metadata Set):
- Relating to the creation of the document
- E.g.,: title, authors, date, length (in pages, words, bytes, etc.), genre
(book, article, memo, mail, etc.)
- Semantic metadata
- Relating to the subject dealt with in the document

- E.g.,: Library of Congress subject codes, controlled keywords extracted
from an ontology

R
Metadata

- Taken from: http://www.w3.org/Metadata/Activity

- Metadata is information about information - labeling,
cataloging and descriptive information structured in such
a way that allows pages to be properly searched and
processed in particular by computer. In other words, what
IS now very much needed on the Web is metadata.

- W3C’s (World Wide Web Consortium) Metadata Activity is
concerned with ways to model and encode metadata.

http://www.w3.org/Metadata/Activity

Formats for text documents

In classical IR systems, documents had to be represented in an
"internal” format in order to be indexed and managed

- 1st OPERATION: source file = generation or input file

- Documents written with common word-processors:

- Word
- TeX, RTF, HTML, XML (Rich Text Format) (ASCII format)

- Formats for viewing and printing:
- PDF (Portable Document Format)

- MIME (Multipurpose Internet Mail Exchange) for e-mail, it supports
various character encodings

- Compressed formats:
- ARJ, ZIP (Winzip, Gzip)

Basic Text Processing

How to represent a text

- How to represent a text?
- Make it computable

- Represent by a string?
- No semantic meaning

- Represent by a list of sentences?
- Sentence is just like a short document (recursive definition)

Words as the basic “features” of texts

- Doc1: Text mining is to identify useful information.
- Doc2: Useful information is mined from text.
- Doc3: Apple is delicious.

Initial stages of text processing

- Tokenization

- Cut character sequence into word tokens
- Deal with “John’s ”, a state-of-the-art solution

- Normalization

- Map text and query term to same form
* You want U.S.A. and USA to match

» Stemming

- We may wish different forms of a root to match
- authorize, authorization
- Stop words removal

- We may omit very common words (or not)
- the, a, to, of

Basic Text

. *Words and Corpora
Processing

How many words in a sentence?

- "l do uh main- mainly business data processing"
- Fragments, filled pauses

- "Seuss’s cat in the hat is different from other
cats!"”
- Lemma: same stem, part of speech, rough word sense
- cat and cats = same lemma
- Wordform: the full inflected surface form
- cat and cats = different wordforms

How many words in a sentence?

they lay back on the San Francisco grass and looked at
the stars and their

- Type: an element of the vocabulary.
- Token: an instance of that type in running text.

- How many?
- 15 tokens (or 14)
- 13 types (or 12) (or 117?)

How many words in a corpus?

N = number of tokens
V = vocabulary = set of types, |V] is size of vocabulary

Heaps Law = Herdan's Law =|V| = kNP where often .67 < 8 <
75
i.e., vocabulary size grows with > square root of the number of word
tokens
__ |Tokens=N [Types=|V|
Switchboard phone 2.4 million 20 thousand
conversations
Shakespeare 884,000 31 thousand
COCA 440 million 2 million

Google N-grams 1 trillion 13+ million

Corpora

Words don't appear out of nowhere!
A text is produced by

- a specific writer(s),

- at a specific time,

- in a specific variety,

- of a specific language,

- for a specific function.

Corpora vary along dimension like

- Language: 7097 languages in the world
- Variety, like African American Language varieties.
- AAE Twitter posts might include forms like "iont" (I don't)
- Code switching, e.g., Spanish/English, Hindi/English:

S/E: Por primera vez veo a @username actually being hateful! It was
beautiful:)

[For the first time | get to see @username actually being hateful! it was
beautiful:) |

H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe
[‘he was and will remain a friend ... don’t worry ... but have faith”]

- Genre: newswire, fiction, scientific articles, Wikipedia
- Author Demographics: writer's age, gender, ethnicity, SES

BASIC TEXT PROCESSING
WORD TOKENIZATION

Text Normalization

- Every NLP task requires text
normalization:
1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

Space-based tokenization

- A very simple way to tokenize

- For languages that use space characters between words
- Arabic, Cyrillic, Greek, Latin, etc., based writing systems
- Segment off a token between instances of spaces

- Unix tools for space-based tokenization

- The "tr'" command
- Inspired by Ken Church's UNIX for Poets
- Given a text file, output the word tokens and their frequencies

Tokenization

- Input: “Friends, Romans and Countrymen”
- Qutput: Tokens

- Friends

- Romans
- and
- Countrymen

- A token is an instance of a sequence of characters

- Each such token is now a candidate to be a meaningful term
(index), after further processing

- Described below

- But what are valid tokens to emit?

Issues In Tokenization

- Can't just blindly remove punctuation:
- m.p.h., Ph.D., AT&T, cap’n
- prices ($45.55)
- dates (01/02/06)
- URLs (http://www.stanford.edu)
- hashtags (#nlproc)
- email addresses (someone@cs.colorado.edu)

- Clitic: a word that doesn't stand on its own
- "are" in we're, French "je" in j'ai, "le" in 'honneur
- When should multiword expressions (MWE) be words?

- New York, rock 'n’ roll

Tokenization

* Issues in tokenization:

- Finland ’s capital —
Finland AND s? Finlands? Finland ’s?

- Hewlett-Packard — Hewlett and Packard as two
tokens?

- state-of-the-art: break up hyphenated sequence.
- co-education
- lowercase, lower-case, lower case ?

» San Francisco: one token or two?

- How do you decide it is one token?

Numbers

- 3/20/91 Mar. 12, 1991
20/3/91

- 55 B.C.

- B-52

- My PGP key is 324a3df234cb23e
- (800) 234-2333

- Often have embedded spaces

- Older IR systems may not index numbers
« But often very useful: think about things like looking up codes on the web

Tokenization: language issues

- French
- L'ensemble — one token or two?
« L?Ll'?Le?
* Want l'ensemble to match with un ensemble
* Until at least 2003, it didn’t on Google

- German noun compounds are not segmented

- Lebensversicherungsgesellschaftsangestellter
- ‘life insurance company employee’

- German retrieval systems benefit greatly from a compound splitter
module
* Can give a 15% performance boost for German

Tokenization in NLTK (Natural Language
Toolkit https://www.nltk.org/)

Bird, Loper and Klein (2009), Natural Language Processing with Python. O’Reilly

>>> text = ’That U.S.A. poster-print costs $12.40...°
>>> pattern = r’’’ (?x) # set flag to allow verbose regexps

([A-Z]\.)+ # abbreviations, e.g. U.S.A.
| \w+(-\w+)* # words with optional internal hyphens
| \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%
| \.\.\. # ellipsis
these are separate tokens; includes], [

| L1057 70 :-_"]

>>> nltk.regexp_tokenize(text, pattern)
[’That’, ’'U.S.A.’, ’poster-print’, ’'costs’, '$12.40°, ’'...’]

Tokenization in languages without spaces

Many languages (like Chinese, Japanese, Thai) don't use
spaces to separate words!

How do we decide where the token boundaries should be?

Word tokenization in Chinese

Chinese words are composed of characters called "hanzi”
(or sometimes just "zi")

Each one represents a meaning unit called a morpheme.
Each word has on average 2.4 of them.

But deciding what counts as a word is complex and not
agreed upon.

How to do word tokenization in Chinese”?

WKARIFH A S REE “Yao Ming reaches the finals”

-3 words? o
BKER HEA RURFE
-YaoMing reaches finals

o words? L
Pk BB EHA = RER
-Yao Ming reaches overall finals

-/ characters? (don't use words at all):
’QyE HH J& A /IEI\ /;:\L %

-Yao Ming enter enter overall decision game

Word tokenization / segmentation

So in Chinese it's common to just treat each character (zi)
as a token.

- S0 the segmentation step is very simple

In other languages (like Thai and Japanese), more
complex word segmentation is required.

- The standard algorithms are neural sequence models
trained by supervised machine learning.

Tokenization: language issues

- Further complicated in Japanese, with multiple alphabets
intermingled

- Dates/amounts in multiple formats

T4 —F 1 5001 1EHT/E @t@#ﬁ%z&ﬁn@ﬁﬂ)

T _— X
Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Tokenization: language issues

- Arabic (or Hebrew) is basically written right to left, but with
certain items like numbers written left to right

- Words are separated, but letter forms within a word form
complex ligatures

oo =d Iz Il e lole 132 900 1962 300 s i) Jpd) edgag
< 7 <72 < sSudrt

- ‘Algeria achieved its independence in 1962 after 132 years of
French occupation.’

- With Unicode, the surface presentation is complex, but the
stored form is straightforward

Tokenization

- Break a stream of text into meaningful units

- Tokens: words, phrases, symbols

* Input: It's not straight-forward to perform so-
called “tokenization.”

« Output(1): 'lt's', 'not’, 'straight-forward’, 'to’,
'‘perform’, 'so- caIIed' “tokenization.™

« Output(2): 'It', "', 's', 'not", 'straight’, -, 'forward,
'to', 'perform’, so' "' 'called'’, " 'tokenlzatlon' z

¢

- Definition depends on language, corpus, or even context

Another option for text tokenization

Instead of
- white-space segmentation
- single-character segmentation

Use the data to tell us how to tokenize.

Subword tokenization (because tokens can be parts
of words as well as whole words)

Subword tokenization

- Three common algorithms:

- Byte-Pair Encoding (BPE) (Sennrich et al., 2016)
- https://huggingface.co/learn/nlp-course/chapter6/5
- Unigram language modeling tokenization (Kudo, 2018)
- https://huggingface.co/learn/nlp-course/chapter6/7
- WordPiece (Schuster and Nakajima, 2012)
- https://huggingface.co/learn/nlp-course/chapter6/6

- All have 2 parts:

- A token learner that takes a raw training corpus and induces a
vocabulary (a set of tokens).

- Atoken segmenter that takes a raw test sentence and tokenizes
it according to that vocabulary

Tokenization recap

- Solutions

- Regular expressions
(https://www.nltk.org/api/nltk.tokenize.regexp.html)
- [\w]+: so-called -> ‘so’, ‘called’
- [\S]+: It's -> ‘It's’ instead of ‘It’, s’
- Statistical methods
- Explore rich features to decide where the boundary of a word is

+ Apache OpenNLP (http://opennlp.apache.org/)
- Stanford NLP tokenizer (http://nlp.stanford.edu/software/lex-parser.shtml)

-+ Online Demo
- Stanford (https://corenlp.run/)

http://opennlp.apache.org/
http://nlp.stanford.edu/software/lex-parser.shtml

WORD NORMALIZATION

Word Normalization

- Putting words/tokens in a standard format
- U.S.A. or USA
- uhhuh or uh-huh
- Fed or fed
- am, Is, be, are

Normalization to terms

- We may need to “normalize” words :
- We want to match U.S.A. and USA

- Result is terms: a term is a (normalized) word type

- Most commonly, an implicit definition of equivalence classes of
terms is obtained by, e.g.,
- deleting periods to form a term
- U.S.A., USA (USA

- deleting hyphens to form a term
* anti-discriminatory, antidiscriminatory (antidiscriminatory

Normalization: other languages

- Accents: e.g., French résumé vs. resume.
- Umlauts: e.g., German: Tuebingen vs. Tiibingen
- Should be equivalent

- This is important is search engines:

- How are users like to write their queries for these words?

- Even in languages that standardly have accents, users often
may not type them

- Often best to normalize to a de-accented term
- Tuebingen, Tiibingen, Tubingen \Tubingen

Normalization: other languages

- Normalization of things like date forms
- 7/430H vs. 7/30

- Japanese use of kana vs. Chinese characters

- Tokenization and normalization may depend on the language
and so is intertwined with language detection

- Crucial: in search engines there is the need to “normalize”
indexed text as well as query terms identically

s this
G “mit”?
Morgen will ich in MIT.../ srmen e

-
Case folding

- Applications like IR: reduce all letters to lower
case
- Since users tend to use lower case

- Possible exception: upper case in mid-sentence?

* e.g., General Motors
- Fed vs. fed
- SAIL vs. sail

- For sentiment analysis, MT, Information extraction
- Case is helpful (US versus us is important)

Thesauri and soundex

- How we can handle synonyms and homonyms?
- E.g., by hand-constructed equivalence classes
* car = automobile color = colour
- We can rewrite to form equivalence-class terms

» When the document contains automobile, index it under car-automobile (and
vice-versa)

- Or in search engines we can expand a query
« When the query contains automobile, look under car as well

- What about spelling mistakes?

« One approach is Soundex, which forms equivalence classes of words
based on phonetic heuristics

LEMMATIZATION AND STEMMING

Lemmatization

- Reduce inflectional/variant forms to base form
- E.g.,
- am, are, is — be

- car, cars, car's, cars' — car

- the boy's cars are different colors — the boy car be different
color

- Lemmatization implies doing “proper’ reduction to dictionary
headword form

Lemmatization is done by Morphological
Parsing

- Morphemes:
- The small meaningful units that make up words
- Stems: The core meaning-bearing units

- Affixes: Parts that adhere to stems, often with grammatical
functions

- Morphological Parsers:
- Parse cats into two morphemes cat and s

Stemming

- Reduce terms to stems

+ “Stemming” suggests crude affix chopping

- language dependent
- e.g., automate(s), automatic, automation all reduced to automat.

for exampl compress and

for example compressed compress ar both accept
and compression are both q as equival to compress
accepted as equivalent to

compress.

-
Porter Stemmer

- Commonest algorithm for stemming English

- Based on a series of rewrite rules run in sequence

- A cascade (sequentially), in which output of each pass fed to next
pass

- Some sample rules:

ATIONAL — ATE (e.g., relational — relate)
ING — € if stem contains vowel (e.g., motoring — motor)

SSES — SS (e.g., grasses — grass)

Other stemmers

« Other stemmers exist:

« Lovins stemmer
+ http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

Single-pass, longest suffix removal (about 250 rules)
- Paice/Husk stemmer
- Snowball

- Full morphological analysis (lemmatization)
- At most modest benefits for retrieval

Language-specificity

- The above methods embody transformations that are
- Language-specific, and often
- Application-specific

- These are “plug-in” addenda to the indexing process

- Both open source and commercial plug-ins are available for
handling these

Does stemming help in retrieval?

- English: very mixed results. Helps recall for some queries but
harms precision on others
- E.g., operative (dentistry) = oper
- Definitely useful for Spanish, German, Finnish, ...

+ 30% performance gains for Finnish!

Stop words

- With a stop list, you exclude from the dictionary entirely the
commonest words. Intuition:

- They have little semantic content: the, a, and, to, be
- There are a lot of them

- However, for example Web SE do not use stoplists, due to the
following reasons:
- Good compression techniques means the space for including stop
words in a system is very small

* You need them for:
- Phrase queries: “King of Denmark”
- Various song titles, etc.: “Let it be”, “To be or not to be”
- “Relational” queries: “flights to London”

