
Alzheimer disease (AD) is a neurodegenerative disorder  
characterized by β​-​amyloid (Aβ​)-​containing extra
cellular plaques and tau-​containing intracellular neuro
fibrillary tangles. AD typically presents with prominent  
amnestic cognitive impairment but can also less com-
monly manifest as non-​amnestic cognitive impairment. 
The presentation of AD with short-​term memory dif-
ficulty is most common but impairment in expressive 
speech, visuospatial processing and executive (mental 
agility) functions also occurs. Most cases of AD are not 
dominantly inherited and there is a complex relationship 
to genetics in many persons with AD.

The severity of cognitive impairment in patients 
with AD varies. The earliest manifestations can be a 
subjective decline in mental abilities in the absence of 
impaired performance on objective cognitive testing1. 
Mild cognitive impairment (MCI) refers to the earliest 
symptomatic stage of cognitive impairment in which a 
single cognitive domain or, possibly, multiple cognitive 
domains are impaired to at least a mild extent whilst 
functional capacities are relatively preserved2. By con-
trast, dementia is defined as cognitive impairment of 
sufficient magnitude to impair independence and affect 
daily life. Dementia of gradual onset and ongoing pro-
gression with prominent amnestic symptoms and signs 
is the prototypical clinical phenotype of AD3.

AD was originally considered a clinicopathological 
entity, meaning that, if the patient fulfilled the clinical 
syndrome of an amnestic dementia and other conditions 
were ruled out, one could assume that AD pathology was 
the cause4. However, increased clinical sophistication 
together with biomarkers of AD, namely cerebrospinal 
fluid (CSF) and PET markers for Aβ​ and tau, has trans-
formed the concept of AD to a neurobiological condition 

that affects different aspects of cognition. Of note, there 
is a greater appreciation of the relationship between AD 
and other aetiologies of cognitive impairment. Although 
multi-​aetiology dementia (which is the preferred term 
over ‘mixed dementia’) is not the focus of this Primer, 
it is important to remember that AD pathology rarely 
occurs in isolation in patients >​65 years of age.

This Primer reviews the epidemiology of the cogni-
tive manifestations of AD and highlights the main risk 
factors of this disorder. In addition, this Primer summa-
rizes the pathophysiology of AD from the perspective of 
a synaptic disorder and reviews advances in its diagnosis, 
including clinical diagnosis and advances in biomarkers, 
as well as the management and quality of life of persons 
living with cognitive impairment due to AD and that of 
their caregivers.

Epidemiology
Incidence and prevalence
The epidemiology of AD is intertwined with that of 
all-​cause dementia5,6 (Fig. ​1)​. Although AD is the most 
common cause of dementia7, dementia can be caused by 
multiple neurodegenerative or cerebrovascular patholo-
gies, particularly in older patients8,9. Indeed, in one study 
of 184 individuals who met research neuropathological 
criteria for AD9, 31% had only AD pathology, 22% had 
AD pathology plus α​-​synuclein pathology (Lewy bodies 
outside of the brainstem), 29.5% had AD pathology plus 
TDP43 pathology (TDP43 inclusions in hippocampi), 
and 17.5% had AD pathology plus α​-​synuclein and 
TDP43 pathology. Within each of these pathologically 
defined groups, between 29% and 52% of individuals 
had at least one infarct (microinfarct, lacunar infarct or 
large infarct)9.
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The prevalence of all-​cause dementia is expected 
to increase from 50 million people in 2010 to 113 mil-
lion by 2050 worldwide10. Although the prevalence 
of dementia has increased in both high-​income and  
middle/low-​income countries over the past 50 years 
owing to an extended life expectancy11, the incidence of 
dementia has slightly decreased in some high-​income 
countries such as the USA, UK and France11. For exam-
ple, in the Framingham Heart Study, the age-​adjusted 
and sex-​adjusted hazard rate for incident dementia in 
persons aged >​60 years was 3.6 per 100 persons in the  
late 1970s and early 1980s but 2.2 per 100 persons by 
the late 2000s and early 2010s12. The lower incidence 
of dementia in people born more recently could be due 
to the educational, socio-​economic, health-​care and 
lifestyle changes that have occurred in the past several 
decades. In particular, greater educational attainment 
is a protective factor against dementia presumably 
because it conveys a greater capacity to withstand the 
consequences of neurodegenerative and cerebrovascular 
disease (referred to as ‘cognitive resilience’13). However, 
attempts at proving cause-​and-​effect relationships 
between the various mitigating factors and dementia 
incidence have proved difficult12,14. Of note, the reduc-
tion in dementia incidence cannot be specifically attrib-
uted to AD, although one neuropathological study found 
a trend for a 24% decline in brain Aβ​ burden from 1972 
to 2006 in a sample of 1,599 individuals with a mean age 
of 82 ±​ 8 years15.

The prevalence of overt cognitive impairment 
increases exponentially with advancing age. Indeed, the 
incidence of dementia increases steeply after 65 years 
and continues to increase thereafter. The incidence 
of all-​cause dementia in individuals aged 65–70 years 
is approximately 1 per 100 per year and increases to 
4 per 100 per year in those aged 80–90 years16. In a 
meta-​analysis of 20 studies from Europe and North 
America, the prevalence of clinically diagnosed amnes-
tic dementia (dementia attributed without biomarkers 
of AD) increased from <​1% in persons aged 65–69 years 
to 7–8% in those aged 80–84 years to 27% in those aged 
90–94 years17. In general, the incidence of MCI is about 
twice that of dementia at any given age18. Studies using 
MRI and PET to estimate the burden of AD have esti-
mated that MCI with AD pathology contributes to ~50% 
of all cases of MCI19 and dementia due to AD contributes 
to ~60–90% of all dementia cases20. Other aetiologies, 

such as cerebrovascular disease and Lewy body dis-
ease, may be contributory in up to half of persons with 
AD21. The fastest-​growing demographic segment in 
high-​income countries is the oldest-​old group (people 
aged >​90 years), which is the group with the highest 
risk of cognitive disorders, particularly multi-​aetiology 
dementia. Improvement in survival into older adulthood 
in low-​income and middle-​income countries11 is driving 
an increased overall societal burden of dementia.

The prevalence and incidence of dementia have been 
well studied in high-​income countries but are less well 
understood in low-​income and middle-​income countries. 
Provisional estimates support the view that dementia is 
a worldwide illness with little variation in age-​specific 
prevalence between regions22. The prevalence of sub-
jective cognitive complaints was 25% worldwide in one 
meta-​analysis of 16 studies, although individual estimates 
varied from 6% to 53%23, implying diversity in how sub-
jective cognitive decline is defined both within and across 
different regions and cultures. Similar to dementia, the 
prevalence of MCI varies by age — the reported prev-
alence was 6.7% in individuals aged 60–64 years and 
25.2% in those aged 80–84 years in a meta-​analysis of  
34 studies from high-​income countries24.

Risk factors
Age is the most important risk factor for both dementia 
and AD. In the aged population worldwide, for exam-
ple, in those aged >​65 years, more women than men 
have dementia owing to an excess all-​cause mortality 
in men aged >​45 years11. In addition, the prevalence of 
mild cognitive impairment may be higher in men; one 
study found an OR of 1.54 (95% CI 1.2–2.0) for MCI 
in men versus women in a community comprised of 
European-​Americans25. However, in many studies, the 
prevalence of dementia is either higher in women or 
finds no difference between sexes26.

Genetic risk factors for AD include rare dominantly 
inherited mutations in APP, PSEN1 and PSEN2 and in 
more common but incompletely penetrant genetic var-
iations such as APOE. Taken together, genetic contribu-
tions represent only a modest part of the attributable risk 
as manifested in the age of onset27.

Dominantly inherited AD has an age of onset that  
is ~40 years earlier than sporadic late-​onset AD but  
otherwise shares many clinical, biomarker and patho-
logical similarities. Mutations in APP (encoding amyloid 
precursor protein (APP)), PSEN1 (encoding preseni-
lin 1) and PSEN2 (encoding presenilin 2) account for 
almost all cases of dominantly inherited AD28. Persons 
with mutations in these genes are almost always younger 
than 65 years when they develop symptoms and repre-
sent only a minority of persons with AD dementia in this 
age group, in which AD and frontotemporal degenera-
tions are about equally common. A rare variant of APP 
(A673T) that is protective against Aβ​ production and 
clinical symptomatology has been identified29.

More than 600 genes have been investigated as sus-
ceptibility factors for AD. APOE is a susceptibility poly-
morphism and is the most important genetic risk factor 
for AD occurring after 65 years. Carriage of the APOE 
ε​4 allele increases the risk for dementia by 3–4 times 
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in heterozygotes and by 12–15 times in homozygotes 
compared with APOE ε​3 carriers30. Some susceptibil-
ity genes, such as TREM2, SORL1 and ABCA7 (ref.​31),  
if combined, may be useful in polygenic risk scores, even 
accounting for the presence of the APOE ε​4 genotype, 
for predicting incident dementia due to AD32. The rare 
genetic variants convey a lower risk of AD than the 
APOE ε​4 allele; indeed, the rare R47H variant of TREM2 
conveys a tenth of the risk of heterozygosity of APOE ε​4  
and all of the other identified risk genes are 100-​fold 
less potent than APOE ε​4 (ref.​33)​. Mutations in MAPT 
(encoding tau) are not associated with AD, although 
variants of tau-​binding proteins such as BIN1, CD2AP, 
FERMT2, CASS4 and PTK2B are risk genes in large-​scale 
analyses34. The genetics of rare variants has played 
and will continue to play a critical role in suggesting  
important disease mechanisms in AD.

Several potentially modifiable risk factors occurring 
in midlife, in particular metabolic factors (diabetes mel-
litus, hypertension, obesity and low HDL cholesterol), 
hearing loss, traumatic brain injury and alcohol abuse, 
are associated with an increased risk of later-​life demen-
tia, with relative risks of between 1.5 and 1.8 (ref.​35)​. In 
later life, smoking, depression, low physical activity, 
social isolation, diabetes mellitus and air pollution are 
risk factors of similar magnitude for dementia, although 
several of these, such as low physical activity, social iso-
lation and depression, may have a bi-​directional link 
and may be part of the prodromal phase of dementia36. 
Diabetes mellitus and hypertension are probably the 
most common and important risk factors for late-​life 
dementia, especially when those risk factors are present 
in midlife37 but in late life as well38. Although there is 
some evidence for an influence of midlife vascular risk 
factors on later-​life brain Aβ​39, both diabetes mellitus 
and hypertension induce cerebrovascular disease and are 
thought to affect the clinical expression of AD pathology 

through the modifying effects of atherosclerotic and 
arteriolosclerotic cerebrovascular disease rather than 
through a direct effect on Aβ​ or tau biology40.

Mechanisms/pathophysiology
AD is a synaptic dysfunction disorder encompassing 
molecular, cellular and macro-​scale cortical circuitry 
system failures that has a predilection for a cognitively 
eloquent cortex. Synaptic pathophysiology is an attrac-
tive theme in unifying observations about genetics, 
cell biology, neuropathology and the clinical mani-
festations of AD. The pathology of AD can be viewed 
as positive (‘overt’) lesions that can be observed using 
microscopy, that is, tau-​containing neurofibrillary tan-
gles, Aβ​-​containing plaques, activated glia or enlarged 
endosomes. Alternatively, AD can be viewed as repre-
senting negative (‘covert’) phenomena, that is, the loss 
of synaptic homeostasis, neurons or neuronal network 
integrity. While the biology of amyloid precursor pro-
tein and tau protein is featured prominently throughout 
this Primer, the apparent primacy of these proteins as 
embodied in the amyloid cascade hypothesis41 fails to 
acknowledge the many other covert mechanisms, not all 
of which can be covered here42,43, that have been hypoth-
esized as relevant. Understanding how the mechanisms 
that underlie AD lead to synaptic and neuronal loss, 
which are the likely causes of cognitive impairment, 
has been a matter of substantial investigation yet much 
remains to be learned.

The critical molecules
The pathology of canonical AD dementia involves 
Aβ​-​containing extracellular neuritic plaques that are 
found in a widespread distribution throughout the cer-
ebral cortex and tau-​containing neurofibrillary tangles 
that occur initially in the medial temporal lobe, followed 
by the isocortical regions of the temporal, parietal and 
frontal lobes44,45.

Aβ​ peptides are derived from APP (a single trans-
membrane protein that is enriched in neuronal 
synapses46) following the cleavage of APP by β​-​secretases  
and γ​-​secretases (known as the amyloidogenic path-
way)47,48 (Fig. ​2)​. The most abundant species of Aβ​ are 
27–43 amino acids in length. After production, Aβ​ is 
secreted into the extracellular space as a monomer47. 
Owing to its sequence, Aβ​ (particularly Aβ​42) has 
a high propensity to aggregate, which occurs in a 
concentration-​dependent manner. In addition to Aβ​,  
other molecules — APPsβ​, β​CTF and AICD — are 
formed in the amyloidogenic pathway. APP cleavage by 
α​-​secretase generates APPsα​ and α​CTF and prevents Aβ​ 
formation; α​CTF is subsequently cleaved by γ​-​secretase 
into p3 and AICD49. Although all cells produce Aβ​, it is 
generated in high levels by synaptic activity and its pro-
duction and release are regulated by synaptic activity50. 
Aβ​ levels are also modulated by the sleep–wake cycle51. Aβ​  
production and release into the extracellular space is 
higher during wakefulness and Aβ​ clearance through 
the glymphatic system is higher during sleep52.

In keeping with the hypothesis that Aβ​, particularly 
in its oligomeric form, is toxic, oligomeric Aβ​ interacts 
with metabotropic glutamate receptor 5 and NMDA 
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receptors53,54 and seems to interact with several other 
receptors such as α​7 nicotinic acetylcholine receptor and 
insulin receptors. In addition, Aβ​ also seems to cause 
pathological changes in dendritic spines and synaptic 
efficiency. Although aggregated Aβ​ is the overt lesion 
that could cause neurotoxicity, dysregulated APP pro-
cessing may also have ‘covert’ effects on synaptic func-
tion. APP cleavage products have normal physiological 
functions. For example, APPsα​ is a ligand for a subtype of 
GABA receptor that modulates synaptic transmission55. 
In addition, other cleavage products, such as APPsβ​ and 
APPsη​, have cellular receptors that suggest they might 
also modulate synaptic activity49,56 and non-​Aβ​ frag-
ments of APP, such as C-​terminal fragments57, seem to 
play a critical role in endosomal and lysosomal function.

Tau is a microtubule-​associated protein that is nor-
mally present in the cytoplasm of axons58 but is also 
present in both presynaptic and postsynaptic compart-
ments and associated with the nuclear membrane59,60. 
Tau occurs in six isoforms due to alternate splicing of 
exons 2, 3 and 10; the isoforms are named according to 
the presence of either three or four microtubule-​binding 
domains as the 3R or 4R isoforms, respectively61. The tau 
species that occurs in AD is a mixture of 3R and 4R tau. 
The main function of tau is microtubule stabilization59,60. 
Tau may become prone to post-​translational modifica-
tions and to aggregate. When this happens, it accumu-
lates in a hyperphosphorylated form in cell bodies and 
dendrites. Tau is released into the extracellular space 
by synaptic activity62,63 and is taken up in postsynaptic  
neurons and glia64.

Different post-​translational modifications of tau 
might allow it to be differentially taken up in postsyn-
aptic neurons or glia, differentially processed or trun-
cated, or to cause seeded aggregation. In addition, tau 

post-​translational modifications affect the rate of AD 
progression65. There is emerging evidence that ApoE66, 
TREM2 (ref.​67)​ and microglia68 play an important role 
in tau-​mediated neurodegeneration although the mech-
anisms that relate presumed microglial activity to tau 
toxicity are unknown.

Aggregated 3R and 4R tau appear histologically as 
neurofibrillary tangles (intracellular tau aggregates), 
neuropil threads (tau fragments in the neuropil) and 
dystrophic neurites (tau-​containing degenerated axons 
and dendrites surrounding Aβ​ plaques). Although these 
structures can be seen in some brainstem nuclei in 
young adults69, tauopathy in the medial temporal lobe is 
the initial site relevant to cognition70,71. Medial temporal 
tauopathy may occur independently of Aβ​ pathology72,73. 
In some patients in whom elevations in Aβ​ never occur, 
medial temporal tauopathy (referred to in these patients 
as primary age-​related tauopathy)74 may persist without 
the involvement of other regions. However, tauopathy  
of the AD type progresses outside the medial tem-
poral lobe only in those with elevated brain Aβ​75–77. 
Region-​specific cognitive deficits occurring in MCI 
and dementia reflect the sequential expansion of tau 
accumulation from the medial temporal lobe to inter-
connected temporal, parietal and frontal association 
cortices77,78 (see Clinical manifestations).

Apolipoprotein E (ApoE) is at the crossroads of clini-
cal, genetic and cellular mechanistic aspects of AD79. The 
APOE gene encodes the ApoE protein, which is produced 
in the brain predominantly by astrocytes and activated 
microglia79. In humans, there are three common iso-
forms, ApoE2, ApoE3 and ApoE4, which only differ by a 
single amino acid at position 112 or 158 (ref.​79)​. Carriers 
of the APOE ε​4 allele have a dose-​dependent increased 
risk for AD dementia80. There are several mechanisms 
by which ApoE may influence AD risk, one of which is 
by affecting the onset of Aβ​ aggregation in the brain by 
altering the clearance and seeding of Aβ​80 (Fig. ​3; also 
see Dysfunctional proteostasis, below). The three ApoE 
isoforms modulate Aβ​ clearance and seeding to varying 
extents, with ApoE4 having the strongest effect on the 
slowing of clearance, followed by ApoE3 then ApoE2 
(ref.​80)​. Accordingly, APOE ε​4 carriage can cause early 
Aβ​ accumulation in a dose-​dependent manner before 
the onset of clinical symptoms81. Approximately 10% of 
APOE ε​4 carriers have increased Aβ​ by age 57 years (as 
assessed using Aβ​-​PET), while APOE e4 non-​carriers 
have increased Aβ​ about 7 years later82.

The precise mechanisms by which Aβ​/APP and tau 
interact are not well understood83–85. Transgenic mice 
with Aβ​-​overexpression with wild-​type tau develop 
either no tauopathy or one that is dissimilar to AD86,87. 
Transgenic animals that contain both APP and tau 
mutants have interactions between Aβ​ and tau85 but 
it is not clear whether this model system replicates 
human AD. Conceptually, there are several cellular 
systems in which Aβ​/APP, tau and ApoE might inter-
act: the synapse53, in microglia88 and in the endosomal/
lysosomal/proteasomal system89,90. Alternatively, neural 
systems that accumulate Aβ​ and those that accumulate 
tau might be distinct but interact primarily through the 
connectome.

a b

α-secretase

APP αCTF

AICD

APPsα
p3

γ-secretase

α-secretase first pathway β-secretase first pathway

β-secretase

APP βCTF

AICD

APPsβ
Aβ

γ-secretase

Fig. 2 | APP cleavage pathways. a | In the non-​β​-​amyloid (Aβ​) pathway, successive 
cleavage by α​-​secretase leads to the formation of APPsα​ and α​CTF, which in turn is 
cleaved by γ​-​secretase to yield the extracellular peptide p3 and the intracellular 
fragment AICD. APPsα​ may modulate synaptic transmission through a GABA receptor.  
b | Aβ​ is formed in the ‘amyloidogenic’ pathway by the successive cleavage of amyloid 
precursor protein (APP) by β​-​secretase into APPsβ​ and β​CTF, the latter being then 
subjected to γ​-​secretase, producing Aβ​ and AICD. β​CTF plays a key role in early 
endosomal abnormalities in AD. Note that the production of Aβ​ is necessarily in equal 
amounts to AICD and APPsβ​ and in inverse amounts to p3 and APPsα​. Adapted with 
permission from ref.​48, Elsevier.
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Loss of synaptic homeostasis
Synaptic alterations are a central unifying theme53,91 to 
understand the relationship between Aβ​ and tau neuro
toxicity, the morphological lesions of AD, and cogni-
tive impairment. Synaptic loss is strongly correlated 
with cognition in patients with AD92,93. Aβ​ plaques 
are surrounded by a ring of soluble oligomeric Aβ​ and 
decreased synaptic content that extends for ~50 μ​m, 
marked by both a loss of presynaptic and postsynaptic 
markers53,94; given the large number of cortical plaques 
in patients with AD, this amounts to a substantial num-
ber of lost synapses. Moreover, in animal models of 
plaque deposition in which there is little neuronal loss, 
an additional 25% loss of synaptic content in the neuro-
pil between plaques can be observed53,94; it is likely that 
a similar phenomenon occurs in humans. These data 
suggest a strong interaction between the oligomeric 
Aβ​ species thought to surround plaques and the neu-
ropil and synaptic toxicity95. Tau-​overexpressing trans-
genic animals have a similar loss of synapses, with tau 

accumulation in presynaptic and postsynaptic sites96. 
These synaptic alterations seem to be synergistically 
amplified in mice when tau and Aβ​ mutant transgenes 
are included in the model85. Patients with AD also 
have a marked loss of synapses closely associated in 
cross-​sectional studies with the presence of neuronal 
loss, dendritic loss, loss of dendritic arborization and 
tangle formation93,97. Importantly, synaptic loss is not 
simply a part of healthy ageing in the absence of AD 
pathology in most people98; indeed, cross-​sectional stud-
ies in human autopsy samples have suggested that synap-
tic loss can precede neurodegeneration in persons with 
symptomatic AD99,100 and, in animal models, it is evident 
that synapse loss can precede tangle formation101.

In addition to a loss of synapses in AD, several stud-
ies in animal and laboratory models have suggested the 
involvement of synaptic dysfunction. In rodent trans-
genic Aβ​ models, there is hyperactivity of calcium flux 
in and around plaques, which can be normalized by 
inhibiting the generation of Aβ​ with BACE inhibitors102. 
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How this hyperactivity affects cognitively eloquent neu-
ral circuitry is unknown but it is assumed that altered 
synaptic homeostasis plays a role103,104. In mice with 
mutant tau transgenes, intracellular and extracellu-
lar recordings of neocortical pyramidal neurons show 

alterations in firing rates and firing patterns, implying 
alterations in basic electrophysiological homeostasis 
due to the tauopathy105. When mice expressing human 
tau and Aβ​ were examined, there was a tau-​dependent 
quieting of neural system activity in the parietal cortex 
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with or without neuronal loss106, which was normalized 
by the suppression of tau expression. In this study, tau 
suppression decreased the amount of soluble tau without 
affecting aggregated tau, implicating soluble tau in the 
pathophysiology of AD. Collectively, these data imply 
that the soluble forms of oligomeric Aβ​ or of tau, rather 
than the aggregated forms, have the strongest effect on 
synaptic function.

Synaptic alterations have consequences on down-
stream neural circuit integrity. In animal models, a reac-
tive synaptogenesis occurs in the hippocampus after loss 
of the entorhinal–hippocampal perforant pathway107 and 
analogous alterations occur in the human hippocampus 
in AD108,109. Whether this synaptogenesis has functional 
benefit remains unclear. Synaptic alterations can have 
remote consequences elsewhere in the brain and are 
therefore a prime explanation for the unique topo-
graphical character of AD, which is discussed further  
below.

Synaptic activity is also a likely basis for the propa-
gation of proteopathic seeds trans-​synaptically. In AD, 
the secretion of tau from neurons has been suggested62 
and, as tau release is activity dependent, a synaptic 
mechanism is implied. Moreover, in animal models, tau 
propagates across synapses to create cytoplasmic depos-
its in the downstream neurons64,110, although it remains 
to be tested if these downstream neurons lose function. 
Synaptic breakdown may facilitate this trans-​synaptic 
deposition of misfolded proteins as observed in an animal 
model of tau propagation64. In addition, as proteopathic 
seeds can be taken up at the synapse via LRP1 (ref.​111)​,  
which interacts with APP and ApoE112,113, competing 

interactions with, for example, different ApoE isoforms 
or ApoE protein levels might affect tau propagation.

Synaptic remodelling is a ubiquitous process in the 
normal brain. Synapses can be tagged for removal, pri-
marily by microglia, which are able to strip synapses 
from intact dendrites. Dysfunction in the activation 
of synaptic pruning mechanisms by microglia, medi-
ated in part by complement proteins and ApoE, among 
other molecules, have been implicated in early AD114. 
The precise mechanism of this ‘tagging’ is unclear but 
altered clearance processes plausibly link synaptic dys-
function, innate immune mechanisms and the lysoso-
mal, endosomal and autophagy mechanisms discussed  
below.

Dysfunctional proteostasis
The clearance of damaged proteins is integral to main-
taining synaptic homeostasis and the neuronal lyso-
some (Fig. ​4)​ plays an important role in the aetiology 
of AD115–117. In the context of normal brain health, the 
endosomal–lysosomal network (ELN) and autophagy 
are involved in memory and cognition, with local 
autophagy activity at synapses modulating memory 
formation118,119 and autophagy induction attenuating 
age-​related memory decline119.

Aβ​ and the β​CTF peptide arising from the β​-​secretase 
cleavage of APP are generated mainly within endosomes, 
which are the first neuronal organelles known to exhibit 
AD-​specific neuropathology120,121. Lysosomes are the 
principal sites for the clearance of intracellular Aβ​ and β​
CTF117,122. In AD, Aβ​ and β​CTF accumulate abnormally 
in ELN compartments117. In induced pluripotent stem 
cell lines with APP and PSEN1 mutations, endosomal 
abnormalities occur that are correlated with β​CTF but 
not with Aβ​123. β​CTF induces the overactivation of 
Rab5, a GTPase, which causes several endosome mor-
phological anomalies that occur in early AD117,124 such as 
accelerated endocytosis, impaired transport of enlarged 
endosomes and other neurodegenerative processes117. In 
mouse AD models, elevated levels of Rab5 signalling due 
to β​CTF elevations induce synaptic plasticity deficits, tau 
hyperphosphorylation and neurodegeneration117. The 
build-​up of β​CTF and oxidized substrates, including 
Aβ​, progressively impairs lysosome function and causes 
autophagy failure125.

Presenilins 1 and 2 are also preferentially localized 
within the ELN and presenilin 1 is essential for lysosome 
acidification. Loss-​of-​function mutations or deletion of 
PSEN1, independently of γ​-​secretase, prevent the nor-
mal assembly of the lysosomal v-​ATPase complex, the 
proton pump responsible for acidification126, and impede 
the lysosomal delivery of ClC7, a chloride ion channel 
also essential for lysosomal acidification in mice and 
in human fibroblast cultures127. Lysosomal pH dysreg-
ulation can instigate broad functional derangements 
beyond proteostasis, including the effects on synaptic 
plasticity124, neurotransmitter exocytic release128,129, and 
synaptic vesicle fusion and recycling130. APOE ε​4 car-
riage has allele-​specific effects at every ELN level, from 
accelerating and accentuating endosome dysfunction120 
and impeding exosome release131 to causing lysosomal 
expansion and lysosomal membrane permeabilization132.

Fig. 4 | Consequences of the endosomal–lysosomal network and autophagy 
dysfunction in AD. The endosomal–lysosomal pathway, consisting of early and late 
endosomes/multivesicular bodies and lysosomes, serves diverse functions in neurons 
relevant to Alzheimer disease (AD). In AD, the earliest changes seen in the brain are 
swelling of neuronal Rab5-​endosomes, reflecting the hyper-​activation of Rab5  
(Rab5-​GTP) by amyloid precursor protein (APP)-​β​CTF or neuronal overexpression  
of Rab5. Increased Rab5 activation leads to endosome enlargement and increased 
endocytosis, which have several cellular consequences relevant for AD. For example, 
increased endocytosis of AMPA receptors (AMPAR) leads to defects in synaptic plasticity 
and dendritic spine shrinkage and loss. In addition, abnormal growth factor/receptor-​
mediated signalling results in the downregulation of AKT-​mediated pro-​survival 
signalling and increased GSK-3β​-​mediated tau hyperphosphorylation (p-​tau). 
Corresponding endosomal–lysosomal activities in astrocytes and microglia coordinate 
bi-​directional trafficking of cargo into and out of cells to maintain them and support  
the clearance of extracellular material in partnership with autophagy. Autophagy 
encompasses several mechanisms of constituent delivery to lysosomes, including initial 
entry of the substrate into late endosomes/multivesicular bodies (microautophagy), 
chaperone-​mediated delivery directly to lysosomes, or macroautophagy, the major route 
depicted here. The increased induction of autophagy, a cellular stress response, becomes 
counter-​productive as the functioning of autolysosomes and lysosomes is progressively 
corrupted due to multiple genetic and environmental factors. The result is a substantial 
build-​up of autophagic vacuoles, mainly poorly acidified autolysosomes incompetent in 
clearing Aβ​ and β​CTF, causing a unique pattern of perikaryal membrane blebbing, trafficking 
deficits producing autophagic vacuole-​filled swellings along axons (dystrophic neurites), and 
accelerated peri-​nuclear Aβ​ aggregation preceding advanced neuronal degeneration  
and disintegration, initiating senile plaque formation. An ensuing inflammatory response 
involving the recruitment of phagocytic microglia to compromised neurons/neurites and  
a release of damaging cytokines as the extracellular debris is being cleared increases 
bystander neurotoxicity, affecting neighbouring neurons and senile plaque expansion. 
LMP, lysosomal membrane permeabilization; LTD, long-​term depression; LTP, long-​term 
potentiation; ASC, Apoptosis-​associated speck-​like protein.
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Autophagy has several functions that are relevant 
for AD, primarily proteostasis but also homeostatic cell 
signalling, phagocytosis, innate immunity and synaptic 
function133,134. Macroautophagy is induced by nutrient 
or metabolic stress and recycles non-​essential sub-
strates for energy or selectively targets protein aggre-
gates and damaged organelles134. The early induction 
of macroautophagy in AD135 is neuroprotective against 
ageing-​related and disease-​related sources of oxidative 
stress136,137; however, continued high rates of delivery of 
oxidized or damaged cytoplasmic constituents, such as 
mitochondria, Aβ​ and other APP products, to lysosomes 
later in disease overburdens an already compromised 
lysosomal system135, resulting in a substantial accumu-
lation of waste in neurons138. Accordingly, dystrophic 
neurites become engorged with waste-​filled autophagic 
vacuoles that contain high levels of APP, β​-​secretases and 
γ​-​secretases, and APP metabolites139. Although neurons 
can survive for years with neuritic dystrophy140, eventual 
autophagic vacuole accumulation in the perikarya leads 
to more rapid autophagy failure and neurodegeneration 
(Fig. ​4)​. Lysosomal membrane-​damaging events, induced 
by Aβ​ and other oxidized substrates, trigger the death of 
neurons and microglia by lysosomal membrane perme-
abilization, which releases cathepsins that can activate 
cell death cascades141.

Microglia-​expressed genes and genes involved in 
the complement pathway are risk genes for AD, imply-
ing the relevance of microglia and neuroinflammatory 
mechanisms in AD89. Activated microglia play a key 
role in AD pathogenesis and link synaptic life cycles 
and innate immunity to the ELN functions. Microglial 
lysosomal membrane permeabilization events underlie 
the brain’s principal inflammatory response and the 
release of cytokines, particularly IL-1β​, which is thought 
to exacerbate neurodegeneration in AD142,143. Cathepsin 
B released by lysosomal permeabilization events into 
the cytosol facilitates the assembly of the microglial 
NLRP3 inflammasome and activates caspase 1, which 
is responsible for the maturation and extracellular dis-
charge of cytotoxic IL-1β​ that subsequently fuels brain 
inflammation144. The concept of an “autophagy-​brake 
regulation” of inflammation reflects evidence that auto-
phagy suppresses inflammasome activation and IL-1β​ 
release145, both of which are elevated when autophagy 
is impaired in AD and ageing146. The role of the micro-
glial protein TREM2 in AD pathogenesis is complex and 
may differ at the various disease stages147,148. It might 
be expected that altered autophagy and ELN function 
would affect synaptic pruning149 and therefore the integ-
rity of normal synaptic connectivity but there is not a 
clear demonstration of the interrelationship of these two 
systems in human AD.

Aβ​, tau or other potentially toxic molecules released 
by dying cells or by aberrant exocytic mechanisms 
into the extracellular space are degraded by various 
proteases150, complementing clearance by microglia 
and astrocytes through endocytic uptake and lysosomal 
degradation. Molecular chaperones, such as the AD risk 
factor clusterin, facilitate this glial uptake. These clear-
ance routes, in addition to the brain glymphatic system 
for the clearance of extracellular pathogenetic proteins 

through the lymphatic system151, help protect against the 
transneuronal propagation of tau species.

Aβ, tau and cortical networks
Network connections have a defining role in the initial 
location of Aβ​ deposits and may be responsible for the 
early location and progression of tauopathy through  
the brain. A central element of AD as a synaptic disor-
der is the remarkable regional specificity of Aβ​ and tau 
accumulation and the extent to which clinical symptoms 
map on to the latter.

Traditional neuroanatomical investigations estab-
lished the strong interconnectivity between the entorhi-
nal cortex, the locus of initial cerebral neurofibrillary 
tangle deposition in AD, and association areas of the 
temporal, parietal and frontal isocortex70,71. Functional 
MRI replicated this connectivity in healthy humans 
and also demonstrated the dysfunction of these path-
ways in symptomatic AD. Aβ​ deposition occurs in a 
network-​specific pattern in regions comprising the 
default mode network (DMN)152,153, a group of areas 
that are active when the individual is not focused on the 
external environment and which includes the posterior 
cingulate gyrus and two subsystems (a medial frontal 
one and a medial temporal one)152. The association 
between Aβ​ deposition and the DMN shows that Aβ​ 
accumulates in brain regions with the highest synaptic 
activity (and, therefore, also regions with the greatest 
stress on the resident autophagy and ELN). The num-
ber of functional connections or the degree of ‘hubness’, 
which is another measure of synaptic load, is predictive 
of the amount of measured Aβ​ in a brain region154.

Tauopathy occurs in networks other than the DMN 
that support specific cognitive domains and are impaired 
in symptomatic AD155, with clinical phenotype-​specific 
changes in functional networks as measured with func-
tional MRI156 or FDG-​PET157. Regions that are con-
nected to loci with a high tau abundance are more likely 
to experience an increase in tau accumulation158,159. The 
major patterns of tau deposition observed with tau-​PET 
show a spatial correspondence to connectivity patterns 
with variation by clinical phenotypes (see Clinical diag-
nosis)160. Of note, in contrast to tau, there is no evidence 
of significant phenotypic variance in this macroscopic 
Aβ​ pattern161.

The functional activity of the connectome could 
selectively alter synaptic homeostasis in a way that offers 
a plausible account for the co-​occurrence of APP/Aβ​ 
and tau pathology in AD. In persons without elevated 
Aβ​ assessed using PET, those who eventually develop 
elevated Aβ​ had DMN hyperconnectivity and increased 
glucose uptake compared with those who did not later 
develop increased Aβ​162. The loss of homeostasis in areas 
of high synaptic activity in the DMN could induce dys-
function as well as the loss of homeostasis in remote but 
connected brain regions that depend on the DMN for 
proper functioning (such as the medial temporal lobe), 
a so-​called cascading network failure160. One such region 
of synaptic dysfunction and early Aβ​ accumulation, 
the posterior cingulate cortex, is strongly connected 
to the medial temporal lobe163. The downstream syn-
aptic stress, which is indexed by Aβ​ accumulation in 
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the posterior cingulate154, is a plausible account of the 
propensity of the medial temporal lobes to accumulate 
tau when it loses functional support from the DMN 
(Supplementary Figure 1). Over a timeframe exceeding 
a decade or longer, synaptic dysfunction that leads to Aβ​ 
accumulation in the DMN could accelerate tauopathy in 
strongly linked functional modules159,164. Subsequently, 
the transition from no symptoms to dementia in AD 
more closely fit with pathological tau expansion from 
the medial temporal lobe to functionally connected  
isocortical regions.

Diagnosis, screening and prevention
Clinical manifestations
The severity of cognitive impairment caused by AD 
ranges from no cognitive impairment to dementia, 
which includes subjective cognitive impairment and 
MCI (Fig. ​5)​. The principal cognitive domains that are 
affected in AD are memory, language, visuospatial func-
tion, and executive function and one or more cognitive 
domains may be affected at any severity of cognitive 
impairment. The clinical presentations of persons with 
AD pathology are further modified by the co-​presence 
of non-​AD pathologies.

The prototypical patient with AD is one with amnes-
tic MCI progressing to variable degrees of impairment in 
language, spatial cognition, executive function or work-
ing memory that interfere with daily functioning (that 
is, multidomain dementia). Amnestic presentations are 
most common with later age of onset (>​70 years) while 
non-​amnestic presentations are common in younger 
persons. The initial appearance and progression of cog-
nitive deficits in typical AD MCI and dementia follow 
the spread of tauopathy from the medial temporal lobe  
to the lateral temporal, parietal and frontal isocortex44,70,71. 
Neuropsychiatric symptoms often co-​occur with cog-
nitive deficits, of which depression, anxiety and social 
withdrawal may be most evident in mild dementia 
whereas delusions, hallucinations, emotional dyscontrol 

or physically aggressive behaviours may be observed in 
more advanced stages165.

AD can also manifest in its earliest symptomatic 
form with non-​amnestic deficits77,166. A common 
non-​amnestic AD clinical presentation — known as 
posterior cortical atrophy or the visual variant of AD — 
encompasses prominent visuospatial difficulties, includ-
ing challenges in reading, face recognition or difficulties 
processing complex visual scenes167. The logopenic form 
of primary progressive aphasia is another non-​amnestic 
form of AD168, which typically manifests as a non-​fluent 
aphasia with prominent word-​finding pauses, nam-
ing and repetition difficulties; approximately 60% of 
these persons will have underlying AD169. In addition, 
a dysexecutive presentation of AD is being recognized 
more frequently particularly in younger patients170. 
These patients have challenges in executive func-
tion, multi-​tasking, decision-​making and behavioural 
changes with preserved memory function157. The 
non-​amnestic syndromes of AD are more common in 
persons aged <​70 years although the underlying reasons 
for this observation are unknown. Both the amnestic 
and non-​amnestic presentations of AD have Aβ​ depo-
sition throughout the brain but have syndrome-​specific 
distributions of tauopathy78,171.

Clinical diagnosis
Diagnosis in individuals with cognitive complaints. 
Clinical diagnosis in the setting where a patient, family 
member or health professional raises concerns about 
cognitive decline or dysfunction in the patient is of par-
amount importance in the overall care of persons with 
cognitive impairment. Although the level of awareness 
of dementia has greatly improved in the primary care 
and specialist communities, heightened awareness of the 
early signs of cognitive impairment in the clinical setting 
is still needed.

The diagnostic process begins with a determination 
of the presence and severity of cognitive impairment. 

Clinical continuum MCICN Dementia

NIA-AA 2011 MCIPreclinical Dementia

IWG Prodromal ADAsymptomatic at risk Dementia

DSM-5 Mild NCD Major NCD

NIA-AA syndromes MCICU Dementia

NIA-AA stages 2018 ST3ST2ST1 ST4, ST5, ST6

Fig. 5 | Terminologies for characterizing cognitive impairment. Several different terminology schemes can be used  
to classify the severity of cognitive impairment from cognitively normal (CN) to dementia. The Diagnostic and Statistical 
Manual of Mental Disorders (DSM-5)281 uses the terms Mild Neurocognitive Disorder (NCD) and Major NCD to describe 
symptomatic states. The National Institute of Ageing – Alzheimer’s Association (NIA-​AA) Alzheimer disease (AD) 
framework uses clinical syndromes and defines a six-​stage scheme for individuals who have abnormal β​-​amyloid 
biomarkers (ST1–ST6)180. In the NIA-​AA scheme, mild cognitive impairment (MCI) encompasses both stages 2 and 3.  
The NIA-​AA continuum3,183,282 has evolved slightly at the boundary between cognitively unimpaired (CU) and MCI.  
The International Work Group (IWG) labels were retrieved from ref.​283. The terms CN and CU are equivalent, but the latter 
is preferred because CU better reflects its definition as the absence of cognitive impairment.
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Information from an individual who is familiar with 
the patient’s daily life and the completion of a cognitive 
evaluation of the patient (a mental status examination) 
by a skilled clinician are the cornerstones of diagnosis. 
Neuropsychological testing can be beneficial to deter-
mine the severity of cognitive impairment in mild or 
high-​functioning patients and can identify the involved 
cognitive domains, which can help the clinician with 
prognostication and with considerations about the under-
lying aetiology. This tentative diagnosis can then be con-
firmed with biomarkers. Although technology can assist 
in formulating a diagnosis, diagnosis rests on the skill 
of the clinician in integrating information from the  
informant, the mental status examination, the neurological 
examination and the technology. If cognitive impairment 
is diagnosed, a provisional determination of aetiology is 
made based on information from the history, the inform-
ant, the mental status examination (supplemented by 
neuropsychological testing in some circumstances)  
and the rest of the neurological examination.

AD is not the only cause of MCI (Fig. ​1)​. Any neuro
degenerative or cerebrovascular aetiology could initially 
lead to MCI and mild overt symptomatic cognitive 
impairment could be due to depression, medication mis-
use or obstructive sleep apnoea. In persons with MCI or 
dementia, screening for hypothyroidism, B12 deficiency 
and structural brain lesions, such as neoplasms or sub-
dural hematomas, should be performed, even though the 
yield of clinically relevant abnormalities is low172. Once 
persons reach the dementia stage, reversible conditions 
are very unlikely but a number of non-​AD conditions173 
have clinical phenotypes that overlap with AD such as 
Lewy body disease174, frontotemporal degenerations175,176 
and hippocampal sclerosis177. Thus, the consideration of 
alternative aetiologies should occur during the diagnos-
tic evaluation of persons with MCI or dementia in whom 
AD is suspected. Features of the clinical presentation are 
the initial clue that a non-​AD process may be present.

Screening in those with no cognitive complaints. 
Screening for objective evidence of cognitive impair-
ment in the absence of cognitive complaints is not rec-
ommended. This topic has been quite controversial178. 
The United States Preventive Services Task Force has 
repeatedly indicated that there are insufficient data on 
improved patient outcomes to recommend the utility of 
cognitive screening179. One problem with screening is 
that the cognitive assessments used for screening lack 
precision, especially for the detection of milder cogni-
tive impairment179. However, in support of screening, 
the recognition of cognitive limitations in patients by 
health-​care practitioners, even in the absence of cogni-
tive complaints, may be informative as unacknowledged 
cognitive impairment may have dramatic effects on the 
adherence to recommended medical interventions or 
other healthy living activities. Should disease-​modifying 
therapies for AD become available, screening will take 
on increasing importance despite the challenges in 
designing studies to address screening178.

Biomarkers
AD-​specific antemortem biomarkers used in the con-
text of careful clinical characterization has helped to 
establish levels of certainty for an AD pathology that 
was impossible when the only means of verification of  
the underlying pathology was at autopsy. In addition, the 
use of these biomarkers has enhanced our knowledge 
of AD. Combining amyloid and tau biomarkers with 
non-​specific biomarkers of neurodegeneration was at 
the core of the research framework for AD proposed in 
2018 (ref.​180)​. The A-​T-​N approach is intended to classify 
individuals in the AD spectrum (Fig. ​6)​. Diagnostic algo-
rithms are being developed to provide recommendations 
on the most meaningful combination and to order these 
biomarkers according to the specific clinical situation181.

Imaging biomarkers. CT, FDG-​PET and MRI were the 
first imaging modalities used to evaluate patients with 
cognitive impairment but their lack of specificity or sen-
sitivity for AD was difficult to integrate into a conceptual 
model of AD. The introduction of Aβ​-​PET imaging in 
2004 (ref.​182)​ clarified the roles of FDG-​PET and MRI as 
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Total tau
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biomarkers

Staging
biomarkers

Fig. 6 | Conceptualizing the A-T-N scheme. Cerebrospinal fluid and PET imaging 
biomarkers can be grouped into those that proxy amyloid-​β​ (Aβ​; “A”), abnormal tau 
protein (“T”) or neurodegeneration (“N”). The A biomarkers derived from PET and 
cerebrospinal fluid (CSF) have an inverse relationship such that higher Aβ​-​PET 
corresponds to lower levels of CSF Aβ​. The “T” biomarkers derived from PET and CSF  
are both abnormal at higher values. Quantitatively, tau-​PET provides both a measure  
of regional tau abundance and distribution, whereas CSF p-​tau181 or p-​tau217 offer  
only a metric of normal or abnormal tau levels. The “N” markers, by virtue of their lack of 
specificity to Alzheimer disease (AD) and their heterogeneous underlying biologies, are 
generally not well correlated with one another. Biomarkers for AD can indicate whether 
a person is in the AD spectrum (state biomarkers) that include Aβ​ abnormalities and 
elevated tau biomarkers. Biomarkers can also be used to indicate the severity of the AD 
process (stage biomarkers) that include tau-​PET and the neurodegeneration biomarkers. 
NfL, neurofilament light chain.
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markers of neurodegeneration, whereas CT was super-
seded by MRI for research purposes. The 2011 National 
Institute of Ageing – Alzheimer’s Association criteria183 
introduced a diagnostic model using amyloid and neu-
rodegeneration biomarker profiles to characterize the 
relationship with AD in individuals across the cognitive 
spectrum.

Structural MRI or CT are necessary in the initial eval-
uation of a person with suspected cognitive impairment. 
MRI is often used as a first step to exclude other causes 
of cognitive impairment and it also allows the assess-
ment of macroscopic brain atrophy as a reflection of 
tissue loss. Of note, individuals with cognitive impair-
ment and increased Aβ​ by PET experience accelerated 
regional atrophy in the temporal and parietal isocortex 
compared with those without elevated Aβ, with larger 
volume losses correlating with advancing cognitive 
impairment184. Hippocampal atrophy observed with 
MRI is associated with AD but it can also occur in  
individuals with cognitive impairment caused by hippo
campal sclerosis, frontotemporal lobar degeneration 
or cerebrovascular disease as well as in persons with-
out cognitive impairement185. In younger persons with 
AD dementia, hippocampal sparing is common171,186. 
Structural imaging may be used to support a diagnosis of 
posterior cortical atrophy variant of AD, the most com-
mon of the younger-​onset, hippocampal-​sparing AD 
variants. Although there is a global reduction in brain 
volume in AD owing to the loss of synapses, dendrites 
and neuronal cell bodies187, global brain volume loss is 
not diagnostically useful because it is not specific for AD.

Structural MRI is also useful to assess patients for 
cerebral microbleeds that occur as a consequence of cer-
ebral amyloid angiopathy188. Cerebral microbleeds are 
common in the elderly; in a population-​based study, 39% 
of persons without dementia over the age of 80 years had 
at least one cerebral microbleed and the burden of cer-
ebral microbleeds was correlated with Aβ​-​PET levels189.  

The impact of cerebral microbleeds on cognition is 
modest190 but difficult to disentangle from the role of 
the underlying AD pathology.

FDG-​PET has revealed a pattern of temporal-​parietal 
and hippocampal hypometabolism that precedes volume 
loss in the same regions and is highly characteristic of 
AD191. FDG-​PET could be particularly useful after 
Aβ​-​PET imaging in those with elevated Aβ​ for staging, 
short-​term prediction, to differentiate between AD var-
iants and in persons without elevated Aβ​ on PET scans 
for the diagnosis of non-​AD disorders192,193. The degree 
and regional extent of hypometabolism measured by 
FDG-​PET roughly correlates with the overall severity 
of cognitive impairment in AD, supporting the use of 
clinical severity as a proxy of AD pathology.

The development of Aβ​-​PET markers that allow 
the direct visualization of Aβ​ plaque accumulation has 
increased the precision of AD diagnosis and has ena-
bled a real-​time view of the evolution of β​-​amyloidosis 
over time. Many different Aβ​-​PET tracers have been 
developed194 and they have been validated against 
neuropathology195,196 (Fig. ​7)​. Three tracers — florbeta-
pir, florbetaben or flutemetamol — have received FDA 
and EMA approval and are commercially available. In 
addition, the 11C tracer Pittsburgh compound B has 
been widely used in research settings. All these trac-
ers measure fibrillar Aβ​ deposits and give very similar 
results in clinical practice191,194. International efforts led 
to the development of a standardized procedure and a 
common ‘Centiloid’ scale for Aβ​-​PET tracers197. Aβ​-​PET 
and CSF Aβ​42 are closely but inversely correlated198,199. 
Changes in CSF Aβ​42 may precede elevations in Aβ​-​PET, 
perhaps because PET cannot detect Aβ​ species such as 
oligomers or diffuse plaque Aβ​.

Quantitative Aβ​-​PET imaging provides evidence on 
the extent and location of amyloid deposition, which is 
its main advantage over CSF-​Aβ​ biomarkers. Although 
the pattern observed on Aβ​-​PET does not differ across 
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Fig. 7 | Aβ-PET scans closely approximate neuropathology. Findings from antemortem 11C Pittsburgh Compound B 
(PiB) scans showing different standardized uptake value ratios (SUVR) of a global region of interest on the last scan prior  
to death are similar to findings from post-​mortem-​derived amyloid-​β​ (Aβ​) burden as rated on the “Thal phase”. The Thal  
Aβ​ staging system284 is a sequence of five levels of Aβ​ accumulation that reflect the expanding territory occupied by Aβ​ 
plaques. The relevant PiB signal is on the cortical surface, whereas binding in the subcortical white matter and brainstem 
represents the non-​specific binding of the tracer. Adapted with permission from ref.​196, Oxford University Press.
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AD subtypes or clinical phenotypes161, it allows the stag-
ing and monitoring of Aβ​ accumulation and the detec-
tion of Aβ​ in the earliest stages of AD200. Longitudinal 
Aβ​-​PET studies demonstrate a very low rate of accu-
mulation of Aβ​, with a lag time of 10–20 years between 
initiation of accumulation and symptomatic cognitive 
impairment and a deceleration of Aβ​ accumulation 
coinciding with the onset of symptomatic disease201. 
Approximately 20% of persons at 65 years of age and 
nearly 60% at 85 years have elevated brain Aβ​ but are 
cognitively normal202. This demonstrates both the strong 
effect of age on brain Aβ​ accumulation and the lack of 
clinical consequences of elevated Aβ​ until something 
else happens, namely the expansion of tauopathy outside 
of the medial temporal lobe.

Appropriate use criteria have been developed to 
identify patients most likely to benefit from Aβ​-​PET 
for diagnosis203. Aβ​-​PET imaging is not necessary for 
many patients with clinically diagnosed dementia due 
to AD; however, there is evidence for clinical utility 
in some symptomatic individuals not fulfilling these 
criteria204,205. With the introduction of tau-​PET into 
clinical research, the Aβ​-​PET appropriate use criteria 
need to be revised along with the development of similar  
criteria for tau-​PET.

Several tau-​PET ligands have been developed, of 
which 18F-​flortaucipir has been approved by the FDA. 
Second-​generation tracers with an improved signal-​ 
to-​noise ratio as well as less off-​target and lower non-​specific 
binding are available for research purposes206–208.  
Tau-​PET imaging allows the detection of tauopathy that 
is largely, though not entirely, specific for AD209. The 
tau-​PET binding topography strongly correlates with 
cognitive performance210 and its regional patterns map 
onto the different AD clinical phenotypes77,78 (Fig. ​8)​.  
There is a close correspondence between the regional 
accumulation of a tau-​PET tracer and FDG hypome-
tabolism. Tau-​PET abnormalities are highly predictive 
of subsequent cognitive decline in both asymptomatic 
and symptomatic individuals211–213 and sensitive to the 
regional extension of tauopathy over time158. Whereas 
Aβ​ begins to accumulate 10–20 years prior to cognitive 
symptoms and then shows a reduced rate of accumula-
tion around the time of symptom onset201, tau accumu-
lates in the temporal and parietal isocortex at a time much 
more proximate to cognitive impairment and continues 
to accumulate in parallel with disease progression77,214,215. 
It is very uncommon to encounter a patient with substan-
tial tau accumulation outside of the medial temporal lobe 
who does not have cognitive impairment209.

a

c d

bAmnestic

Visual

Language

Dysexecutive

FDG–PET TAU–PET

FDG–PET TAU–PET

FDG–PET TAU–PET

FDG–PET TAU–PET

RL LL

RM LM

RL LL

RM LM

RL LL

RM LM

RL LL

RM LM

RL LL

RM LM

RL LL

RM LM

RL LL

RM LM

RL LL

RM LM

0 7 0 70.5 3.0 0.5 2.5

0 7 0 70.5 2.8 0.5 2.8

Fig. 8 | Tau-PET and FDG-PET patterns in different clinical syndromes in persons with high β-amyloid-PET. a | Typical 
amnestic-​predominant Alzheimer disease with temporoparietal hypometabolism and tauopathy. b | Language syndrome 
(also known as logopenic variant primary progressive aphasia) with a highly asymmetric pattern in which hypometabolism 
and tauopathy are highly left hemisphere predominant. c | Visual syndrome (also known as posterior cortical atrophy)  
with a pattern of hypometabolism and tauopathy that is posterior temporal, parietal and occipital lobar in distribution.  
d | Dysexecutive syndrome with temporal, parietal and prominent frontal hypometabolism and tauopathy. Red colour  
on FDG-​PET indicates greater hypometabolism, whereas red colour on tau-​PET indicates a higher intensity of tracer 
retention. LL, left lateral; LM, left medial; RL, right lateral; RM, right medial.
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CSF biomarkers. The most validated and widely accepted 
CSF biomarkers for AD are decreases in Aβ​42 (or Aβ​42 
normalized to Aβ​40 or total tau (t-​tau)) and increases 
in phosphorylated tau (p-​tau181). These biomarkers are 
recognized by research guidelines216 for their diagnos-
tic utility217 and are used clinically in many European 
countries and the USA. Collaborative efforts over the 
last few years have sought to advance standardization  
and to improve the technology for CSF analysis218.

Aβ​42 is reduced in CSF in individuals with sympto-
matic AD of any severity and in asymptomatic persons 
who later develop symptoms. However, there is individ-
ual variability in Aβ​42 levels in CSF and normalization 
using CSF Aβ​40 or p-​tau levels has shown better diagnostic  
performance compared with Aβ​42 alone219,220.

In the A-​T-​N scheme, p-​tau181 is considered a 
specific biomarker for tau pathology, whereas t-​tau is 
considered a general marker of neurodegeneration. 
Both p-​tau181 and t-​tau are typically increased in 
MCI and dementia due to AD221. Both CSF p-​tau181 
and t-​tau are of little value in the staging of disease 
severity222. Neuropathological studies have shown that 
p-​tau181 correlates only moderately with neurofibrillary 
tangles223,224. p-​Tau181 strongly correlates with t-​tau in 
CSF and is markedly increased in AD but not in most 
other neurodegenerative diseases222, supporting the use 
of p-​tau181 as an AD-​specific biomarker. p-​Tau217 has 
recently been proposed as a more sensitive alternative 
to p-​tau181 (refs​225,226)​; p-​tau217 is not yet available for 
clinical practice.

New CSF biomarkers need to be incorporated into a 
diagnostic or prognostic framework for AD. CSF neuro-
filament light chain227 will likely emerge as an accepted 
biomarker for neurodegeneration of diverse aetiologies, 
and other CSF biomarkers228 on the verge of accept-
ance include neurogranin229, synaptosome-​associated 
protein 25 (SNAP25) and synaptotagmin 1 (SYT1), 
although their specificities for AD are yet to be estab-
lished. Biomarkers for non-​AD processes, such as cer-
ebrovascular pathology, α​-​synuclein and TDP43, will 
also be of value in establishing diagnostic frameworks 
for other neurodegenerative disorders and in recognizing 
co-​occurrence in persons with abnormal AD biomarkers.

Blood-​based biomarkers. Blood-​based biomarkers for 
AD are rapidly expanding, although effect sizes and 
other statistics to distinguish AD or MCI from con-
trols are lower than those for CSF biomarkers (https://
www.alzforum.org/alzbiomarker​) and more studies are 
needed to fully understand the links with more validated 
CSF and PET biomarkers. The development of blood-​
based biomarkers for Aβ​42 (ref.​230)​, p-​tau181 (ref.​231)​, 
p-​tau217 (ref.​232)​ and neurofilament light chain233 will 
greatly expand the capability with which AD as an aetiol-
ogy can be included or excluded. One blood-​based assay 
assessing the Aβ​42/Aβ​40 ratio was approved in the USA 
and in the European Union in 2020 based on a mass 
spectroscopy assay. This assay closely correlates with  
Aβ​-​PET status, with an area under the curve value of 
0.88 (95% CI 0.82–0.93)230. Blood-​based biomarkers 
should still be considered as candidate screening tools 
and not as diagnostic biomarkers234.

Prognosis and rate of progression
Both routine clinical practice and clinical trial experi-
ence has shown that the rate of cognitive progression in 
persons with AD is highly variable235. Variability in the 
rate of progression may be due to the biology of AD65, 
the involvement of non-​AD pathologies8 or the presence 
of comorbidities. Age may not be particularly relevant 
after accounting for comorbidities and life expectancy235. 
In general, patients with milder degrees of cognitive 
impairment experience a more gradual decline than 
those with more advanced impairment236 but, once the 
severe stages are reached, an apparent plateau may occur.

Although persons with subjective cognitive com-
plaints without objective evidence of cognitive decline 
have a highly variable prognosis, having subjective 
cognitive complaints approximately doubles the risk 
of developing MCI237,238. In one study with long-​term 
follow-​up, the transition from subjective memory com-
plaint to MCI took an average of 9.4 years238. In addi-
tion, subjective cognitive complaints are associated with 
higher burdens of imaging changes such as elevated 
Aβ​ on PET or hippocampal atrophy associated with 
AD239,240. Similar to subjective cognitive impairment, 
clinically diagnosed MCI is associated with a substan-
tially higher risk for progression to dementia than no 
cognitive impairment within 2 years24. Of note, the risk 
of progression of MCI is highly variable, even in the 
more rigorous clinical trial setting241. Some of the risk 
is predicted by the presence or absence of abnormal AD 
biomarkers.

Individuals with abnormal Aβ​ biomarkers who are 
either cognitively unimpaired or who have MCI242,243 
are at increased risk for cognitive decline compared 
with persons with normal Aβ​ biomarker levels, espe-
cially if they also have an abnormal neurodegeneration 
biomarker, an abnormal tau-​PET biomarker244,245 or 
elevated CSF tau levels243,246. For example, 6 years after 
a CSF profile with both abnormal Aβ​ and tau, ~80% 
of cognitively normal individuals had developed MCI 
or dementia (HR 33.8; 95% CI 6.1–187)246. In individ-
uals with MCI, those with elevated Aβ​ by PET have  
an increased risk of progression to dementia (HR 2.6; 
95% CI 1.3–5.3)242. APOE genotypes are also associated 
with the risk of progression, either slowing in those with 
the APOE ε​2 allele247 or accelerating in those with the 
APOE ε​4 allele248. In individuals with dominantly inher-
ited AD, CSF tau species at different phosphorylation 
states are associated with different stages of disease225.

Prevention
Although there are no proved pharmacological nor 
non-​pharmacological249–252 approaches for the pre-
vention of cognitive impairment due to AD, there are 
grounds for optimism that multidimensional inter-
ventions that involve exercise, lifestyle changes and 
cognitive stimulation253, combined with focused atten-
tion on other modifiable behaviours or conditions, 
might delay the onset of overt cognitive impairment. 
Lifestyle and medical strategies, if instituted at least 
by midlife, may reduce the burden of cerebrovascu-
lar disease-​related brain injury254. A trial of aggressive 
blood pressure reduction in persons who were thought 
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to be cognitively unimpaired at enrolment across the 
age range of 50 years and older (including 28% who 
were over the age of 75 years) resulted in a lower rate 
of incident MCI and dementia, although the safety of 
targeting a systolic blood pressure of 120 mmHg in older 
persons is debated255. A reduction in the total burden 
of brain disease of any aetiology in cognitively eloquent 
brain regions would increase the amount of AD-​related 
pathology needed to produce symptoms and, through 
that indirect mechanism, delay symptomatic disease due 
to AD.

Management
The majority of care and management of patients 
with MCI and dementia due to AD (as well as most 
all-​cause MCI and dementia) occurs in the outpatient 
setting whilst patients are still living in the community. 
Management begins from the first moment of a clini-
cian’s interaction with patients and their families. Much 
of the burden of the disease falls on family caregivers. 
For most families, having a family member with cog-
nitive impairment is a novel experience. Compassion, 
patience and a lack of condescension are critical to 
establishing rapport, trust and realistic expectations. 
For many, explicit training in this new role may be 
helpful. Supporting caregivers is a major mission of the 
Alzheimer’s Association in the USA and its sister organ-
izations in other countries. As there are many uncertain-
ties on how best to deliver caregiver support, there are 
ongoing pragmatic trials of the best way to deliver formal 
care for patients with dementia256.

Acknowledgements of the diagnosis on the part of 
the family is a critical step before more sophisticated 
treatment interventions can be introduced. Many 
patients with MCI or dementia due to AD have a pro-
found loss of insight into their own deficits and limita-
tions. The brunt of the diagnostic disclosure may fall on 
the family caregiver, usually a spouse, adult child or a 
sibling. As each patient and their family caregivers differ 
in levels of sophistication and in emotional prepared-
ness, the disclosure of the diagnosis must be tailored to 
the situation257. The introduction of biomarkers into the 
diagnostic process has made the delivery of the diagnosis 
of MCI or dementia more challenging258 because distinc-
tions between syndromes and aetiologies become more 
complex and may be unfamiliar to laypersons.

Patients with MCI to moderate dementia due to AD 
should be encouraged to be as socially, mentally and 
physically active and engaged as possible. As diet has 
not been shown to affect the course of symptomatic cog-
nitive impairment in AD, eating a ‘heart-​healthy’ diet 
can be encouraged without specific recommendations 
for foods to eat or to avoid. In addition, rather than sys-
tematic group interventions like cognitive stimulation, 
individualized interventions should be preferred as they 
may delay institutionalization259.

Treatments for comorbidities
Many patients with cognitive impairment due to AD 
have comorbidities that can exacerbate cognitive dys-
function and worsen the performance of daily activi-
ties; of note, many comorbidities may not be clinically 

recognized. Patients with concomitant depression or 
anxiety may benefit from the use of pharmacological 
interventions. Treating depression and anxiety in per-
sons with MCI or dementia due to AD differs from 
the treatment of the general population as drugs with 
an anti-​cholinergic pharmacology should be avoided 
and lower doses of psychoactive drugs should be used. 
Optimizing medication regimens should include min-
imizing other psychoactive medications unless clearly 
indicated. For example, avoiding medications that 
induce alterations in gait and balance is a paramount 
consideration. Antidepressants such as citalopram or 
sertraline may be effective for both anxiety and depres-
sion and can be used safely in patients with cognitive 
impairment.

Comorbid sleep disorders, such as obstructive sleep 
apnoea, should be treated using oral appliances or nasal 
devices that create expiratory positive airway pressure; 
patients with dementia may have difficulty adapting to 
sleeping with a mask. Hearing loss is common in patients 
with AD and can exacerbate short-​term memory prob-
lems. Hearing loss represents a management challenge 
in persons with MCI or dementia because the small and 
expensive hearing aids require careful adjustments that 
may be challenging for patients. Misplacing and los-
ing the devices is what usually terminates attempts to 
employ hearing aids in persons with cognitive impair-
ment. In addition, visual loss in persons with cognitive 
impairment, except in persons with the posterior corti-
cal atrophy syndrome, represents an unrelated but con-
founding disability, the management of which is made 
more difficult by the impaired memory and judgment of 
persons with dementia.

Comorbid gait and balance disorders in persons with 
presumed AD should raise questions about alternative 
diagnoses such as Lewy body disease, normal pressure 
hydrocephalus or cerebrovascular disease. However, gait 
and balance disorders in older persons can occur due to 
orthopaedic or neurological diseases that are unrelated 
to the cognitive disorder such as peripheral neuropathy 
or spine disease. As with sensory losses, the compound-
ing effects of a gait and balance disorder and impaired 
memory and judgment present vexing management 
challenges for which common-​sense interventions offer 
benefit260.

The treatment of pain in persons with cognitive 
impairment is challenging owing to the difficulties that 
persons with dementia have in describing their pain. 
Further, as many potent analgesic agents may cause 
sedation or reduced attentional abilities, there are sub-
stantial limitations on the use of medications beyond 
acetaminophen and NSAIDs. In patients with more 
than moderate dementia, a pain condition may present 
with agitation and irritability, whilst the cause of the pain 
remains covert.

Pharmacological approaches for AD
Pharmacological approaches that are specific to AD are 
limited to three cholinesterase inhibitors (donepezil, 
rivastigmine and galantamine) and the NMDA recep-
tor antagonist memantine. The cholinesterase inhibi-
tors are approved in the USA and Europe for mild to 
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moderate dementia due to AD and are not approved 
for persons with MCI; donepezil is also approved for 
severe dementia only in the USA. In clinical trials, these 
drugs have consistently shown modest benefits in pro-
viding a delay in symptom progression by 6 months or 
slightly longer250,261. The adverse effects of the cholinest-
erase inhibitors include nausea, vomiting, loose stools 
or loss of appetite in a minority of individuals and, less 
commonly, muscle cramps, headaches and unpleasant 
dreams. Memantine is approved in the USA only for 
moderate to severe dementia due to AD; its effects are 
also rather modest250. The adverse effects of meman-
tine are minor. Neither the cholinesterase inhibitors or 
memantine have any relevant effects on the underlying 
biology of AD.

Up until 2020, clinical trials of anti-​Aβ​ agents of a 
variety of different mechanisms had failed to produce 
any benefits262 (Box ​1)​. One drug, aducanumab (a mon-
oclonal antibody that targets Aβ​ protofibrils), is being 
considered by the FDA and the EMA for AD based on 
the results of two phase III clinical trials263. Claims of 
efficacy for aducanumab were made based on a slowing 
of decline on the Clinical Dementia Rating scale but are 
complicated because the trials were terminated prema-
turely for futility; however, additional data review found 
evidence supporting an efficacy claim. Donanemab264, 
which targets plaque Aβ​, reported both a lowering of 
aggregated Aβ​ and a reduction in the rate of cognitive and 
functional decline in a phase II study; a larger phase III  
trial (NCT#04437511) is under way. Another monoclo-
nal antibody, lecanemab265 (which targets Aβ​ oligomer 
protofibrils) is also in late-​stage trials (NCT#03887455). 
Several other therapies are in various stages of clinical 
development such as drugs directed against tau accu-
mulation or spread in later-​phase development266. Two 
secondary prevention studies for AD are ongoing, both 
with passive Aβ​ immunization; neither the API study267 
nor the A4 study268 will report results until at least 2022.

Behavioural dyscontrol in persons with dementia due 
to AD, usually in the moderate to severe stages, is a par-
ticular challenge to manage. Frightening hallucinations, 
delusions that lead to socially disruptive behaviours or 
physically aggressive behaviours will invariably require 
pharmacological intervention. Pimavanserin, a selec-
tive serotonin inverse agonist269, is currently approved 
in the USA and Europe for Parkinson disease demen-
tia psychosis but it is being examined in the USA for 
a broader indication to include dementia-​related psy-
chosis in general. Pimavanserin may be the only medi-
cation to gain a specific indication for the treatment of 
behaviours collectively referred to as agitation, namely 
frightening hallucinations and delusional thinking, 
physically aggressive behaviours and other socially 
disruptive behaviours. Atypical antipsychotics, such as 
quetiapine, are generally the main-​stays of treatment for 
agitation in patients with dementia. However, this class 
of drugs is associated with a risk of increased all-​cause 
mortality. Other antipsychotics that may be less sedating 
have a risk for the development of extrapyramidal signs. 
Drug-​induced parkinsonism in persons with dementia 
is an unacceptable consequence of attempts to control 
agitation.

Quality of life
The degree of cognitive impairment in AD has a dra-
matic effect on the patient’s desires and abilities to 
engage in some activities. The severity of cognitive 
impairment and the pattern of cognitive domain losses 
are inversely related to the capability of insight on the 
part of the patient. Giving up previously enjoyed pas-
times and hobbies may be less distressing for patients 
than it is for family caregivers who observe that change 
in behaviour. In fact, patient and caregiver goals are 
often divergent270.

MCI and dementia are a family affair and quality of 
life is as much of an issue for the primary family caregiver 
as it is for the patient. Even if a potent therapy were availa-
ble, the changes in the daily life of a patient with cognitive 
impairment and their family can take an emotional toll 
and affect their quality of life. The stress of a diagnosis of 
MCI or dementia may be especially high in families in 
which the patient is under the age of 65 years and who had 
been working or had dependent children still at home271. 
Care of the caregiver will always be as important as care 
of the patient. The quality of life of both patient and  
caregiver is affected by several factors such as other comor-
bidities, physical limitations, hearing limitations, visual  
limitations, mood disorders, pain disorders and sleep dis-
orders. Some of these are modifiable or manageable. The 
quality of life of a patient and caregiver is also affected 
by unrelated culture and environmental factors such as 
the composition of the family unit, the physical amen-
ities or challenges of the place of residence, the family 
financial situation, or the health of key family members 
on whom the patient may depend. Although health-​care 
providers may not have the time or expertise to provide 
social care consultations and such services are not avail-
able in all communities, volunteer organizations such as 
the Alzheimer’s Association and the Alzheimer’s Disease 
International can be a resource for providing consultation 

Box 1 | Anti-​Aβ antibody agents: future role still uncertain

The status of amyloid-​β​ (Aβ​)-​lowering agents as therapies for AD has been a matter of 
vigorous debate for several years as a result of repeated failures. In 2019, the drug 
aducanumab gained attention due to the claims of its sponsor that, in at least one of its 
two pivotal trials, benefits were seen263. As of this writing, the regulatory status of 
aducanumab has not been clarified. If one were to focus on the one trial that showed 
benefits on the Clinical Dementia Rating Scale, it was the degree of Aβ​ lowering and 
the target of the drug that led to success. On the other hand, if one were to view the 
two studies together and draw the conclusion that there were minimal to no clinical 
benefits from high-​dose aducanumab, then one could conclude the opposite. That is, 
neither targeting oligomeric/protofibrillar Aβ​ nor the degree of Aβ​ lowering were 
sufficient. Into this contentious debate, the report that the drug donanemab demonstrated 
significant reductions in the rate of decline on a combined cognitive and functional scale264 
has added to the complexity of the determination of the clinical benefit of anti-​Aβ​ 
therapies. In contrast to aducanumab, donanemab targeted aggregated Aβ​ species  
found in plaques. In addition, while aducanumab had a dramatic effect on Aβ​ lowering, 
donenamab was so effective in lowering Aβ​ that the drug was discontinued in many 
participants during the trial because their Aβ​ levels by PET fell essentially to zero; however, 
the clinical impact of donanemab was very small. As a replication study of donanemab is 
under way, a discussion of the clinical meaningfulness of the effect size of donanemab will 
have to await its outcome. In addition, the outcome of the phase III trial of lecanemab265 
will also serve to inform the field on whether Aβ​-​lowering strategies will be endorsed as 
clinically meaningful.
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to families of persons with dementia. Interventions for 
patients and their families can be of value in improving  
a sense of well-​being of both parties272.

Patients with AD and their families have several key 
encounters with medical professionals over the course 
of the illness. Both the explicit message and the implicit 
comfort and empathy that those encounters convey can 
have a major effect on the sense of well-​being of the 
patient and their family. When the diagnosis is rendered 
for the first time, it can be very stressful257. It is never 
easy to give a life-​changing diagnosis but doing so with 
empathy, patience and a touch of optimism can make 
a huge difference for families. An honest discussion of 
therapeutic options and lifestyle activities that enhance 
the quality of life of the patient and family is deeply 
appreciated, although sometimes that discussion needs 
to take place after the implications of the diagnosis can 
be digested by the family and patient. Some but not all 
families and patients perceive that there is a stigma asso-
ciated with a diagnosis of cognitive impairment, demen-
tia or AD. Discouraging such a belief must originate with 
the health-​care provider and the equanimity about the 
diagnosis that they project. Another difficult point for 
patient and family occurs around life-​changing events 
such as the need to leave employment, to stop driv-
ing or to move out of one’s home and into some other 
living arrangement. The decision to place a patient in  
a residential care facility is a particularly difficult time. 
Additionally, of course, end-​of-​life decisions will have 
to be faced. Health-​care professionals can make these 
passages through the saga of dementia much less painful 
by offering empathy, knowledge, validation of the care
giver’s decision-​making and perhaps sometimes a little 
nudge to make a painful decision.

Outlook
Managing cognitive impairment due to AD is an issue of 
colossal scale and breadth, including basic cell biology, 
systems biology, clinical practice, human therapeutics 
and population-​health implementation science. In clin-
ical care, the timely recognition of symptomatic cog-
nitive impairment remains an obstacle to quality care. 
In all countries, expertise in cognitive disorders at the 
primary care level could be improved substantially. New 
approaches to timely diagnosis using innovative technol-
ogies, such as smartphones and virtual medical encoun-
ters, might be transformative and create more efficient 
but informative clinical assessments. Although clinical 
diagnosis will always rely on direct interactions between 
clinicians, patients and family caregivers, various tech-
nologies may provide objective documentation of 
changes in a patient’s behaviour that had escaped detec-
tion by family caregivers. For example, social withdrawal 
is a common accompaniment of changes in cognitive 
function. Devices that measure mobility could be used 
to identify when decreases in activities outside the home 
began. Of course, such technology-​derived information 
would need to be validated against human observations.

The last decade has seen much effort into prevention 
strategies for dementia using low-​cost available tech-
niques and technologies such as diet, exercise, cognitive 
training and attention to vascular risk factor mitigation. 

The FINGER study253 is unique in its design and its 
claims of success compared to other multidimensional 
intervention programmes. This study recruited persons 
with lower ratings of vascular health, thereby enriching 
the trial with persons likely to benefit from interventions 
for lifestyle changes, diet and exercise. Lessons learned 
from the unsuccessful trials273–275 should enable research-
ers to choose the right participants and develop the right 
intervention strategies to improve upon the FINGER 
study paradigm. The translation of interventions suita-
ble for highly motivated research subjects into strategies 
for persons who have less health-​conscious world-​views 
must also be part of implementing non-​pharmacological 
interventions. The development of strategies that ena-
ble longer periods of follow-​up for interventions of all 
types but especially non-​pharmacological ones should 
be a goal for the field. There are practical and ethical 
limitations on the duration of randomized controlled 
trials; therefore, alternative trial designs that minimize 
the loss of scientific rigour are needed.

Acceptance of the multi-​aetiologic nature of later-​life 
cognitive impairment must be recognized, although it 
increases the complexity of defining the relative contri-
butions of individual pathophysiologies6. Blood-​based 
biomarkers for AD, vascular injury, TDP43, α​-​synuclein 
and synaptic markers will dramatically improve aeti-
ological characterization and assist in phenotyping 
patients in ways that might be therapeutically relevant. 
In addition, identifying effective treatments for cogni-
tive impairment will also help to identify the aetiolog-
ical relevance and will create the impetus throughout 
the health-​care delivery system to become more pro
active in diagnosing and treating cognitive impairment 
due to AD. Ongoing and future work in genomics276, 
proteomics277 and lipidomics278 must be pursued to 
help clarify promising targets for therapy. In addition, 
discovery at the interface of clinical AD and basic sci-
ence should be directed to biological variables that sub-
stantially affect the rate of disease progression. Basic 
laboratory science in AD has expanded our knowledge 
dramatically and perhaps the critical target that will 
change how we approach AD therapeutics has already 
been reported. Rodent models of AD have not proved 
to be good predictors of success in humans279 and there-
fore new model systems need to be developed such as 
induced pluripotent stem cells280 or three-​dimensional 
culture systems278.

A major bottleneck in the process of discovering 
effective therapeutics is the performance of clinical 
trials. As of 2020, our technology has not substantially 
improved upon a trial design that requires a large frac-
tion of participants to receive a placebo, a minimum 
of 18 months per person, hundreds if not a thousand 
persons per treatment arm and clinical outcome meas-
ures that are noisy. Until the field can qualify a surrogate 
disease biomarker that reduces the number of partici-
pants and can find techniques to shorten the time to an 
efficacy readout, the process of working through a very 
small number of promising agents per year worldwide 
is far too slow.
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