
WORD EMBEDDING
Vector semantics

Prof. Marco Viviani

marco.viviani@unimib.it

mailto:marco.viviani@disco.unimib.it


Word embedding –Definition

• The term word embedding indicates a set of techniques

in Natural Language Processing (NLP) where words or 

phrases from the vocabulary are mapped to dense 

vectors of real numbers.

• Conceptually, it involves a mathematical embedding 

from a vector space with many dimensions per word to a 

vector space with a much lower dimension.

• Models to generate this mapping include: 

• Count-based models (Distributed semantic models)

• Predictive models (Neural network models)



BACKGROUND

Text representation



Representing DOCUMENTS as vectors

• Each document is represented by a vector of words.

• Option 1: Binary representation.

𝑑1 𝑑2 𝑑3

𝑑1 = [1, 0, 0] 𝑑2 = [0, 1, 0]

𝑉

𝐷 = 𝑁

1

1

1

0

0

0

0

0

0

𝑑3 = [0, 0, 1]



Representing DOCUMENTS as vectors

• Each document is represented by a vector of words.

• Option 2: Raw frequency representation.

𝑑1 𝑑2 𝑑3

𝑑1 = [85, 0, 0] 𝑑2 = [0, 10, 0]

85

10

44

0

0

0

0

0

0

𝑑3 = [0, 0, 44]



Representing DOCUMENTS as vectors

• Each document is represented by a vector of words.

• Option 3: Weighted representation.

• Weighted term frequency (different possibilities)

• TF-IDF

𝑑1 𝑑2 𝑑3

𝑑1 = [0.48, 0, 0] 𝑑2 = [0, 0.48, 0]

0.48

0.48

0.48

0

0

0

0

0

0

𝑑3 = [0, 0, 0.48]



Similarity of DOCUMENTS

• Vectors of the two comedies are similar. They are different with 
respect to the history plays.

• Comedies have more “fools” and “wits” and fewer “battles”.

• The vector representation of documents is at the basis of 
Information Retrieval → Vector Space Model 

As You 

Like It

Twelfth 

Night 

Julius 

Caesar 
Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3



Visualizing similarity of DOCUMENTS



WORDS can be represented as vectors too

• In the term-document matrix representation, a possible 

interpretation could be:

• battle is "the kind of word that occurs history plays, in Julius Caesar 

and Henry V especially".

• fool is "the kind of word that occurs in comedies, especially Twelfth 

Night".

As You 

Like It

Twelfth 

Night 

Julius 

Caesar 
Henry V

battle 1 0 7 13

good 114 80 62 89

fool 36 58 1 4

wit 20 15 2 3



In-document features



Similarity of WORDS

• Usually, the similarity of words is NOT computed by using 

the term-document representation.

• Two words are similar if their «context vectors» are 

similar.

• We are going to detail this concept in the next slides.

• The employed matrix representation, in this case, has 

words on both rows and columns.

• Different representations and meanings.

• Next slides.



Representing WORDS as vectors
1. Local representation

• Each word is represented by a vector of words.

• Option 1: each element represents a different word.

• Also known as “1-hot” or “1-of-𝑉” or local representation.

𝑉

𝑉
1

1

1

0

0

0

0

0

0

bear = 1, 0, 0  cat = [0, 1, 0] frog = [0, 0, 1]



1-hot vectors

• 1-hot vectors tell us very little.

• We need a separate dimension for every word we want to 

represent (the base vectors in a vector space).

frog

frog

1

1

10



1-hot vectors

Few problems with the one-hot approach for encoding:

• The number of dimensions (the columns) increases 

linearly as we add words to the vocabulary.

• For a vocabulary of 50,000 words, each word is represented with 

49,999 zeros, and a single “one” value in the correct location. As 

such, memory use is prohibitively large.

• The matrix is very sparse, mainly made up of zeros.

• There is no shared information between words and no 

commonalities between similar words.



1-hot vectors

• There is no shared information between words and no 

commonalities between similar words.

𝑏𝑒𝑎𝑟 = 1, 0, 0

𝑓𝑟𝑜𝑔 = 0, 1, 0

𝑐𝑎𝑡 =  [0, 0, 1]frog

frog

1

1

10



• Each word is represented by a vector of words.

• Option 2: IDEA: to each word of the vocabulary are associated 𝑘
“context dimensions” that represent “properties” associated with the 

words of the vocabulary.

• Also known as distributed representation.

𝑉

𝐶 𝐶 = 𝑘 ≪ |𝑉|

Representing WORDS as vectors
2. Distributed representation

AIM



Distributed representation

• “Distributed vectors” allow to group similar words/objects 

together, depending on the considered context.



Distributed representation

• For simple scenarios, we can create a 𝒌-dimensional 

mapping for a simple example vocabulary by manually 

choosing contextual dimensions that make sense.



Relationships between words 

• In a well-defined distributed representation model, 

calculations such as:

𝑘𝑖𝑛𝑔 − [𝑚𝑎𝑛] + [𝑤𝑜𝑚𝑎𝑛] = [𝑞𝑢𝑒𝑒𝑛]

𝑃𝑎𝑟𝑖𝑠 − [𝐹𝑟𝑎𝑛𝑐𝑒] + [𝐺𝑒𝑟𝑚𝑎𝑛𝑦] = [𝐵𝑒𝑟𝑙𝑖𝑛]

(where [𝑥] denotes the vector for the word 𝑥) will actually 

work out!

𝑘𝑖𝑛𝑔 − [𝑚𝑎𝑛] + [𝑤𝑜𝑚𝑎𝑛] = [𝑞𝑢𝑒𝑒𝑛]
0, 0, 1 − [0,0,0] + [1,0,0] = [1,0,1]



Distributed representation: Advantages

Some well-known advantages:

• Each word is represented with a 𝒌-dimensional vector

• Optimal representations are those with 𝒌 ≪ |𝑽|.

• Similar words have similar vectors

• There’s a smaller distance between vector representation for “girl” 

and “princess”, than from “girl” to “prince”.

To be continued…



Distributed representation: Advantages

… cont’d

• The resulting matrix is much less sparse (less empty 

space), and we could potentially add further words to the 

vocabulary without increasing the dimensionality. 

• For instance, the word “child” might be represented with [0.5, 1, 0].

• Relationships between words are captured and 

maintained, e.g., the movement from king to queen, is 

the same as the movement from boy to girl, and could be 

represented by [+1, 0, 0].



Local VS Distributed representation

• Local (or one-hot) representation
• Every term in vocabulary 𝑉 is represented by a binary vector of length |𝑉|, 

where one position in the vector is set to one and the rest to zero.

• Distributed representation
• Every term in vocabulary 𝑉 is represented by a real-valued vector of length 𝑘. 

The vector can be sparse or dense. The vector dimensions may be observed (e.g., 
hand-crafted features) or latent (e.g., embedding dimensions).



Extending to larger vocabularies

• Forming 𝒌-dimensional vectors that capture meaning in 

the same way that our simple example does, where 

similar words have similar vectors and relationships 

between words are maintained, is not a simple task.

• Manual assignment of vectors would be impossibly 

complex: individual dimensions cannot be directly 

interpretable.

• As such, various algorithms have been developed, 

some recently, that can take large corpora of text and 

create meaningful models.



Distributional hypothesis

• “Words which are similar in meaning occur in similar 

contexts”.

(Harris, 1954)

• “You shall know a word by the company it keeps”.

(Firth, 1957)

• Central idea: represent each word by some context:

• E.g., words co-occurring with the considered word.

• We can use different granularities of contexts: documents, 

sentences, phrases, n-grams.



Phrase VS sentence



Phrase VS sentence: Example

• Phrase: “Red apple”.

• This is a phrase consisting of two words, “red” and “apple”;

• It is not a complete thought on its own but conveys a simple 

description of an apple's color.

• Sentence: “The quick brown fox jumps over the lazy dog”.

• This is a complete sentence;

• It consists of multiple words and forms a grammatically correct and 

meaningful expression;

• In this sentence, the subject is “the quick brown fox”, the verb is 

“jumps”, and the object is “over the lazy dog”;

• The sentence conveys a clear action, where the fox is jumping over 

the dog.



Word-level 𝑛-grams



Character-level 𝑛-grams



A simple example (Neighbouring terms)

I enjoyed eating some pizza at the restaurant

Word

The company it keeps

Context



Neighbouring terms features



COUNTING 
CO-OCCURRING WORDS



Window-based Co-occurrence Matrix

• In this method, given a text corpus, we count the number 

of times each (context) word co-occurs:

• inside a window of a particular size,

• with the word of interest (i.e., target word).

• The resulting matrix is also known as (window-based)

• Word-word co-occurrence Matrix

• Term-context Matrix

• Count Matrix

• Each word is represented by a so-called Count Vector.



A simple example

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story 

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

The considered text corpus



A simple example

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story 

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

The considered target words, i.e., magazine and newspaper



A simple example

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

We select a window of size 2 

with respect to the considered target words



A simple example

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

• He is reading a magazine

• This magazine published my story

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day

We build the window-based co-occurrence matrix



A simple example

• One way of creating a vector for a word:

• Let’s count how often a (context) word co-occurs together with 

specific other words.

ta
rg

e
t 

w
o

rd
s

context words

• He is reading a magazine

• This magazine published my story

• She buys a magazine every month 

• I was reading a newspaper

• The newspaper published an article

• He buys this newspaper every day



How does this work in general?

• We calculate this count not only for specific target words, 

but for all the words in the text corpus.

• Let our corpus contain just three sentences and the 

window size be 1:

1. I enjoy flying

2. I like NLP

3. I like deep learning

• The resulting co-occurrence matrix will then be?

• EXERCISE



Exercise
I enjoy flying

I like NLP

I like deep learning

The text

corpus



Solution
I enjoy flying

I like NLP

I like deep learning



Solution
I enjoy flying

I like NLP

I like deep learning



To recap

Using a (Window-based) Word-word Co-occurrence Matrix 

representation for large text corpora:

• Generates a |𝑉| × |𝑉| co-occurrence matrix 𝑋.

• The distinction between a target word and a context word 

is arbitrary and that we are free to exchange the two 

roles.



Raw frequency is a bad representation

• Frequency is clearly useful; if sugar appears a lot near 

apricot, that's useful information.

• But overly frequent words like the, it, or they are not very 

informative about the context.

• More frequent words dominate the vectors.

• Need a way that resolves this frequency paradox!

• Can use a weighting scheme like:

• TF-IDF (already seen in detail).

• Pointwise Mutual Information (PMI).



Pointwise Mutual Information (PMI)

• Pointwise Mutual Information:

• Do events 𝑥 and 𝑦 co-occur more than if they were independent?

PMI(𝑥, 𝑦) = log2

𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

• PMI between two words: (Church & Hanks 1989)

• Do words 𝑤1 and 𝑤2 co-occur more than if they were independent?

PMI(𝑤1, 𝑤2) = log2

𝑃(𝑤1, 𝑤2)

𝑃 𝑤1 𝑃(𝑤2)



Positive PMI (PPMI)

• PMI ranges from −∞ to +∞

• Negative values are problematic:
• Things are co-occurring less than we expect by chance.

• Unreliable without enormous corpora.

• Imagine 𝑤1 and 𝑤2 whose probability is each 10−6.

• Hard to be sure 𝑃(𝑤1, 𝑤2) is significantly different than 10−12.

• We just replace negative PMI values by 0.
• Positive PMI (PPMI) between 𝑤1 and 𝑤2:

PPMI(𝑤1, 𝑤2) = max log2

𝑃(𝑤1, 𝑤2)

𝑃 𝑤1 𝑃(𝑤2)
, 0



Computing PPMI

• Let us consider the following term-context matrix 𝑋:

• Matrix 𝑋 with 𝑊 rows (words) and 𝐶 columns (context 
words)
• Please remember that 𝑊 and 𝐶 can be equal in real scenarios, in 

particular 𝑊 = 𝐶 = |𝑉|.

𝑋 … computer data pinch result sugar …

apricot … 0 0 1 0 1 …

pineapple … 0 0 1 0 1 …

digital … 2 1 0 1 0 …

information … 1 6 0 4 0 …

… … … … … … … …



Computing PPMI

• PPMI(𝑤𝑖 , 𝑐𝑗) = max log2
𝑃(𝑤𝑖,𝑐𝑗)

𝑃 𝑤𝑖 𝑃(𝑐𝑗)
, 0

• We need to compute:

𝑃 𝑤𝑖 , 𝑐𝑗  = (Count of co-occurrence of 𝑤𝑖 and 𝑐𝑗 in the context) / 
(Total word count in the context)

𝑃 𝑤𝑖  = (Count of word 𝑤𝑖 in the context) / (Total word 
count in the context)

𝑃 𝑐𝑗  = (Count of word 𝑐𝑗 w.r.t. target words) / (Total word 
count in the context)



Computing PPMI

• 𝑓𝑖𝑗 is the number of times the word 𝑤𝑖 and 𝑐𝑗 co-occur.

𝑃 𝑤𝑖 , 𝑐𝑗 =
𝑓𝑖𝑗

σ𝑖=1
𝑊 σ𝑗=1

𝐶 𝑓𝑖𝑗

𝑃 𝑤𝑖 =
σ𝑗=1

𝐶 𝑓𝑖𝑗

σ𝑖=1
𝑊 σ𝑗=1

𝐶 𝑓𝑖𝑗

𝑃 𝑐𝑗 =
σ𝑖=1

𝑊 𝑓𝑖𝑗

σ𝑖=1
𝑊 σ𝑗=1

𝐶 𝑓𝑖𝑗



Computing PPMI

• 𝑃 𝑤 = information, 𝑐 = data =
6

19
= 0.32

• 𝑃 𝑤 = information =
11

19
= 0.58    𝑃 𝑐 = data =

7

19
= 0.37



Computing PPMI

• 𝑃 𝑤 = information, 𝑐 = data =
6

19
= 0.32

• 𝑃 𝑤 = information =
11

19
= 0.58    𝑃 𝑐 = data =

7

19
= 0.37



Computing PPMI

• 𝑃𝑃𝑀𝐼 information, data = max log2
𝑃(information,data)

𝑃 information 𝑃(data)
, 0

                                          = max log2
0.32

0.58∗0.37
, 0 = 0.57



Computing PPMI



Exercise

• 𝑃 𝑤 = information, 𝑐 = result =

• 𝑃 𝑤 = information =     𝑃 𝑐 = result =



Weighting (P)PMI

• (P)PMI is biased toward infrequent events.

• Very rare words have very high PMI values.

• Two solutions:

1. Give rare context words slightly higher probabilities.

2. Use add-𝑘 smoothing (which has a similar effect).

• We add a value of 𝑘 to every frequency in the term-context matrix.



Slightly higher probability to context words

• Raise the context probabilities to α = 0.75 (𝛼 ∈ 0,1 ):

𝑃𝑃𝑀𝐼𝛼 𝑤, 𝑐 = max log2

𝑃(𝑤, 𝑐)

𝑃 𝑤 𝑃𝛼(𝑐)
, 0

𝑃𝛼 𝑐 =
𝑐𝑜𝑢𝑛𝑡 𝑐 𝛼

σ𝑐 𝑐𝑜𝑢𝑛𝑡 𝑐 𝛼

• This helps because 𝑃𝛼 𝑐 > 𝑃(𝑐) for rare 𝑐
• Consider two context words, 𝑃(𝑎) = 0.99 and 𝑃(𝑏) = 0.01

• 𝑃𝛼 𝑎 =
0.990.75

0.990.75+0.010.75 = 0.97  𝑃𝛼 𝑏 =
0.010.75

0.990.75+0.010.75 = 0.03



Add-2 smoothing

Count(w, context)

Add-2 Smoothed Count(w, context)



Add-2 smoothing

Add-2 Smoothed Count(w, context)



PPMI versus add-2 smoothed PPMI



PPMI versus add-2 smoothed PPMI



PPMI versus add-2 smoothed PPMI

Count(w, context)



From sparse to dense vectors

• A Co-occurrence Matrix in reality is constituted by a 

very large number of words

• For each word, TF-IDF and PPMI vectors are:

• long (length |𝑉| = 20,000 to 50,000);

• sparse (most elements are equal to zero).

• There are techniques to learn lower-dimensional 

vectors for words, which are:

• short (length = 50 to 1,000) (usually around 300);

• dense (most elements are non-zero).

• These dense vectors are called embeddings.


	Diapositiva 1: Word embedding Vector semantics
	Diapositiva 2: Word embedding – Definition
	Diapositiva 3: background
	Diapositiva 4: Representing DOCUMENTS as vectors
	Diapositiva 5: Representing DOCUMENTS as vectors
	Diapositiva 6: Representing DOCUMENTS as vectors
	Diapositiva 7: Similarity of DOCUMENTS
	Diapositiva 8: Visualizing similarity of DOCUMENTS
	Diapositiva 9: WORDS can be represented as vectors too
	Diapositiva 10: In-document features
	Diapositiva 11: Similarity of WORDS
	Diapositiva 12: Representing WORDS as vectors 1. Local representation
	Diapositiva 13: 1-hot vectors
	Diapositiva 14: 1-hot vectors
	Diapositiva 15: 1-hot vectors
	Diapositiva 16: Representing WORDS as vectors 2. Distributed representation
	Diapositiva 17: Distributed representation
	Diapositiva 18: Distributed representation
	Diapositiva 19: Relationships between words 
	Diapositiva 20: Distributed representation: Advantages
	Diapositiva 21: Distributed representation: Advantages
	Diapositiva 22: Local VS Distributed representation
	Diapositiva 23: Extending to larger vocabularies
	Diapositiva 24: Distributional hypothesis
	Diapositiva 25: Phrase VS sentence
	Diapositiva 26: Phrase VS sentence: Example
	Diapositiva 27: Word-level n-grams
	Diapositiva 28: Character-level n-grams
	Diapositiva 29: A simple example (Neighbouring terms)
	Diapositiva 30: Neighbouring terms features
	Diapositiva 31: Counting  co-occurring words
	Diapositiva 32: Window-based Co-occurrence Matrix
	Diapositiva 33: A simple example
	Diapositiva 34: A simple example
	Diapositiva 35: A simple example
	Diapositiva 36: A simple example
	Diapositiva 37: A simple example
	Diapositiva 38: How does this work in general?
	Diapositiva 39: Exercise
	Diapositiva 40: Solution
	Diapositiva 41: Solution
	Diapositiva 42: To recap
	Diapositiva 43: Raw frequency is a bad representation
	Diapositiva 44: Pointwise Mutual Information (PMI)
	Diapositiva 45: Positive PMI (PPMI)
	Diapositiva 46: Computing PPMI
	Diapositiva 47: Computing PPMI
	Diapositiva 48: Computing PPMI
	Diapositiva 49: Computing PPMI
	Diapositiva 50: Computing PPMI
	Diapositiva 51: Computing PPMI
	Diapositiva 52: Computing PPMI
	Diapositiva 53: Exercise
	Diapositiva 54: Weighting (P)PMI
	Diapositiva 55: Slightly higher probability to context words
	Diapositiva 56: Add-2 smoothing
	Diapositiva 57: Add-2 smoothing
	Diapositiva 58: PPMI versus add-2 smoothed PPMI
	Diapositiva 59: PPMI versus add-2 smoothed PPMI
	Diapositiva 60: PPMI versus add-2 smoothed PPMI
	Diapositiva 61: From sparse to dense vectors

