Förster (Fluorescence) Resonance Energy
Transfer (FRET) Transfer (FRET)

- Great method for the detection of:
	- Protein-protein interactions
	- Enzymatic activity
	- Small molecules interacting inside a cell

Resonance Energy Transfer (non-radiative) The Bad: Self-quenching

If dye at high concentration "hot-potato" the energy until lost

Resonance Energy Transfer (non-radiative)

"Self-quenching" of dye

("hot-potato" the energy until lost)

FRET: Resonance Energy Transfer (non-radiative) The Good: FRET as a molecular yardstick

Transfer of energy from one dye to

Depends on:

Spectral overlap

Distance

Alignment

FRET:

Optimize spectral overlap Optimize κ^2 -- alignment of dipc Minimize direct excitement of the acceptor (extra challenge for filter design)

$$
K_{T} = (1/\tau_{D}) \bullet [R_{0}/r]^{6}
$$

$$
E = \frac{1}{1 + (r/R_{0})^{6}} = 1 - \frac{\tau'_{D}}{\tau_{D}}
$$

The Förster Equations.

$$
K_{\text{T}} = (1/\tau_{\text{D}}) \cdot [R_{0}/r]^{6}
$$

\n
$$
E = \frac{1}{1 + (r/R_{0})^{6}} = 1 - \frac{\tau'_{D}}{\tau_{D}}
$$

\n
$$
R_{0} = 2.11 \times 10^{-2} \cdot [\kappa^{2} \cdot J(\lambda) \cdot \eta^{-4} \cdot Q_{D}]^{1/6}
$$

\n
$$
J(\lambda) = \int f_{D}(\lambda) \mathcal{E}_{A}(\lambda) \lambda^{4} d\lambda
$$

\n
$$
E = 1 - \frac{F'_{D}}{F_{D}}
$$

r is the center-to-center distance (in cm) between the donor and acceptor

 τ_D is the fluorescence lifetime of the donor in the absence of FRET k^2 is the dipole-dipole orientation factor, r is the center-to-center distance (in cm) between the donor and acceptor $\tau_{\rm b}$ is the fluorescence lifetime of the donor in the absence of FRET κ^2 is the dipole-dipole orientation factor,
 $Q_{\rm b}$ is the quantum

 Q_D is the quantum yield of the donor in the absence of the acceptor η is the refractive index of the intervening medium,

 $F_{D}(\lambda)$ is the fluorescence emission intensity at a given wavelength λ (in cm)

 ε_A (λ) is the extinction coefficient of the acceptor (in cm $^{-1}$ M $^{-1}$).

The orientation factor κ^2 can vary between 0 and 4, but typically κ^2 = 2/3 for randomly oriented molecules (Stryer, 1978).

```
When r = R_0, the efficiency of FRET is 50%
```
FRET: Resonance Energy Transfer (non-radiative) The Good: FRET as a molecular yardstick

Transfer of energy from one dye to

Depends on:

Spectral overlap

Distance

Alignment

How dipole affects FRET as a molecular yardstick

Fluorescent dye as dipole antenna

• Absorption depends on orientation

Fluorescent dye as dipole antenna

• Orientation of fluorescence emission

Dipole radiation pattern

Fluorescent dye as dipole antenna

More about FRET (Förster Resonance Energy Transfer)

Effective between 10-100 Å only

Emission and excitation spectrum must significantly overlap

From J. Paul Robinson, Purdue University

FRET efficiency and the Förster Equations

- Distance between donor and acceptor
- When $r = R_0$, the efficiency of FRET is 50%
- When $R < R_0$, $E_{\text{FRET}} > 0.50$
- When $R > R_0$, E_{FRET} < 0.50 $\frac{1}{\mu}$ ^{0.6}

