
Gabriella Pasi
gabriella.pasi@unimib.it

NAMED ENTITY
RECOGNITION (NER)

Named Entity Recognition (NER)
A very important sub-task of Information Extraction, aimed at
finding and classifying names in texts, for example:

The decision by the independent MP Andrew Wilkie to
withdraw his support for the minority Labor government
sounded dramatic but it should not further threaten its stability.
When, after the 2010 election, Wilkie, Rob Oakeshott, Tony
Windsor and the Greens agreed to support Labor, they gave
just two guarantees: confidence and supply.

Named Entity Recognition (NER)
Christopher

Manning

• A very important sub-task: find and
classify names in text, for example:

• The decision by the independent MP Andrew
Wilkie to withdraw his support for the minority
Labor government sounded dramatic but it
should not further threaten its stability. When,
after the 2010 election, Wilkie, Rob Oakeshott,
Tony Windsor and the Greens agreed to support
Labor, they gave just two guarantees:
confidence and supply.

Named Entity Recognition
(NER)

Person
Date
Location
Organi-
 zation

Named Entity Recognition
• Named entity recognition
• identify words that refer to names of interest in a particular

application
• e.g., people, companies, locations, product names

• Text is mapped to the identified names
• Task: what is the most likely mapping

Named Entity Recognition
• Example :

Its initial Board of Visitors included U.S.
Presidents Thomas Jefferson, James
Madison, and James Monroe.

Its initial Board of Visitors included U.S.
Presidents Thomas Jefferson, James
Madison, and James Monroe.

Organization, Location, Person

Linguistically difficult problem
• NER involves identification of proper names in texts, and
classification into a set of predefined categories of
interest.

• Three universally accepted categories: person, location
and organisation.

• Other common tasks: recognition of date/time
expressions, measures (percent, money, weight etc),
email addresses etc.

• Other domain-specific entities: names of drugs, medical
conditions, names of ships, bibliographic references etc.

Applications of NER

• Yellow pages with local search capabilities

• Monitoring trends and sentiment in textual social media

• Interactions between genes and cells in biology and
genetics

Problems in NER task definition

• Category definitions are intuitively quite clear, but there
are many grey areas.

• Many of these grey areas are caused by metonymy.
• Organisation vs. Location : “England won the World Cup” vs. “The

World Cup took place in England”.
• Company vs. Artefact: “shares in MTV” vs. “watching MTV”
• Location vs. Organisation: “she met him at Heathrow” vs. “the

Heathrow authorities”

Named Entity Recognition
1) Rule-based
• Uses lexicons (lists of words and phrases) that categorize names

• e.g., locations, peoples’ names, organizations, etc.

• Rules also used to verify or find new entity names
• e.g., “<number> <word> street” for addresses
• “<street address>, <city>” or “in <city>” to verify city names
• “<street address>, <city>, <state>” to find new cities
• “<title> <name>” to find new names

• Rules either developed manually by trial and error or by using
machine learning techniques

• Language dependent

Named Entity Recognition
• 2) Statistical machine learning

• uses a probabilistic model of the words in and around an entity

• probabilities estimated using training data (manually annotated
text)

• Hidden Markov Model (HMM) is one approach (other approaches
Conditional Random Fields, Support Vector Machines…)

Hidden Markov model for NER
• Resolve ambiguity in a word using context
• e.g., “marathon” is a location or a sporting event, “boston

marathon” is a specific sporting event

• Model context using a generative model of the sequence
of words

HMM for Extraction
• The HMM is based on augmenting the Markov chain

• Markov Model (Markov Chain) describes a process as a
sequence of states (random variables) with transitions
between them.
• each transition has a probability associated with it
• next state depends only on current state and transition probabilities

Markov Assumption: P(qi = a|q1...qi−1) = P(qi = a|qi−1)

HMM for Extraction
• The HMM is based on augmenting the Markov chain

• Markov Model (Markov Chain)

2 APPENDIX A • HIDDEN MARKOV MODELS

state must sum to 1. Figure A.1b shows a Markov chain for assigning a probabil-
ity to a sequence of words w1...wn. This Markov chain should be familiar; in fact,
it represents a bigram language model, with each edge expressing the probability
p(wi|w j)! Given the two models in Fig. A.1, we can assign a probability to any
sequence from our vocabulary.

Formally, a Markov chain is specified by the following components:
Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.Pn
j=1 ai j = 1 8i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i.
Some states j may have p j = 0, meaning that they cannot
be initial states. Also,

PN
i=1 pi = 1

Before you go on, use the sample probabilities in Fig. A.1a (with p = [.1, .7.,2])
to compute the probability of each of the following sequences:

(A.2) hot hot hot hot
(A.3) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. A.1a?

A.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden
part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventsHidden
Markov model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
PN

j=1 ai j = 1 8i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV
B = bi(ot) a sequence of observation likelihoods, also called emission probabili-

ties, each expressing the probability of an observation ot being generated
from a state i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the probability that
the Markov chain will start in state i. Some states j may have p j = 0,
meaning that they cannot be initial states. Also,

Pn
i=1 pi = 1

A first-order hidden Markov model instantiates two simplifying assumptions.

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright
© 2021. All rights reserved. Draft of December 29, 2021.

HMM for Extraction
• The HMM is based on augmenting the Markov chain

Markov chain useful to compute a probability for a sequence of observable
events.
Often events we are interested in are hidden: we do not observe them
directly. For example, in a text we do not normally observe part-of-speech
tags; we see words and must infer the tags from the word sequence.
We call the tags hidden because they are not observed.

HMM for Extraction

As with a first-order Markov chain, the probability of a particular state depends
only on the previous state.
The probability of an output observation oi depends only on the state that produced
the observation qi and not on any other states or any other observations.

2 APPENDIX A • HIDDEN MARKOV MODELS

state must sum to 1. Figure A.1b shows a Markov chain for assigning a probabil-
ity to a sequence of words w1...wn. This Markov chain should be familiar; in fact,
it represents a bigram language model, with each edge expressing the probability
p(wi|w j)! Given the two models in Fig. A.1, we can assign a probability to any
sequence from our vocabulary.

Formally, a Markov chain is specified by the following components:
Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j represent-

ing the probability of moving from state i to state j, s.t.Pn
j=1 ai j = 1 8i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i.
Some states j may have p j = 0, meaning that they cannot
be initial states. Also,

PN
i=1 pi = 1

Before you go on, use the sample probabilities in Fig. A.1a (with p = [.1, .7.,2])
to compute the probability of each of the following sequences:

(A.2) hot hot hot hot
(A.3) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. A.1a?

A.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of observable events. In many cases, however, the events we are interested in are
hidden: we don’t observe them directly. For example we don’t normally observehidden
part-of-speech tags in a text. Rather, we see words, and must infer the tags from the
word sequence. We call the tags hidden because they are not observed.

A hidden Markov model (HMM) allows us to talk about both observed eventsHidden
Markov model

(like words that we see in the input) and hidden events (like part-of-speech tags) that
we think of as causal factors in our probabilistic model. An HMM is specified by
the following components:

Q = q1q2 . . .qN a set of N states
A = a11 . . .ai j . . .aNN a transition probability matrix A, each ai j representing the probability

of moving from state i to state j, s.t.
PN

j=1 ai j = 1 8i
O = o1o2 . . .oT a sequence of T observations, each one drawn from a vocabulary V =

v1,v2, ...,vV
B = bi(ot) a sequence of observation likelihoods, also called emission probabili-

ties, each expressing the probability of an observation ot being generated
from a state i

p = p1,p2, ...,pN an initial probability distribution over states. pi is the probability that
the Markov chain will start in state i. Some states j may have p j = 0,
meaning that they cannot be initial states. Also,

Pn
i=1 pi = 1

A first-order hidden Markov model instantiates two simplifying assumptions.

HMM for Extraction
• To recognize named entities, find sequence of “labels” that

give highest probability for the sentence
• only the outputs (words) are visible or observed
• states are “hidden”
• E.g

• Fred Smith, who lives at 10 Water Street, Springfield, MA, is a long time
collector of tropical fish.

• <start><name><not-an-entity><location><not-an-entity><end>

• Viterbi algorithm implements a Markov tagging process and
can be used for recognition

Named Entity Recognition
• Accurate recognition requires about 1M words of training

data (1,500 news stories)
• may be more expensive than developing rules for some

applications

• Both rule-based and statistical can achieve about 90%
effectiveness for categories such as names, locations,
organizations
• others, such as product name, can be much worse

Open source sw for POS and NER:
https://nlp.stanford.edu/software/

CORENLP: https://corenlp.run/

https://nlp.stanford.edu/software/

HMM-EXAMPLE

Ref: https://www.mygreatlearning.com/blog/pos-tagging/

Transition probability
• The transition probability is the likelihood of a particular

sequence for example, how likely is that a noun is followed by a
model and a model by a verb and a verb by a noun. This
probability is known as Transition probability. It should be high
for a particular sequence to be correct.

Emission Probability
• Ted will spot Will
• Now, what is the probability that the word Ted is a noun, will is

a model, spot is a verb and Will is a noun. These sets of
probabilities are Emission probabilities and should be high for
our tagging to be likely.

Training Data
• Mary Jane can see Will
• Spot will see Mary
• Will Jane spot Mary?
• Mary will pat Spot

Example

count

Words Noun Model Verb
Mary 4 0 0
Jane 2 0 0
Will 1 3 0
Spot 2 0 1
Can 0 1 0
See 0 0 2
pat 0 0 1

Probability

Words Noun Model Verb
Mary 4/9 0 0
Jane 2/9 0 0
Will 1/9 3/4 0
Spot 2/9 0 1/4
Can 0 1/4 0
See 0 0 2/4
pat 0 0 1

Emission probability
• The probability that Mary is Noun = 4/9
• The probability that Mary is Model = 0
• The probability that Will is Noun = 1/9
• The probability that Will is Model = 3/4

Start and end tag

COUNT

N M V <E>

<S> 3 1 0 0
N 1 3 1 4
M 1 0 3 0
V 4 0 0 0

In the above figure, we can see that the <S> tag is followed by the N tag
three times, thus the first entry is 3.The model tag follows the <S> just once,
thus the second entry is 1. In a similar manner, the rest of the table is filled.

TRANSITION PROBABILITY

N M V <E>
<S> 3/4 1/4 0 0
N 1/9 3/9 1/9 4/9
M 1/4 0 3/4 0
V 4/4 0 0 0

HMM
• how does the HMM determine the appropriate sequence of

tags for a particular sentence from the above tables? Let us
find it out.

Test data
• Take a new sentence and tag them with wrong tags. Let the

sentence, ‘ Will can spot Mary’ be tagged as-
• Will as a model
• Can as a verb
• Spot as a noun
• Mary as a noun

Test example

1/4*3/4*3/4*0*1*2/9*1/9*4/9*4/9=0

Test example

3/4*1/9*3/9*1/4*3/4*1/4*1*4/9*4/9=0.000
25720164

Solution

Test example

The next step is to delete all the vertices and edges with probability zero, also the
vertices which do not lead to the endpoint are removed.

Test example
• Now there are only two paths that lead to the end, let us

calculate the probability associated with each path.

• <S>→N→M→N→N→<E>
=3/4*1/9*3/9*1/4*1/4*2/9*1/9*4/9*4/9=0.00000846754

• <S>→N→M→N→V→<E>=3/4*1/9*3/9*1/4*3/4*1/4*1*4/9*
4/9=0.00025720164

